
IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 68, NO. 12, DECEMBER 2021 6629

Fully On-Chip MAC at 14 nm Enabled by
Accurate Row-Wise Programming of

PCM-Based Weights and Parallel
Vector-Transport in Duration-Format

P. Narayanan , Senior Member, IEEE, S. Ambrogio , Member, IEEE, A. Okazaki, Member, IEEE,
K. Hosokawa, H. Tsai, Senior Member, IEEE, A. Nomura , T. Yasuda, C. Mackin , S. C. Lewis, A. Friz,

M. Ishii, Member, IEEE, Y. Kohda, H. Mori, K. Spoon, R. Khaddam-Aljameh , Member, IEEE,
N. Saulnier , M. Bergendahl, Member, IEEE, J. Demarest , K. W. Brew, V. Chan , S. Choi,

I. Ok, I. Ahsan, F. L. Lie, Member, IEEE, W. Haensch,
V. Narayanan, Senior Member, IEEE,

and G. W. Burr , Fellow, IEEE

Abstract— Hardware acceleration of deep learning using
analog non-volatile memory (NVM) requires large arrays
with high device yield, high accuracy Multiply-ACcumulate
(MAC) operations,and routing frameworks for implementing
arbitrary deep neural network (DNN) topologies. In this arti-
cle, we present a 14-nm test-chip for Analog AI inference—it
contains multiple arrays of phase change memory (PCM)-
devices,each array capable of storing 512 × 512 unique DNN
weights and executing massively parallel MAC operations
at the location of the data. DNN excitations are transported
across the chip using a duration representation on a par-
allel and reconfigurable 2-D mesh. To accurately transfer
inference models to the chip, we describe a closed-loop
tuning (CLT) algorithm that programs the four PCM con-
ductances in each weight, achieving <3% average weight-
error. A row-wise programming scheme and associated
circuitry allow us to execute CLT on up to 512 weights
concurrently. We show that the test chip can achieve
near-software-equivalent accuracy on two different DNNs.
We demonstrate tile-to-tile transport with a fully-on-chip
two-layer network for MNIST (accuracy degradation ∼0.6%)

Manuscript received August 2, 2021; accepted September 13,
2021. Date of publication October 11, 2021; date of current version
December 1, 2021. This work was supported by IBM Research AI
Hardware Center. The review of this article was arranged by Editor
P. Grudowski. (Corresponding author: P. Narayanan.)

P. Narayanan, S. Ambrogio, H. Tsai, C. Mackin, A. Friz, K. Spoon, and
G. W. Burr are with IBM Research–Almaden, San Jose, CA 95120 USA
(e-mail: pnaraya@us.ibm.com).

A. Okazaki, K. Hosokawa, A. Nomura, T. Yasuda, M. Ishii, Y. Kohda,
and H. Mori are with IBM Research, Tokyo 212-0032, Japan.

S. C. Lewis, W. Haensch, and V. Narayanan are with IBM
Thomas J. Watson Research Center, Yorktown Heights, NY 10598 USA.

R. Khaddam-Aljameh is with IBM Research Zurich, 8803 Rüschlikon,
Switzerland.

N. Saulnier, M. Bergendahl, J. Demarest, K. W. Brew, V. Chan, S. Choi,
I. Ok, I. Ahsan, and F. L. Lie are with IBM Albany NanoTech, Albany,
NY 12203 USA.

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TED.2021.3115993.

Digital Object Identifier 10.1109/TED.2021.3115993

and show resilience to error propagation across long
sequences (up to 10 000 characters) with a recurrent long
short-term memory (LSTM) network, implementing off-chip
activation and vector-vector operations to generate recur-
rent inputs used in the next on-chip MAC.

Index Terms— Analog accelerator, analog AI, analog
multiply-accumulate (MAC) for deep neural networks
(DNNs), deep learning accelerator, inference, in-memory
computing, non-volatile memory (NVM), phase-change
memory (PCM).

I. INTRODUCTION

DEEP learning algorithms have revolutionized several
machine learning disciplines over the last decade, notably

in the areas of image recognition [1], speech recognition [2],
language translation [3], etc. This success has been driven by
the availability of copious amounts of real-world data together
with the compute power of graphical processing units (GPUs),
which have made it possible to train and deploy larger and
larger deep neural network (DNN) models that achieve near-
or better-than-human accuracy on several enterprise-relevant
tasks.

