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Isotropic Grids Revisited: A Numerical Study of
Solar Cell Electrode Geometries

Oliver Nakano-Baker , Clay Boyd , Caitlin Cramer , Lucien Brush, and J. Devin MacKenzie

Abstract— Many contemporary solar cells utilize sparse
front electrodes to gather charge carriers from the
sun-facing side of their active material layers, deploying an
H-bar shape to minimize shadowing and resistive losses in
the cell material and metal lines. Isotropic grids, comprised
of overlapping line arrays and forming triangular, square,
or hexagonal shapes, are generally not recognized as out-
performing H-bar type designs as front electrodes due to
their increased shadowing. However, for solar cells where
front-side charge carriers converge to single point sinks,
and especiallywhen transparent conductor (TC) sheet resis-
tance is high, isotropic grids are capable of outperform-
ing H-bars. We present a simple numerical framework for
modeling the shadow and resistive losses in circular H-bar
and isotropic grids and for optimizing the pitch and width
of the designs. Using Griddler finite element (FE) software
as validation, we demonstrate that isotropic grids produce
more power for solar cells with high transparent conductive
layer resistance and point sinks.

Index Terms— Contacts, design optimization, electrodes,
modeling, photovoltaic cells.

I. INTRODUCTION

FRONT electrode metallization of a solar cell performs the
critical function of collecting charge carriers. Its intrinsic

role is straightforward as a simple metallic conductor; how-
ever, it presents a characteristic design challenge: large metal
lines that minimize resistive losses to overall power conversion
efficiency cast a larger shadow on the underlying solar cell
material, reducing harvestable photogenerated current. The
optimization of these two characteristic losses has been well
studied both numerically and experimentally [1]–[14].
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Fig. 1. Optimized layouts of 5-cm-diameter circular front cell electrode
designs using (a) H-bar, (b) hexagonal, and (c) square grid layouts.

In general, the principal power losses created by a solar
cell’s front electrode array arise from the array’s shadow,
resistive losses in the lines, and resistive losses in the under-
lying front semitransparent conductive sheet or heavily doped
semiconductor as current transports laterally from near the
sites of photogeneration in cell active layers to the grid.

Most grid designs utilize parallel lines that intersect a
perpendicular bus bar, referred to here as an “H-bar” design.
A second class of isotropic grids includes all regular tessel-
lating planar unit cells: closed hexagons, triangles, or squares.
Examples of H-bar, hexagon, and square patterns are shown
in Fig. 1.

The isotropic grids have long been understood to have
inferior properties to H-bar grids for a basic front electrode
array application [1]. At equivalent pitch with all other mate-
rials and dimension held equal, isotropic grids incur a 2×
increase in shadowing losses while enjoying no benefit to
their current transport efficiency compared to H-bar patterns.
For this reason, virtually, all contemporary solar cell modules
utilize front H-bar electrodes of some flavor [15].

A. Revisiting Isotropic Grids

Two features of emerging solar cell design motivate a
reexamination of the isotropic family of grid designs: the shift
to point sinks in modern cell layouts and the competitiveness
of high-resistance front layers in thin-film solar cells. The first
of these comes from the use of through-stack vias by many
commercial modules; vias shuttle current to a rear-side bus and
are point sinks for the front-side charge carriers [16]. In these
architectures, H-bar electrodes result in an indirect current
pathway to the sink where isotropic grids would perform
transport along an effectively straight pathway and with the
same efficiency of transport as the H-bar.

