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Abstract—This work describes the high-temperature
performance and avalanche capability of normally-oFr
1.2-kV-class vertical gallium nitride (GaN) fin-channel junc-
tion field-effect transistors (Fin-JFETs). The GaN Fin-JFETs
were fabricated by NexGen Power Systems, Inc. on 100-mm
GaN-on-GaN wafers. The threshold voltage (Vry) is over
2 V with less than 0.15 V shift from 25 °C to 200 °C. The
specific on-resistance (Ron) increases from 0.82 at 25 °C
to 1.8 mQ.cm? at 200 °C. The thermal stability of Vg and
Ron are superior to the values reported in SiC MOSFETs
and JFETs. At 200 °C, the gate leakage and drain leak-
age currents remain below 100 A at —7-V gate bias and
1200-V drain bias, respectively. The gate leakage current
mechanism is consistent with carrier hopping across the
lateral p-n junction. The high-bias drain leakage current
can be well described by the Poole-Frenkel (PF) emission
model. An avalanche breakdown voltage (BVaya) with pos-
itive temperature coefficient is shown in both the quasi-
static -V sweep and the unclamped inductive switching
(UIS) tests. The UIS tests also reveal a BVyp over 1700 V
and a critical avalanche energy (Eaya) of 7.44 J/cm?, with the
Epya comparable to that of state-of-the-art SiC MOSFETS.
These results show the great potentials of vertical GaN Fin-
JFETs for medium-voltage power electronics applications.

Index Terms— Avalanche, breakdown voltage (BYV),
FinFET, gallium nitride (GaN), high temperature, JFET,
power devices, robustness.

|. INTRODUCTION

ALLIUM nitride (GaN) is becoming a mainstream
power semiconductor material. Recently, GaN
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high-electron-mobility transistors (HEMTs) have been
commercialized up to the 600/650-V voltage classes [1].
Compared with the lateral GaN HEMT, vertical GaN devices
have several potential advantages: 1) higher breakdown
voltage (BV) and current capability for a given chip area,
2) superior reliability due to the reduced electric field
(E-field) crowding near the device surface, 3) improved
thermal management [2], 4) reduced dynamic on-resistance
changes due to less reliance on surface passivation, and
5) reduced defect density in the GaN-on-GaN homoepitaxial
layers. These advantages made vertical GaN devices
particularly promising for medium-voltage (600-10 kV) and
high-power applications. Until now, several 1.2-kV-class
vertical GaN transistors have been demonstrated on GaN
substrates, such as current-aperture vertical electron transistors
(CAVETS) [3], [4], trench MOSFETsS [5]-[7], and fin-channel
MOSFETs [8], [9].

Another key promise that vertical GaN devices hold is the
avalanche robustness, which is highly desired in many power
applications such as power grid and motor drive inverters [10].
Due to the lack of a p-n junction connected between source
and drain, the GaN HEMT has no or very little avalanche
capability and thus requires considerable overvoltage design to
handle the surge energy [10]. By contrast, avalanche capability
has been widely reported in vertical GaN p-n diodes [11], [12],
with an avalanche current (/aya) over 50 A and an avalanche
energy (Eava) over 60 mJ] [12]. However, no avalanche
capability has been reported in vertical GaN transistors to date.

Recently, submicrometer, multigate fin channels have been
employed in vertical GaN power transistors, which allow for
high channel density, normally-OFF operation, superior gate
control, and bidirectional unipolar conduction [13]. Depending
on the gate structure, vertical power FinFETs have two major
types: Fin-MOSFETs and Fin-JFETSs [13]. Superior static and
switching figure of merits (FOMs) have been demonstrated in
1.2-kV, 5-A vertical GaN Fin-MOSFETs as compared with the
similarly rated SiC and Si transistors [8]. Compared with the
Fin-MOSFET, it is easier to realize the avalanche capability
in Fin-JFET due to the interfin p-GaN region. In addition,
the Fin-JFET can avoid the potential oxide reliability issues in
Fin-MOSFETs. Although a 1.2-kV GaN Fin-JFET was simu-
lated in [14], the experimentally demonstrated devices showed
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Fig. 1. Schematic cross section of the fabricated vertical GaN Fin-JFET
(not to scale).

deficient transistor behaviors with minimal voltage-blocking
capabilities and <10? current ON/OFF ratios [15], [16].