With the trend that larger models perform better, memory
and computational requirements on hardware have also been
steadily expanding. For instance, Amodei and Hernandez [4]
shows an exponential increase in training energy just over
the last few years. These exponential trends have created an
opportunity for new hardware accelerators since high initial
investments can be justified given the widespread applicability.
As an example, several ASICs and FPGA solutions based on
existing digital scaled CMOS technologies have been proposed
and/or manufactured in the last few years [5]–[9].

There is also a longer term opportunity potentially using
new technologies and re-thinking multiple layers of the

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0002-3176-0059
https://orcid.org/0000-0002-5475-4209
https://orcid.org/0000-0003-2354-867X
https://orcid.org/0000-0001-8413-5583
https://orcid.org/0000-0002-8320-8311
https://orcid.org/0000-0002-6886-5946
https://orcid.org/0000-0003-4041-3486
https://orcid.org/0000-0002-5431-7586
https://orcid.org/0000-0001-5717-2549

6630 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 68, NO. 12, DECEMBER 2021

Fig. 1. (a) and (b) IBM’s 14-nm inference chip and micrograph. (c) Functional blocks include input LP, output LP, PCM tiles. Duration transport
across tiles using a 2-D parallel-signal mesh is also shown. (d) CDFs of bit-errors show highly accurate across-chip duration transport for travel
distances up to six tiles. (e) Transmission Electron Microscope image of a PCM device integrated in 14-nm back end. (f) Each DNN weight is encoded
using four PCM devices. (g) Row-wise read/write (left) during programming uses the same circuit paths (and associated non-idealities) experienced
during full inference (right). (h) Single-device (“backdoor”) sense-amp read circuitry can measure device conductance in μS. (i) Measurements using
modes described in (g) and (h) are well-correlated.

design hierarchy–including new devices, circuits, architec-
tures, and algorithms—that has received considerable interest
in the last several years. This involves using either arrays
of capacitors [10] or resistive non-volatile memory (NVM)
[11]–[18] for accelerating Multiply-ACcumulate (MAC) oper-
ations, which account for the vast majority of computations in
several DNNs (see [9]). In NVM-based accelerators, weights
are implemented in the conductance value G of analog resis-
tive elements, and excitations are implemented using some
form of voltage or time-encoding [V (t)]. Ohm’s law (V (t) =
I (t) × R, rewritten as I (t) = V (t) × G) accomplishes
multiplication, and Kirchhoff’s current law accomplishes accu-
mulation. This is an example of a non-Von Neumann comput-
ing architecture where compute is performed at the location
of data. In addition to being non-volatile, such NVM arrays
can achieve high density and implement fast and massively
parallel computations. Importantly, they also eliminate the
expensive data transfer between processing units and off-chip
memory that is a source of considerable energy consumption
in conventional digital systems [19].

However, building large-scale systems based on analog
memory poses several challenges. To run useful workloads,
we need large NVM arrays with high yield at competitive
technology nodes, which are not usually part of most foundry
processes. We also need an on-chip high bandwidth routing
framework to map complex networks. Furthermore, this rout-
ing needs to be reconfigurable to allow mapping of different
neural network topologies to the same hardware. We need
to achieve iso-accuracy, meaning that the analog computation
with imperfect and noisy analog devices must achieve the same
accuracies as software on neural network tasks. For inference,
this often means we need closed loop tuning (CLT) strategies
to program the weights of the network accurately. However,
in order to be able to load and run real-world models in
the hardware, we also need this closed loop process to be
scalable or parallelizable with minimum overhead. And finally,
we need accurate and efficient neuron circuitry that should be
able to accurately convert the raw current coming out of the
array into MAC values and implement other computational
primitives of the neural network including activation functions,
normalization, and vector–vector operations.

The following sections address several of these challenges
through a series of experimental demonstrations carried out
on a 14-nm all-analog inference chip. Section II describes
the architecture and key features of the chip. Section III
presents details on device programming, including the CLT
strategy and circuit details. Section IV presents programming
results. Section V describes inference experiments and results.
Section VI concludes this article.