The second feature is the competitiveness of high transpar-
ent conductor (TC) resistance (ρTC) solar cell module designs.
TCs constitute layers of a device that confer an ability to
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transport current in the plane of the device while being mostly
transparent to light, excluding front metallization. Thin-film
photovoltaic modules, such as perovskites, cadmium telluride,
and organic photovoltaics, commonly use dedicated TC layers
such as indium tin oxide (ITO) on their front face to effect
charge carrier transport from the active material to the edge
of the cell or an electrode grid. ITO layers are expensive and
give rise to unavoidable optical extinction losses due to the
inherent tradeoffs between metallic-like conductivity derived
from their significant carrier concentrations and absorption
and reflectivity. Sourcing materials for their manufacture can
be geopolitically challenging, leading to much research into
their replacement [17], [18], i.e., by conductive polymers or
nanowire layers.

For many such layers, Jacobs et al. [19] contended that it
is advantageous to increase the sheet resistivity of the TC
and thus minimize optical extinction beyond the traditional
∼10 �/sq, with values up to 10-k�/sq optimal for some
systems. In addition, the high charge carrier mobility of
perovskite photovoltaics could motivate the deployment of
TC-free, high-resistance, low-extinction modules [20], [21].
Isotropic grids with fine pitch should excel in these high-ρTC

design spaces due to lower diffusion distances, aiding in the
minimization or elimination of ITO layers.

New additive manufacturing pathways for metal lines are
being explored [22]–[24] and there is interest in thin-film
tandem architectures, which can require multiple TC layers
within a solar cell stack [25]. These developments perturb
the established material properties and design assumptions in
commercial solar cell modules. With solar panels providing
an ever-increasing share of worldwide utility-scale power,
incremental improvements in efficiency and output can result
in significant power gains and competitiveness. For example,
a mere 1% relative increase in module efficiency would have
corresponded to an additional 3.65 TWh of solar energy
produced in USA in 2020, worth about $389 million at the
going utility rate [26]. Considering solar’s growing market
and shifting design landscape, it is an ideal time to reexamine
old assumptions around front contact design, including the
supremacy of the H-bar layout.

B. Solar Cell Grid Optimization

Strategies for the optimization of solar cell grids have
evolved significantly over the past 50 years. Early studies
by Napoli et al. [1] and Serreze [2] established numerical
models for the individual sources of power loss in straight- and
tapered-line grids, respectively. Such models are suited to rapid
numerical optimization, and this study employs similar meth-
ods to revisit isotropic transport grids. We assume the simplest
possible conditions, including single values for linewidth and
pitch and constant wire height. However, alternate design
approaches exist, which improve grid performance at the cost
of increased complexity and expanded design space.

Most importantly, it is optimal to vary grid linewidths
locally according to the relationships outlined by
Scharlack [3], with every wire scaled to an optimal width
relative to solar current, local wire current, and material
constants. The relationship has been utilized by later works,

TABLE I
SYMBOLS AND UNITS FOR FRONT GRID NUMERICAL MODELS

including spoked radial grids for circular cells [7], [9]. The
losses in such a system mirror basic scaling laws found in
biological systems [27], [28] and the basic tenet can be stated
that the optimal size of transport elements in a network
will scale so as to maintain a constant optimal flux density
everywhere in the network.

More recently, grid optimization is often expanded to
include module-scale bus bar and material cost optimiza-
tion [12], [14]. Some grid design strategies abandon the
notion of fixed-pitch grids, adopting free-form approaches.
These strategies range from strategic addition or subtraction
of grid elements [11] to free-form design of ramified transport
networks [8], [29] and can potentially be adopted to arbitrary
solar module geometries [30]. We expect these networks to
outperform both the H-bar and isotropic designs presented
here by benefiting from more direct current pathways without
the high shadowing cost of the isotropic grids; however, this
comes at the cost of a significantly more complex optimization
landscape.

In this study, we rederive basic numerical equations for the
principal losses in a front electrode isotropic grid pattern and
verify the model using the commercially available Griddler
simulation package [31]. The numerical models are used to
design optimal H-bar and isotropic grids for high-ρsheet point-
sink solar cells, and their relative performance is evaluated
using Griddler’s finite element (FE) solar cell simulator. Areas
of point-sink solar cell design space are identified where an
isotropic grid pattern outperforms H-bar grids.