At the 2020 IEEE International Electron Devices Meeting
(IEDM), we reported the first 1.2-kV-class vertical GaN Fin-
JFETs [17]. The device shows ~10° ON/OFF ratio, a specific
ON-resistance (Roy) of 0.82 mQ-cm?, and robust avalanche
capability in an unclamped inductive switching (UIS) circuit.
This was the first report of avalanche capability in vertical
GaN transistors. In addition, double-pulse tests at 600 V/4 A
switching conditions revealed a rise/fall time of 12.9/10.3 ns
with a total loss of 37 uJ, showing the superior switching
performance over other vertical GaN transistors [17].

This article is an extended version of [17], focusing on
the static characteristics and avalanche capability of 1.2-kV
vertical GaN Fin-JFETs. Similar to [17], this article highlights
the following new results: 1) a new batch of normally-OFF ver-
tical GaN Fin-JFETs with higher threshold voltage (Vry) and
similar Ryy and BV, 2) ON-state and OFF-state characteristics
at high temperatures up to 200 °C, 3) physical mechanisms
of the drain leakage current and gate leakage current, and
4) critical avalanche energy obtained in the UIS failure tests.
These new results allow a comprehensive comparison between
1.2-kV vertical GaN Fin-JFETs with 1.2-kV SiC MOSFETs,
SiC JFETSs, and Si IGBTs.

This article is organized as follows. Section II introduces
the device structure and fabrication. Section III presents the
temperature-dependent device characteristics, followed by the
UIS test results described in Section IV. Section V benchmarks
the device performance, and Section VII concludes the article.

Il. DEVICE STRUCTURE

Fig. 1 shows the schematic cross section of the verti-
cal GaN Fin-JFETs designed and fabricated by NexGen on
100-mm GaN-on-GaN wafers at their facility in New York.
The Fin-JFET consists of an array of ~1-um high n-GaN
fin-shaped channels with a net donor concentration (Np)
of ~10" cm™3, surrounded by the interfin p*-GaN gate
regions with a ~10"-cm™ metallurgical acceptor concen-
tration. These p'-GaN regions are commonly connected.
A 10.5-um n-GaN drift layer with a net Np of ~10'® cm™3
is located below the fin-channel region, grown on 100-mm
bulk n*-GaN substrates. Front-side contacts are formed using
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Fig. 2. Transfer characteristics in semilog scale (solid) and linear scale
(dash) at 298-473 K. The ON/OFF current ratio is ~10°. Vg is 2.05 at
298 and 1.90 V at 473 K (extracted at Ip = 1 mA).

Ni/Au for the gate on p*™-GaN, Ti/Al for the source on n-
GaN, with both of them routed to aluminum pads. An ohmic
drain contact is formed on the backside of the substrate, and
the GaN substrates are thinned before backside metallization.
The JFET region is isolated using an implantation-based
edge termination scheme similar to the one reported in [12].
All vertical GaN Fin-JFETs tested in this work have been
packaged in the standard TO-247-4L package.

Devices with two different die sizes were character-
ized in this work. The device with an active region area
of 0.132 mm? was characterized over a wide temperature range
of 25 °C-200 °C (298-473 K) by quasi-static /-V sweeps
on a semiconductor parameter analyzer (Keysight B1505A).
A larger device with an active region area of 0.454 mm? was
tested to failure in the UIS circuit. Note that the capacitance—
voltage (C—V) characteristics and switching performance of
the 0.132 mm? devices have been reported in [17].