II. CHIP OVERVIEW

The packaged 14-nm all-analog inference chip is shown
in Fig. 1(a), along with a chip micrograph in Fig. 1(b). The
chip consists of phase change memory (PCM) tiles [see
Fig. 1(c)], with input and output landing pad blocks (ILP,
OLP). A 2-D routing mesh is used for input-to-tile, tile-to-tile,
and tile-to-output data transmission. The data is transported
in duration-format, with pulse widths representing excitation
values, and standard digital re-buffering is used for maintain-
ing pulse integrity. Pulsewidth modulators and duration-to-byte
converters at the chip edge allow conversion between duration
and digital bits at the ILPs and OLPs. Controllers on each tile
configure the transmit and receive direction of each local mesh,
allowing arbitrary routing topologies. Fig. 1(d) shows the error
cumulative distribution for durations at propagation lengths
of up to six tiles, demonstrating highly accurate duration
transmission (<±1 tick error, where 1 tick is ∼1.2 ns) across
the chip.

Another key feature is that the chip does not have analog-
to-digital converters (ADCs) for conversion of MAC outputs
into the digital domain at each tile. Instead, to save area
and energy, analog voltages are directly transformed into
durations using a simple ramp and comparator scheme, and
these durations are transferred on to the 2-D mesh. This is
described in more detail in a later section.

Each tile stores 512 × 512 unique DNN weights, and
each weight consists of four PCM conductances labeled G+,
G−, g+, g− [see Fig. 1(f)]. Front-end and early metal levels
were fabricated in a commercial foundry. Integration of doped
Germanium-Antimony-Tellurium (GST) mushroom-cell PCM
as well as top metal levels was done at the IBM Albany
Nanotechnology Center [see Fig. 1(e)]. To access each of

NARAYANAN et al.: FULLY ON-CHIP MAC AT 14 nm ENABLED BY ACCURATE ROW-WISE PROGRAMMING 6631

Fig. 2. Conductance trajectories for PCM devices starting from initial
deep RESET, for (a) decreasing gate voltage VG and (c) increasing total
twrite (aggregating multiple programming pulses tP). (b) Median, ±1σ
evolution across 512 × 512 devices. (d) Impact of starting from a partial-
RESET rather than deep-RESET state.

the four PCM devices, two types of read/write circuitry [see
Fig. 1(g)] are integrated next to the PCM tiles: 1) row-wise
circuitry able to inference one full row of either individual
PCMs or entire weights, using the same inference path (and
thus experiencing the same circuit non-linearities) as full-tile
DNN inference and 2) random access (“Backdoor”) read/write
circuitry using a sense amp enabling calibrated but slow
evaluation of individual PCM conductance in units of μS [see
Fig. 1(h)]. Strong correlation is observed between the two read
schemes [see Fig. 1(i)].

III. PCM DEVICE CHARACTERIZATION AND

WEIGHT PROGRAMMING

PCM conductance change requires heating and quenching
of the GST material by the application of an electrical pulse
through a heating element. Our PCM programming methodol-
ogy combines two different knobs for modulating the energy
in a single programming pulse as shown in Fig. 2. One is
the voltage amplitude, which controls current flow through the
PCM, reducing the size of the amorphous plug over successive
pulses and increasing the conductance of the device [see
Fig. 2(a) and (b)]. The other is the pulse duration, where
more crystallization occurs for longer pulses, increasing the
conductance [see Fig. 2(c) and (d)].

While one could envision a programming scheme where
each target conductance or weight would require a series
of predetermined pulses of known amplitude and duration,
PCMs (and other NVMs such as RRAM) suffer from a
high degree of device-to-device and cycle-to-cycle variabil-
ity. Device-to-device variability is shown in correlation plots
Fig. 3(a) and (b). Here, the x-axis labeled G120 represents
the final conductance achieved from a series of pulses of
varying amplitude VG and fixed duration of 120 ns. One
can immediately see that for different devices, a wide range
of final G values between 40 and 120 ticks is observed.
Programming with shorter (60 ns) or longer (240 ns) dura-
tions shows a similar wide range, producing conductances
strongly correlated with those achieved by programming with
120 ns [red and blue clouds in Fig. 3(a)]. This implies fixed