II. METHODS

To compare H-bar and isotropic patterns, numerical models
were used to estimate the main sources of power loss in the
front metallization: shadowing, grid line resistance, and TC
resistance. Symbols and units for these calculations are defined
in Table I and shown in Fig. 2.

Convex optimization of the numerical expressions was used
to rapidly identify near-optimal configurations of H-bar and
isotropic grids on circular solar cells with a single central
current sink. Both grid types were optimized across a range
of material properties and cell radii, and optimal designs
were modeled using Griddler software to determine their peak
power output. These FE-calculated power estimates were used
to compare the performance H-bar and isotropic grids.

A notable omission from this study is the consideration of
contact losses between TC and grid, as well as downstream
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Fig. 2. Schematic layout of (a) grid cross section, (b) H-bar, (c) square, and (d) hexagonal grids. Unit tiles used for TC resistive loss calculations
are demarked in dotted blue.

contact losses such as where lines intersect with bus bars.
These power losses are typically smaller by an order of
magnitude than the other power losses considered here and
are a secondary source of loss for most practical solar cell
modules [12].

A. Calculating Power Losses

We derive closed numerical equations for the shadow,
line resistance, and TC sheet resistance losses in H-bar and
isotropic grid arrangements on a circular solar cell. As stan-
dardized in former works [1], [3]–[6], grid resistive losses were
calculated in watts as

Plost =
∫ k

j
I (x)2δR(x) (1)

where j and k are locations where current begins and ends,
respectively; I (x) is the cumulative current in amperes at
location x , and δR(x) represents an increment of resistance
at location x . Generally, this can be expressed as

δR(x) = ρ

l(x)
δx (2)

where ρ is the sheet resistance (in ohm per square) of the
transporting medium, l(x) is the width of the transporting
medium, and δx is an incremental distance along the direction
of current flux. When transporting through an array of metal
lines, the effective grid sheet resistances ρ of both H-bar and
isotropic grids are

ρgrid = ρmetalb

wh
(3)

where ρmetal is the metal resistivity, b is the pitch of the
grid as shown in Fig. 2, and w and h are the width and
height, respectively, of the metal lines. The effective grid sheet
resistivity holds only in the direction parallel to the metal
lines in an H-bar grid, but it is isotropic in the plane of the
device for triangle, square, and hexagon grids. The equivalence
and isotropic nature of these grids is demonstrated in the
Appendix.

The maximum theoretical power gathered by a circular solar
cell (i.e., with a lossless front grid) would be

Pmax = JsolVopπ R2 (4)

where Jsol is the solar current density, Vop is the cell operating
voltage, and R is the radius of the circular cell. Shadow loss

can be expressed as a fractional decrease in the max power
due to the proportion of device stack area covered by metal
lines. For H-bars, this is simply the ratio of width to pitch; for
isotropic grids, the shadow loss is doubled. We have

PHbar
shadow loss = Pmax

w

b
(5)

P iso
shadow loss = 2 Pmax

w

b
. (6)

In the following, we outline simple models for the resistive
losses in the two grid types on a circular cell.

1) Isotropic Grid Losses: The three non-H-bar grids all have
isotropic conductivity in the solar cell plane and are equivalent
to each other in terms of their grid resistive losses, see the
Appendix for a demonstration of this effect. As long as
the solar cell is large enough to contain many unit cells,
i.e., R � b, current can effectively be assumed to travel
radially from any point in the solar cell to the central sink.
Cumulative current generated between the solar cell edge and
radial position r is

I iso
cumulative(r) = Jsolπ(R2 − r2). (7)

This expression can be combined with (3) for the grid
effective sheet resistance into (1) and (2), taking the width
l(x) = 2πr because current at position r moves radially
through a circumferential slice of material. The total power
lost due to grid resistance is

P iso
grid loss =

∫ R

�

I iso
cumulative(r)2 ρgrid

2πr
δr (8)

where � is the radius of the center point sink. The trend is
resolved using numerical integration in the software model.