[1l. STATIC CHARACTERIZATION
A. Output and Transfer Characteristics

Fig. 2 shows the device transfer characteristics at a drain-to-
source voltage (Vps) of 1 V measured at temperatures from
298 to 473 K. A normally-OFF operation within the entire
measured temperature range can be clearly shown from the
semilog plot, with the drain current (/p) starting to rise from
the noise floor at a gate voltage (Vgs) =~ 1.5 V. The ON/OFF
current ratio is ~10° at 298 K and 3 x 10% at 473 K. Vqy
extracted at a Ip of 1 mA is 2.05 V at 298 K and shows
no hysteresis. Vry shows very little change (<0.15 V) at high
temperatures up to 473 K. As a comparison, commercial SiC
MOSFETs from various vendors show a 0.6-1 V decrease in
Vry from 298-373 K [18].

Fig. 3(a) shows the device output characteristics at 0 to 8 V
Ves at 298 K. The Rox is 0.63 Q, producing a specific
Rox of 0.82 mQ-cm?. Fig. 3(b) shows the normalized Rox
of the GaN Fin-JFET at 298-473 K, and its comparison
to commercial SiC MOSFET [19], GaN gate injection tran-
sistor (GIT) [20], GaN Schottky-type p-GaN gate HEMT
(SP-HEMT) [21], and GaN cascode HEMT [22]. Among these
devices, the GaN Fin-JFET shows the smallest Roy increase
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Fig. 3. (a) Output characteristics for 0-8 V Vggs at 298 K. (b) Normalized
Ron variation of the GaN Fin-JFET at 298—-473 K and its comparison to
commercial SiC and GaN power transistors.

with temperature (1.7-fold increase at 150 °C and 2.2-fold at
200 °C). The precommercial normally-OFF SiC JFETs were
reported to have an even larger R,y temperature dependence
(3.7-fold at 200 °C) [23]. Hence, the excellent thermal stability
of vertical GaN Fin-JFETs is believed to be related to both
the vertical JFET structure and the high-quality GaN-on-GaN
material properties.

It should be mentioned that the Fin-JFET presented in this
work has a lower saturation current (Ipsar) than the device
in [17], whereas the two devices have a similar specific Roy.
This is due to the lower saturation drain voltage (Vpsar) in the
Fin-JFET presented in this work. In power JFETS, there is a
tradeoff between Vpsar and Vry that Vpgar decreases with the
increased Vry [24]. Note that power devices usually operate
in the linear regime for power switching applications; hence,
Ron and Vg are typically more critical than Vpgar and Ipsar.

B. Gate Leakage Current Characteristics
and Mechanisms

The gate-to-source current (Igs) characteristics of the GaN
Fin-JFETs are direct indicators of the quality of the lateral
p-n junction. Fig. 4 shows the Igs versus Vg characteristics
measured at a temperature of 298-473 K. Igg is about 5 mA
at a Vgs of 8 V up to 473 K. The Igs at the reverse Vgs
up to —4 V has a similar level when compared to that in
commercial GITs. The gate shows no degradation or failure
at Vgs of —7-8 V, suggesting a sufficient gate drive margin.

The Igs — Vgs characteristics can be divided into three
regions, i.e., high forward Vgs region (region I), low forward
Vigs region (region II), and reverse Vgs region (region III).
Fig. 5(a) shows the extracted ideality factor (x) in the
regions I and II. At 25 °C, 5 is 1.5-2 at Vgs of 1.5-2.2 V,
implying the current transport is partly limited by diffusion
(n = 1) and recombination (4 = 2). The dominance of
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Fig. 4. Igs—Vas characteristics of the vertical GaN Fin-JFET at 298—
473 K and the illustration of three regions.
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Fig.5. (a) Ideality factor as a function of Vg at 298-473 K. (b) Schematic
of the hopping and band-to-band tunneling in the lateral regrown
p-n junction. The In(/) versus (1000/T)%2% plot and the linear fitting at
(c) forward Vgg of 0.5-2 V and (d) reverse Vgg of 4—7 V.

diffusion-recombination current reflects the high quality of the
lateral p-n junction. At higher temperatures, a much higher
n is observed in region II due to excessive leakage current.
In region I, n shows relatively small temperature dependence
and increases with Vgs, due to the limitation of series and
contact resistances [25].