Fig. 3. PCM device-to-device variability measurements. (a) Correlation
plot 512 × 512 devices) showing conductance achieved using a
programming pulsewidth of either 60 (red) or 240 (blue) ns versus a
programming pulsewidth of 120 ns. Devices that reach low/high conduc-
tances with a 120-ns pulse also similarly reach low/high conductances
with 60- or 240-ns pulses. Lines show median and 1σ deviations at each
point, demonstrating correlation is maintained across the entire range.
(b) Similar results are obtained when varying the programming pulse
amplitude VG (0.75 and 1.0 V shown), which controls the compliance
current for SET programming. (c) Device-to-device variability can be
attributed to fixed physical variations in fabricated devices, including
diameter, height and stoichiometry variations. [Note that since single
unsigned conductances are being measured, the ramp start voltage
was lowered to allow a wider dynamic range (maximum durations up
to 200 ticks).]

Fig. 4. (a) Cycle-to-cycle variation on a single device, showing significant
deviation in device conductance evolution even with identical pulses
applied. (b) While conductance evolution tends to be correlated, there
is still non-negligible spread in the correlation plot, as shown both in
the cloud of points (blue) and the median and 1σ deviations. (c) CDFs of
conductance deviation (offset by the median conductance for readability)
as well as (d) plots of standard deviation show that cycle-to-cycle
variation is worse at intermediate states.

device-to-device variability arising from variations in device
structure and stoichiometry, as shown in Fig. 3(c). Similar
trends are observed when programming with fixed pulsewidth
but varying voltage amplitude VG [see Fig. 3(b)].

Cycle-to-cycle variations were also studied. A single device
programmed using the same sequence of pulses [see Fig. 4(a)]
is shown to start and end at comparable conductance values,
but follows a wildly different trajectory across two repeated

6632 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 68, NO. 12, DECEMBER 2021

Fig. 5. (a) CLT can use voltage programming (VP), duration program-
ming (DP) or both. (b) Conductance evolution for a single device using
CLT, with a target of 40 ticks. (c) CDF of final conductance across
512 × 512 devices. (d) Best precision (lowest σG from CDF) is achieved
using VP + DP CLT (green curve).

experiments. This effect is analyzed and quantified across
the entire array of 512 × 512 PCM conductances, as shown
in correlation plots [see Fig. 4(b)], CDFs of the adjusted
difference [�G offset by the median conductance, Fig. 4(c)] as
well as standard deviation [see Fig. 4(d)]. All show significant
non-negligible variation in conductance along intermediate
states, making it clear that the exact conductance trajec-
tory of the devices, and conversely the exact sequence of
pulses to reach a precise intermediate state, is very difficult
to predict.

To overcome this issue, CLT strategies–a series of read
and write operations with programming conditions for a write
operation adjusted based on the result of the previous read–
are required for converging to the target weight. Addition-
ally, in the case of programming a weight composed of
multiple conductances, secondary devices g+, g− allow us
to compensate for undershoot or overshoot in the primary
G+ or G−. Our experiments across large arrays have also
shown that combining the two knobs–descending gate voltage
together with shorter pulse durations as we get closer to
the target–enables “self-quenching” of PCMs producing tight
conductance CDFs (see Fig. 5).

However, programming a single device at a time using CLT
would not be scalable to large arrays and multiple tiles needed
for large inference models. Hence the chip allows for row-
wise programming, where all weights along a selected row
can be tuned at the same time. The circuitry for programming
is shown in Fig. 6(a). VSelect chooses a single row. A tile-
based DAC sets a common programming voltage VG for all
columns. To allow for unique programming conditions on
each column, unique durations are supplied on the 2-D mesh
from the ILP. For row-wise read [see Fig. 6(b)], the ILP now
supplies a constant duration to the selected row, allowing a
constant VREAD voltage to conduct read-current up through 1,
2 or 4 PCMs per unit-cell. Each column’s current is either the
current from a single unit cell (for CLT read) or aggregated
across all 512 rows (for inference) and integrated over time
onto a column capacitor.

Fig. 6. (a) During row-wise write operation, a single DAC sets a common
VG for all columns, and per-column programming pulse-widths tP are
provided from the ILP. (b) During row-wise and inference read, current
is integrated on to one peripheral capacitor per column. (c) Common
ramp generator and at-column comparators then convert the voltage on
the capacitors VC into durations, which are routed on the 2-D mesh to
the OLP.

Fig. 7. Flow diagram for the CLT procedure for conductances (G)
and weights (W). For simplicity, an optional final step for overshoot
compensation is not shown.