Resistive losses in the TC are generated as current diffuses
across a triangular unit cell, as shown in Fig. 2. The variable
x is defined to be the distance from the tip of this triangle on
a path perpendicular to the nearest line, i.e., x = b/2 defines
the coordinate where current reaches the conductive grid. It is
assumed that current is evenly distributed to achieve uniform
flux at every x , and we solve this equation for both square
and hexagonal grids. The cumulative current in the TC can be
written as

I square
cumulative(x) = Jsolx

2 I hex
cumulative(x) = 1√

3
Jsolx

2. (9)
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Using (2) with ρ = ρTC, lsquare(x) = 2x , and lhex(x) =
(2/(3)1/2)x , substitute into (1)

Psquare unit cell
TC loss =

∫ b
2

0
J 2

solx
4 ρTC

2x
δx

= 1

128
J 2

solb
4ρTC (10)

and

Phex unit cell
TC loss =

∫ b
2

0

1

3
J 2

solx
4

√
3ρTC

2x
δx

=
√

3

384
J 2

solb
4ρTC. (11)

This accounts for loss in one unit cell. To estimate power
loss across the entire solar cell, scale up using a ratio of areas,
with A = π R2, Asquare = (b2/4), and Ahex = (b2/4(3)1/2)

P iso
TC loss = Psquare unit cell

TC loss
A

Asquare

= Phex unit cell
TC loss

A

Ahex
= π

32
J 2

solb
2 R2ρTC. (12)

Power loss density is obtained by dividing the circular
area A. This is not possible for grid losses, which depend on R.
With identical models describing their shadow, grid-, and
TC-resistive losses, the various isotropic grids are effectively
interchangeable in this analysis.

2) H-Bar Grid Losses: Resistive losses in the H-bar grid are
calculated in two parts. First, losses in a parallel array of lines
with width w, height h, and pitch b are calculated, with current
traveling from the area of the cell to a single cross-cell bus.
Then, losses in the bus are calculated as current travels to the
center sink. Using the sheet resistance description of the line
array from (3), the loss in a strip of the line array intersecting
and perpendicular to the bus, of length L and width δy, can
be calculated. Recognizing that the current at distance l from
the cell’s edge will be J l δy, from (1), we have

Psegment(L) =
∫ L

0
(Jsol l δy)2 ρgrid

δy
δl = 1

3
J 2

sol L
3ρgridδy. (13)

The length of the array lines as one travels away from the
central sink can be expressed as L = f (y) = (R2 − y2)1/2,
where y is the distance from the sink where the array intersects
the bus line. (Note that as y → R at the end of the bus
bar, the length of the array, and its associated resistive losses,
go to zero.) The total resistive loss in the array comes from
integrating this value numerically across all four quadrants of
the cell

PHbar array
grid loss = 4

∫ R

0

1

3
J 2

sol(R2 − y2)3/2ρgrid δy. (14)

Resistive losses in the bus bar come from similarly integrat-
ing from the cell’s edge to the sink the current incident from
the array on the bus. The current in the bus at position y is

Ibus(y) =
∫ R

y
2 Jsol

√
R2 − y2δy (15)

and the total power loss from both sides of the bus is solved
using numerical integration in implementation as

PHbar bus
grid loss = 2

∫ R

�

Ibus(y)2ρgrid δy (16)

where � is the radius of the center point sink.
Device TC resistive losses for an H-bar grid are derived in

past works [1], [3]. For this study, loss is calculated over the
R-radius cell area as

PHbar
TC loss = π

12
J 2

sol b2 R2ρTC. (17)

Finally, in addition to the shadow cast by the major grid
lines per (5), the bus casts a single shadow with power cost

PHbar bus
shadow loss = 2 R Jsol Vop w. (18)

These models include some nonphysical assumptions, most
notably a total conservation of current, constant voltage across
the solar cell, and negligible contact losses between TC and
line. Nonetheless, we verify as described in Section II-C that
the optimization of the numerical models yields near-optimum
grid layout designs.