The tile then executes voltage-to-duration conversion on
all 512 columns, using per-column comparator circuits and a
common ramp [see Fig. 6(c)]. During an inference operation,
this conversion is also implementing an in situ bounded ReLU,
hard sigmoid or hard tanh activation function depending on the
shape of the ramp and the exact start-stop voltages. Durations
are sent in parallel over the 2-D mesh. During inference, these
durations would then be received and consumed on another
tile. During weight programming reads, they are captured and
digitized to 8 bits by the OLP (1 tick ∼ 1.2 ns).

In general, to provide sufficient read signal strength across
different scenarios (single device versus 512 devices, widely
varying PCM conductance ranges), a range of read circuit
scale factors are available. These include PCM read voltages
(VREAD), integration capacitor sizes, total time of integra-
tion, current mirror ratios, and ramp speeds. These scale
factors do impact the final output of a read operation as
measured in ticks. However, when needed a conventional sense
amplifier can be used to draw correspondence between ticks
and the raw device conductance in micro-siemens, as shown
in Fig. 1(i).

NARAYANAN et al.: FULLY ON-CHIP MAC AT 14 nm ENABLED BY ACCURATE ROW-WISE PROGRAMMING 6633

Fig. 8. Per-cell proportionality constant α determines the relationship
between weight error and programming duration. (a) and (b) Initially,
all devices are initialized to the same αinit. (c) and (d) Then,
devices that overshoot/undershoot have their individual α values
decreased/increased. (e) and (f) Optional final correction is done using
the opposite secondary conductance.

The complete row-wise CLT programming algorithm, devel-
oped based on device programming behavior and optimized
for the available circuitry, is described in Fig. 7. The algo-
rithm is applicable to both individual conductances and full
weights. Within each programming cycle, square pulses of
decreasing pulse amplitude (VG) are applied in succession,
with a read operation after each pulse. An FPGA calculates
the weight error and then determines the next vector of
programming pulse durations tP based on per-cell proportion-
ality constants α. These durations are loaded into the input
landing pad for the next write. All devices are initialized to
a constant α, which changes depending on the response of a
particular device [devices that overshoot/undershoot have their
α reduced/increased in the next cycle (see Fig. 8)]. An optional
final step programs the opposite secondary conductances to
compensate for any residual overshoot [see Fig. 8(f)].

IV. PROGRAMMING RESULTS

To evaluate the efficacy of the row-wise CLT algo-
rithm, we programmed simple linear target patterns [see
Fig. 9(a), (c), and (e)] on 512 × 512 unit cells.
The actual conductances/weights achieved after CLT are
shown in Fig. 9(b), (d), and (f) and in the CDFs in
Fig. 9(g), (h), and (i). While most of the weight informa-
tion can be programmed into a single primary conductance,
as shown in Fig. 9(a), (b), and (g), having one or three addi-
tional conductances allows us to compensate for overshoots
and undershoots.

While our PCM weight tuning approach is based on con-
tinuously variable analog targets, and is not a true multi-
level cell (MLC) with distinct states, we have tried to
quantify the effective bits-of-precision for our programming
approach. Fig. 9(j) and (k) show average weight-error, and the
average absolute weight error versus weight target in number
of ticks for each approach. The gray bands in each figure rep-
resent the error bounds for 3-, 4-, and 5-b precision. From

these figures, our average weight error is <3%, corresponding
to >3 bits of precision.

V. DNN DEMONSTRATIONS

To evaluate weight-programming precision, on-chip MAC
accuracy and the 2-D mesh data transport circuitry, we first
programmed MNIST weights from a cropped two-layer fully-
connected network (512 × 252 × 10) onto two PCM tiles
on chip [see Fig. 10(a)]. Input activations were loaded into
the ILP using an FPGA. These were converted into durations
and routed on the mesh to the first tile, where a MAC
operation was performed. A hard-sigmoid activation function
was implemented at the output of the first stage on each
column using the ramp-and-duration conversion circuits [see
Fig. 6(c)]. Durations were then routed to the second tile,
a second MAC performed, resulting durations captured in the
OLP and analyzed on the external FPGA. The color maps in
Fig. 10(b) and (c) show excellent correlation between actual
and target weights for the two layers. Each tile also features
eight bias rows, as shown in Fig. 11(a). These bias rows
receive a constant input during MAC operations, and while
the neural network itself was trained without bias, the bias
weights in these rows were used for calibration. The procedure
involves using the CLT algorithm to program these weights
to counteract the intrinsic circuit offset of each column [see
Fig. 11(b) and (c)].

This fully on-chip multi-tile demonstration achieved near-
software-equivalent test accuracy [97.13% experimental ver-
sus 97.73% in software, Fig. 10(d)] without any external
processing or off-chip communication. The primary source
for the slight drop in accuracy seems to be the on-chip
MAC operations since a mixed hardware–software (HS) exper-
iment with ideal software MAC operations performed on
the as-programmed hardware weight results in an accuracy
of 97.55%. Improved calibration strategies to further reduce
the hardware MAC error are currently under investigation.

MAC errors could have a much more pronounced impact
on recurrent neural networks such as long short-term memory
(LSTM), commonly used in language tasks such as prediction,
translation etc. These networks are inherently sequential, with
the output at any given time step ht used to generate the next
output ht+1. In such cases, there can be considerable error
accumulation over a long sequence, even with small errors in
individual MACs.

We implemented character prediction for the Alice in
Wonderland dataset. Here we evaluated a one-layer LSTM,
with embedding and output layers in software [see Fig. 12(a)].
The LSTM weight matrices were programmed on chip [see
Fig. 12(c)], using the closed-loop weight programming algo-
rithm. High programming accuracy was achieved, as shown in
Fig. 12(d), and the MAC was implemented on chip. However,
activation and vector-vector calculations to determine the next
ht and ct vectors were done on the FPGA as shown in
Fig. 12(a). The off-chip calculations also simplified the offset
calibration process–this flexibility offered by digital arithmetic
is a strong argument in favor of eventual adoption of ADCs and
digital vector processing units, provided the area and power
impact can be carefully managed.

6634 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 68, NO. 12, DECEMBER 2021

Fig. 9. (a), (b), and (g) Single-PCM, (c), (d), and (h) 2-PCM, and (e), (f), and (i) 4-PCM weight programming. (a), (c), and (e) Using a simple linear
target pattern, (b), (d), and (f) 512 × 512 weights are programmed using CLT; (g), (h), and (i) resulting CDFs by target-level. (j) Average weight error
is <3% and (k) for >3 effective bits-of-precision.

Fig. 10. (a) End-to-end two-layer MNIST demonstration with on-chip
duration communication. (b) and (c) 512-252-10 weights programmed in
two tiles, achieving (d) near software-equivalent accuracy.

Fig. 11. (a) Fixed circuit offset compensation is accomplished by
programming bias rows (shown in red). (b) Columns that are overshoot-
ing/undershooting have their bias weights reduced/increased, respec-
tively, using the CLT algorithm, leading to offset-corrected MACs on all
columns (c).

In addition to the mixed HS experiment to evaluate weight
programming accuracy, a “Perfect recurrence” experiment was
carried out to evaluate the impact of error propagation across
multiple time steps (see Fig. 13). In this experiment, while
the on-chip MAC is calculated at each step, it is not used as
an input for the next step; instead the ideal inputs are used.
In the “Actual Recurrence” experiments we allow for error
propagation across time steps.

Fig. 12. LSTM layer details: hidden-layer size is 128. (a) Embedding
and output layers are implemented on the FPGA, LSTM weights are pro-
grammed on-chip using CLT algorithm. (b) MACs are on chip, activation
functions are in FPGA. (c) Software weights are replicated with inverted
sign to enable positive-only inputs. (d) Actual programmed weights.

Fig. 13. In “perfect” recurrence (top), noise accumulation over multiple
time steps is eliminated by providing ideal inputs at each step. In actual
recurrence (bottom), the outputs calculated from on-chip MAC operations
become the input for the next step.

Correlation between actual and ideal MAC are shown for
the four cases (on-chip versus mixed HS, perfect versus actual
recurrence) in Fig. 14. There is around 1.2%–1.4% increase in

NARAYANAN et al.: FULLY ON-CHIP MAC AT 14 nm ENABLED BY ACCURATE ROW-WISE PROGRAMMING 6635

Fig. 14. Comparisons of (a) and (c) mixed HS MAC and
(b) and (d) on-chip MAC show small degradation versus software
baseline.