B. Grid Optimization

Numerical models were implemented as functions in Python
for isotropic and H-bar grids. All numerical integration was
carried out using the SciPy [32] integrate. quad() function,
which invokes the Fortran QUADPACK library. Optimization
of grid geometry means solving

argmax{w,b} Pmax −
∑

l∈losses

Pl(w, b) + λb2 (19)

where λ is a small constant that encourages larger grid pitch.
This regularization is a practical term introduced because in
the isotropic grid, the TC term PTC loss ∝ b2 will drive an
unbounded reduction in both w and b, pushing the grid to the
lower design bounds consistently with minimal improvement
in actual performance. Regularization of the grid geometry
yields patterns that are less computationally strenuous for FE
with minimal reduction in performance.

Optimal values of w and b are identified using SciPy’s
optimize. minimize() function, which employs the L-BFGS-B
algorithm. For all grids, linewidth w had bounds [1 μm,
(R/2)] and pitch b had bounds [1 mm, (R/2)], where R
was the cell radius. The pitch lower bound was introduced
to maintain practical computation burden in FE and was the
only boundary condition to affect the grids generated in this
study; the smallest designed linewidth in practice was 2 μm.

All codes used to model and optimize grids in this study can
be found at https://github.com/onakanob/iso_grid_optimizer.

C. Grid Design Validation

The outputs of the numerical model and optimization loop
were validated using Griddler, a free solar cell FE modeling
package. We first verify the optimality of found grid patterns
and the equivalence of the isotropic grid patterns. Then,
we compare the performance of H-bar and isotropic grids
across a range of solar cell and material properties.
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A static operating voltage is manually chosen for the
numerical model so that its optimal designs are also optimal
in Griddler simulation. Fig. 3 shows that for a 1-k�/sq TC
sheet resistance design, the two models are in close agreement
on optimal pitch and width values when VOP = 420 mV.

For all experiments, a set of standard centered conditions
were specified for a circular 5-cm radius solar cell with
a central current sink, 2-m�/sq metal grid lines, 0.5-mm
sink radius, 420-mV operating voltage, and 20-mA/cm2 solar
current. Griddler uses a double diode model for active mate-
rial element simulation, and diode saturation currents of
450 fA/cm2 and 10 nA/cm2 were chosen. Griddler’s internal
optimizer was used to identify max-power operating voltage
and current for each grid design.

Finally, the center condition TC sheet resistance value
was chosen where isotropic and H-bar grids show equiva-
lent performance. Fig. 4(a) shows that this occurs at about
15 �/sq. TC sheet resistance swept values range from 1 to
104 �/sq, covering from the low end of high-performance
ITO layers to the upper range of TC materials considered by
Jacobs et al. [19].

III. RESULTS

For a solar cell at the center conditions described above,
the model identified an optimal H-bar geometry of 7.8-mm
pitch and 0.62-mm linewidth. Numerical power predictions are
increased by a factor of 1.53 to bring center point predictions
in line with the FE result. This factor is used to aid visualiza-
tion as in Fig. 3, but it does not impact optimization results,
which are unaffected by constant scaling. All performance
values in Figs. 4 and 5 are unscaled outputs from Griddler
simulations.

In Fig. 3, predicted power output from the numerical and
FE methods are plotted around this optimal point, varying
grid pitch and linewidth independently. The numerical model
neglects the effects of voltage on current generation, causing
some mismatch between the two models. However, with the
tuned value VOP = 420 mV, there is close agreement between
the numerical and FE models on the optimal grid design.
These trends illustrate the resilience of the grid design to
perturbations—for instance, a 50% decrease in linewidth from
the optimum results in just a 7% reduction in power density,
from 6.9 to 6.4 mW/cm2. Therefore, we do not expect small
errors in grid design from our algorithm to be significant to
the question of isotropic versus H-bar grids.