Fig. 15. Evolution of LSTM loss over a long test sequence (a) quantifying
how well the yt vector predicts the next character of “Alice in Wonderland”
and (b) for software, mixed HS, and on-chip MACs under both Perfect
and Actual Recurrence. Lower loss indicates more accurate predictions.

Fig. 16. Impact of resistance drift on LSTM. (a) on-chip MACs at days
1 and 3 after weight programming exhibit (b) no loss degradation.

MAC-error (σ of the MAC-correlation) going from mixed HS
to on-chip MAC, for both the perfect and actual recurrence
cases, and a 2.2% increase due to error feedback across a
long sequence (up to 10 000 characters). Overall this leads to
a higher (worse) on-chip cross entropy loss of 2.24 (versus
1.89 for software), as shown in Fig. 15.

Finally, we evaluated the impact of PCM resistance
drift [20], [21] on DNN accuracy. MAC correlation and loss
plots (see Fig. 16) show negligible impact even after three
days. More drift studies are ongoing. Drift mitigation will
need a multi-pronged approach across device engineering [22],
programming procedure, circuit slope correction [23] as well
as algorithms, including drift-aware training approaches– [17],
[24], [25].

VI. CONCLUSION

A multi-tile inference chip implementing in-memory MAC
on analog PCM arrays was demonstrated. The memory

elements are integrated above 14-nm CMOS. The chip does
not have ADCs for digital conversion, instead transforming
analog voltages into durations which are buffered and com-
municated on a reconfigurable 2-D mesh. This design choice
saves area and power, at some cost to flexibility. For accurate
closed loop weight-tuning, we employed a row-wise program-
ming algorithm that efficiently programs the four PCM devices
in each analog weight with minimal overshoot. This scheme
achieved on average <3% weight-error on tiles with up to
512 × 512 weights. We implemented MNIST at near-software-
equivalent accuracy, demonstrating tile-to-tile transport with a
fully-on-chip two-layer network. We also tested resilience to
error propagation with a recurrent Alice LSTM, using off-chip
activation functions to calculate recurrent inputs for the next
on-chip MAC. Finally, we showed that drift did not impact
accuracy over three days. Future work includes large networks
and quantifying performance and energy-efficiency metrics.

ACKNOWLEDGMENT

This article was invited for consideration in the TED
Special Issue for select papers from VLSI 2021. The
authors would like to thank IBM Albany Nanotech Cen-
ter, Albany, NY, USA, and IBM Bromont, Bromont, QC,
Canada, for device and module fabrication; and W. Wilcke,
S. Narayan, S. Munetoh, S. Yamamichi, C. Goldberg,
C. Osborn, J. Burns, R. Divakaruni, and M. Khare for man-
agement and logistical support.

REFERENCES

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 770–778.

[2] Z. Zhang, J. Geiger, J. Pohjalainen, A. E.-D. Mousa, W. Jin, and
B. Schuller, “Deep learning for environmentally robust speech recog-
nition: An overview of recent developments,” ACM Trans. Intell. Syst.
Technol., vol. 9, no. 5, pp. 1–28, Jul. 2018.

[3] Y. Wu et al., “Google’s neural machine translation system: Bridg-
ing the gap between human and machine translation,” Sep. 2016,
arXiv:1609.08144. [Online]. Available: https://arxiv.org/abs/1609.08144

[4] D. Amodei and D. Hernandez, “AI and compute,” OpenAI,
San Francisco, CA, USA, Tech. Rep. [Online]. Available:
https://openai.com/blog/ai-and-compute/

[5] B. Fleischer et al., “A scalable multi-TeraOPS deep learning processor
core for AI trainina and inference,” in Proc. IEEE Symp. VLSI Circuits,
Jun. 2018, pp. 35–36.

[6] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial architecture for
energy-efficient dataflow for convolutional neural networks,” in Proc.
ACM/IEEE 43rd Annu. Int. Symp. Comput. Archit. (ISCA), Jun. 2016,
pp. 367–379.

[7] J. Fowers et al., “A configurable cloud-scale DNN processor for real-
time AI,” in Proc. ACM/IEEE 45th Annu. Int. Symp. Comput. Archit.
(ISCA), Jun. 2018, pp. 1–14.

[8] T. Chen et al., “DianNao: A small-footprint high-throughput accelerator
for ubiquitous machine-learning,” in Proc. 19th Int. Conf. Archit. Support
Program. Lang. Oper. Syst., New York, NY, USA, 2014, pp. 269–284.

[9] N. Jouppi et al., “In-datacenter performance analysis of a tensor process-
ing unit,” in Proc. 44th Annu. Int. Symp. Comput. Archit., New York,
NY, USA, 2017, pp. 1–12.

[10] H. Jia et al., “A programmable neural-network inference accelerator
based on scalable in-memory computing,” in IEEE Int. Solid-State Cir-
cuits Conf. (ISSCC) Dig. Tech. Papers, vol. 64, Feb. 2021, pp. 236–238.

[11] H.-Y. Tsai, S. Ambrogio, P. Narayanan, R. M. Shelby, and G. W. Burr,
“Recent progress in analog memory-based accelerators for deep learn-
ing,” J. Phys. D, Appl. Phys., vol. 51, no. 28, 2018, Art. no. 283001.

[12] S. Ambrogio et al., “Equivalent-accuracy accelerated neural-network
training using analogue memory,” Nature, vol. 558, no. 7708, pp. 60–67,
Jun. 2018.

6636 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 68, NO. 12, DECEMBER 2021

[13] B. Yan et al., “RRAM-based spiking nonvolatile computing-in-
memory processing engine with precision-configurable in situ non-
linear activation,” in Proc. Symp. VLSI Technol., Jun. 2019,
pp. T86–T87.

[14] F. Cai et al., “A fully integrated reprogrammable memristor–CMOS
system for efficient multiply–accumulate operations,” Nature Electron.,
vol. 2, no. 7, pp. 290–299, Jul. 2019.

[15] P. Yao et al., “Fully hardware-implemented memristor convolutional
neural network,” Nature, vol. 577, no. 7792, pp. 641–646, Jan. 2020.

[16] I. Boybat et al., “Neuromorphic computing with multi-memristive
synapses,” Nature Commun., vol. 9, p. 2514, Jun. 2018.

[17] V. Joshi et al., “Accurate deep neural network inference using computa-
tional phase-change memory,” Nature Commun., vol. 11, no. 1, p. 2473,
May 2020.

[18] Y. Long, X. She, and S. Mukhopadhyay, “Design of reliable DNN
accelerator with un-reliable ReRAM,” in Proc. Design, Automat. Test
Eur. Conf. Exhib. (DATE), Mar. 2019, pp. 1769–1774.

[19] W. A. Wulf and S. A. McKee, “Hitting the memory wall: Implications
of the obvious,” ACM SIGARCH Comput. Archit. News, vol. 23, no. 1,
pp. 20–24, Mar. 1995.

[20] J. Li, B. Luan, and C. Lam, “Resistance drift in phase change
memory,” in Proc. IEEE Int. Rel. Phys. Symp. (IRPS), Apr. 2012,
pp. 6C.1.1–6C.1.6.

[21] S. Lavizzari, D. Ielmini, D. Sharma, and A. L. Lacaita, “Reliability
impact of chalcogenide-structure relaxation in phase-change memory
(PCM) cells—Part II: Physics-based modeling,” IEEE Trans. Electron
Devices, vol. 56, no. 5, pp. 1078–1085, May 2009.

[22] R. L. Bruce et al., “Mushroom-type phase change memory with projec-
tion liner: An array-level demonstration of conductance drift and noise
mitigation,” in Proc. IEEE Int. Rel. Phys. Symp. (IRPS), Mar. 2021,
pp. 1–6.

[23] S. Ambrogio et al., “Reducing the impact of phase-change memory con-
ductance drift on the inference of large-scale hardware neural networks,”
in IEDM Tech. Dig., Dec. 2019, pp. 6.1.1–6.1.4.

[24] S. Kariyappa et al., “Noise-resilient DNN: Tolerating noise in PCM-
based AI accelerators via noise-aware training,” IEEE Trans. Electron
Devices, vol. 68, no. 9, pp. 4356–4362, Sep. 2021.

[25] K. Spoon et al., “Toward software-equivalent accuracy on transformer-
based deep neural networks with analog memory devices,” Frontiers
Comput. Neurosci., vol. 15, p. 53, Jul. 2021.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