We compare the power output of circular solar cells with
H-bar and isotropic front grid patterns given a range of cell
geometries and material properties. Square grids were used
to simulate all isotropic patterns. All simulations used solar
cells at the centered conditions, but varying one parameter at
a time. In Figs. 4 and 5, each of the cell’s TC sheet resistance,
grid line resistance, radius, and solar current density is varied
systematically, and FE results for optimal grid power output
of H-bar and isotropic grids are compared.

At center conditions, TC sheet resistivity is set at 15 �/sq
so that both the H-bar pattern and the isotropic grid produce
an equivalent 8.61 mW/(cm2). While H-bars perform well
at low sheet resistances below 15 �/sq, the isotropic grid

Fig. 3. Optimum values for grid pitch and linewidth found using numerical
optimization are also near local optima in Griddler’s solar cell FE when
VOP = 420 mV.

significantly outperforms optimal H-bar patterns for high TC
sheet resistance values and shows more modest gains for large
cell radii and elevated solar current.

IV. DISCUSSION

While the H-bar grid continues to dominate perfor-
mance with industry-standard TC sheet resistance values of
<15 �/sq, isotropic grids matched or outperformed H-bars as
front electrodes on center-sink circular solar cells with high
TC sheet resistances and, to a lesser extent, large cell areas
and high solar currents. The principal advantage of the H-bar
design—its 2× lower shadow loss coefficient—was present
in these designs, but a combination of other factors gave the
edge to isotropic patterns. These factors likely included a flat
reduction in TC sheet losses, spreading transport burden across
more metal elements, easier optimization landscape enabling
fine-pitch patterns, and a reduction in voltage variance across
the device stack.

TC resistive losses in both grids vary ∝ b2, with the
isotropic grid experiencing lower loss by a constant factor
of 8/3. The scaling factor implies that for any TC sheet
resistance, a sufficiently small grid pitch will render resistive
losses negligible. Conversely, sufficiently large pitch will cause
TC losses to dominate device behavior. Contemporary solar
cells usually deploy a front conductive transparent layer such
as ITO with sheet resistance <10 �/sq, where millimeter-scale
grid lines are sufficient to eliminate most TC losses and the
isotropic grid’s constant advantage has minimal utility. Under
higher TC resistivity, reduction of the pitch value becomes
critical to grid optimization. With very high TC resistivity,
both grids in this study were clamped by the lower bound
pitch of 1 mm, at which point the isotropic grid’s flat 8/3
advantage becomes a significant performance driver.

The lower TC losses in isotropic grids arise due to the
triangular unit cell across which current diffuses to grid lines,
as shown in Fig. 4(c) and (d). This reduces the average
distance from any point in the TC layer to the nearest
grid wire from (1/4)b for H-bars to (1/6)b for square or
hexagonal isotropic grids. More importantly, it reduces the
average current density in the TC because current can spread
with the triangle’s cross section as it travels along the direction
x toward a grid line, reducing resistive power loss.

An idealized solar cell might maintain a uniform max-power
voltage across the entire device stack; in reality, a spread
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Fig. 4. Comparison of power density from H-bar and isotropic front grid solar cells with varying TC sheet resistance, wire sheet resistance, and
solar cell radius.

of voltages around the max-power point arises across the
solar cell due to resistance effects. The isotropic grid,
by reducing resistance loss and thus voltage drops in the
TC layer, is closer to the ideal case; this results in higher
max-power voltage without losing too much photocurrent.
To illustrate, at the lowest sheet resistance value studied
(Rsheet = 46 �/sq), the optimal isotropic and H-bar grids
both produced about 8 mW/cm2. The two cells had a
nearly identical open-circuit voltage of 622–624 mV, but the
H-bar grid produced a much higher short circuit current,
18.6 mA/cm2 versus the isotropic 16.6 mA/cm2, due to
its reduced shadowing. Despite the H-bar’s current advan-
tage, the max-power conditions for the isotropic grid of
523 mV and 15.58 mA/cm2 matched the H-bar’s 477 mV
and 17.14 mA/cm2 in terms of power output due to the
isotropic grid’s higher operating voltage, respectively. All
effects of variable voltage and solar current are omitted from
the numerical model, likely leaving some room for additional
optimization in both grid designs.

The final weakness of the H-bar grid was its reliance on
concentrated current flux through the single bus bar element—
this introduces an additional constraint to its optimization
problem and is largely a product of the assumptions in this
study. In short, the H-bar grid wants larger linewidth to reduce
bus bar loss but smaller pitch to reduce TC loss—this couples
bus bar and TC losses, setting up a tradeoff in its optimization
space that the isotropic grid does not need to deal with.
The isotropic grid is, in fact, unconstrained in its specific
choice of width and pitch except by TC loss considerations.
P iso

grid loss ∝ b/w and P iso
shadow loss ∝ w/b, so the isotropic grid

optimizer only needs to find an optimal width-to-pitch ratio
and can easily miniaturize the pattern to accommodate higher
TC resistances, limited only by the simulation’s lower bound
and regularizing λ term.

This study assumed that current is generated in a circular
area centered on the sink, a geometry chosen for its simplicity
in assessing the relative performances of grid types. Such
a module layout would seldom be encountered in industrial
solar cell applications, where semisquare wafers or half cells
and often multiple sinks per module are the norm. The
extension of the model to any particular layout of sinks is

Fig. 5. Comparison of power density from H-bar and isotropic front grid
solar cells with varying incident solar current.

left to the individual practitioner. However, the circular area
assumption is likely to be a good approximation of any layout
of sinks approaching a close packing. If isotropic grids are to
find successful application in contemporary commercial solar
modules, such as half-cut and the new C3 modules, a bus
bar layout would need to be identified that leverages the area
efficiency of close-packed point sinks while conforming to the
overall rectilinear arrangement of those modules. The design
of optimal bus bar layouts for isotropic grid solar cells is
the next step to enable the comparison and competition of
isotropic grids against real H-bar solar cell grid designs.

V. CONCLUSION

The foundational numerical models that established today’s
solar cell electrode designs deemphasized the utility of
isotropic grids arrays of triangular, square, or hexagonal
wire patterns—due to their higher degree of shadowing for
equivalent conductive performance, compared to H-bar grids.
However, in certain corners of the solar cell design space,
isotropic grids are capable of outperforming H-bars. Isotropic
grids have interesting properties, including an equivalence in
shadow/resistance tradeoffs across all possible planar isotropic
grid designs.
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Fig. 6. Geometric conventions in describing the lack of angular dependence on grid conductivity: (a) grid angle, (b) overlay of three linear grids in
a triangle isotropic grid pattern, and (c) unit tile for calculation of a linear subgrid in a hexagonal grid.

We have attempted to fill this gap in the modeling literature
by presenting a simple numerical framework for modeling
the shadow and resistive losses in circular, center-sink H-bar,
and isotropic grids and for optimizing the pitch and width
of the designs. Using Griddler FE software as validation,
we demonstrate that isotropic grids produce more power for
solar cells with high TC sheet resistance and point sinks. These
designs could help enable a transition away from transparent
conductive oxides and their associated processing, material,
and optical costs, in favor of lightly doped electron or hole
transport layers combined with fine front electrode grids.
While the cutting edge of grid design has moved toward
ramified networks and free-form design, the family of isotropic
grids may still provide a performance baseline design, simple
to optimize, and deploy, for the next generation of center-sink,
ITO-free solar cells.

APPENDIX

ISOTROPY OF GEOMETRIC GRID PATTERNS

To avoid confusion, a planar array of parallel conductive
grid lines will be referred to as a “linear grid.” Consider
the “sheet conductivity” κ (in units squares/� or �−1) of a
linear grid with width w, height h, and material resistivity
ρmetal: κsheet = (1/ρsheet) = (wh/ρmetal b) = (1/ρwire b). Here,
ρwire = (ρmetal/wh) is the resistivity of one line in the array,
i.e. in units �/cm, and b is the grid pitch. These values apply
only in the direction parallel to the lines in the array—indeed if
current flux has no convergence, a design should simply align
its grid with the current flux. With φ as the angle between the
linear grid and the direction of current flux, effective grid line
pitch and conductivity take on angular dependencies

ρφ, wire = ρmetal

w h cos φ
(20)

bφ = b

cos φ
. (21)

The angular sheet conductivity for the linear grid
becomes

κφ = cos2 φ
wh

ρmetal b
. (22)

Square and triangle grids are both comprised of multiple
overlayed linear grids. Because all subgrids are continuous
and in contact with each other, we model the complete

system as several linear grids in parallel with offset angles

 = {φ1, φ2, . . .}. The resulting conductivity is

Kgrid =
∑
φ∈


cos2 φ
wh

ρmetal b
. (23)

If the involved grids have the same line properties and pitch,
then the right-hand fraction carries out of the summation. With
current traveling along direction θ , 
squares = {θ, θ+π/2} and

triangles = {θ, θ+π/3, θ+2π/3}, and the summation reduces
to a constant value—the lack of dependence on θ indicates that
the grids have isotropic conductivity. In particular,

K square
grid = wh

ρmetal bsquare
(24)

K triangle
grid = 3

2

wh

ρmetal btriangle
(25)

and if the grids are sized so that btriangle = 3
2 bsquare, their

conductivities will be equal.
The hexagonal grid solution is less clear because its com-

ponent grid lines are not continuous. Instead, consider the unit
tile shown in Fig. 6(c). The effective conductivity of the cell
is 1/3 that of the metal line it contains because of the lengths
relationship lwire = (1/3)ltile, and the tile cross section is (1/2)
of the grid pitch b. The sheet conductivity of a tiling of these
partial-wire cells takes these scaling factors into account (such
a tiling would not form a percolating electrical grid by itself)

K hex
φ = cos2 φ

lwire

ltile

wh

ρmetal

2

b
= 2

3
cos2 φ

wh

ρmetal b
. (26)

As with the triangle grid, 
hex = {θ, θ + π/3, θ + 2π/3}
and

∑
φ∈
hex

cos2 φ = 3/2. As a result, the hexagonal grid has
an isotropic sheet conductivity equal to that of the square grid,
so long as their pitches are equal

K hex
grid = wh

ρmetal bhex
. (27)

This relationship holds only because current flux is constant
in each of the overlapping hexagonal subgrids and the over-
all grid is fully connected (it percolates). Any such system
with self-similar subgrids and 
grid comprised of more than
two whole number divisions of the unit circle will also be
isotropic—it follows that for any such isotropic grid, a pitch
value exists, which renders it identical in conductivity to the
isotropic grids discussed here.
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Though we do not discuss it here in detail, it is apparent that
a linear grid angle has no effect on its shadowing behavior and
that the effect of line segment length and pitch scaling applies
identically to shadowing. Furthermore, the multiplication trick
used to find pitch values that bring conductivity in line between
two different isotropic grids will also equilibrate the shadow-
ing coverage of the two grids. Therefore, as far as we can tell,
all isotropic grids will be fully equivalent to each other in their
conductivity/shadowing tradeoffs, regardless of the particular
number and angles of linear subgrids. We believe (but do not
demonstrate) that this property extends in expectation to the
properties of uniformly random arrays of conductive lines,
such as nanowire assemblies.
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