The excessive leakage currents in GaN p-n junctions are
often attributed to several transport mechanisms, including
tunneling, hopping, and field-enhanced thermionic emission
[i.e., Poole—Frenkel (PF) emission] [26]-[29]. As shown in
Fig. 4, Igs has a strong temperature dependence but is nearly
symmetric at low forward and reverse Vgs, suggesting a weak
field dependence (as the built-in potential varies a lot between
forward and reverse Vgs). This behavior indicate that the
low-field Igs is not dominated by tunneling or PF, as both
of them expect a strong field dependence, and tunneling
is weakly temperature-dependent [27]. Instead, the leakage
current behaviors can be explained by carrier hopping via
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localized defect-related traps in the depletion region, as illus-
trated in Fig. 5(b). The hopping current at low E-field can be
described by [26], [29]

Inopping ¢ Toexp[—(To/T)'] (1)
where Ty is the characteristic temperature, and y is a coef-
ficient depending to hopping mechanisms, e.g., y = 0.25
for 1-D variable-range-hopping (VRH) [26], y = 1/3 for
2-D VRH [28], and y = 1 for nearest-neighbor hopping
(NNH) [26]. Fig. 5(c) shows a good linear relation between In
(I) and (1000/T)* at Vgs = 0.5, 1, 1.5, and 2 V (region II)
with a similar slope. This linearity is also confirmed at the low
reverse Vgs (region III). At higher reverse Vgs, the linearity
still holds with smaller temperature dependence, as shown in
Fig. 5(d). This can be explained by the hopping model at a
moderate or high E-field [30]

Jhigh—F

hooping O Thomping€XPIC - ¢ E/kT] (2)

hopping

where C is a constant, k is the Boltzmann’s constant, and E
is the E-field. The field term in (2) has a negative tempera-
ture dependence, which compensates the positive temperature
dependence of the low-field hopping current. While y = 0.25
in Fig. 5(c) and (d), a good linearity was also observed for
other y values between 0.25 and 1, suggesting the need for
scrutinizing the physical hopping types in the future work.

In previous Fin-JFET reports, a high leakage current is
present in the regrown lateral GaN p-n junctions [15], [16], due
to the band-to-band tunneling (BTBT) assisted by interfacial
defects and impurities [27], [31] [see Fig. 5(b)]. It is worth
highlighting that no BTBT leakage current is present in the
GaN JFETs characterized in this work.

C. orr-State Drain Leakage Current and BV

The voltage blocking in vertical GaN Fin-JFETs hinges on
the vertical p-n junction between p*-GaN and the n-GaN
drift regions. Fig. 6(a) shows the OFF-state /—V characteristics
under Vgs = 0 V and Vgs = —4 V at 298 K, showing
both Ip and gate current (Ig). The identical Ip confirms the
device’s capability to block high Vpg at zero Vgs. Fig. 6(b)
shows the OFF-state Ip—Vps characteristics at 298— 473 K
under Vgs = 0 V. The device shows no destructive breakdown
before Ip reaches the measurement compliance (I mA) at
1365 (298) and 1523 V (473 K). The positive temperature
coefficient (0.89 V/K) suggests avalanche capability. At high
Vbs, Ip &~ Ig, implying that the avalanche current path is
mainly through the p-GaN gate.

As shown in Fig. 6, the high-bias Ip shows substantial
temperature-and field-dependences. These dependences were
found to be consistent with the PF emission model [32], which
involves the field-assisted ionization of deep traps and carrier
emission to the conduction band, as illustrated in Fig. 7(a).
The PF current can be mathematically described as [33]

Ipp C Eqvgexp(—Ea/kT) 3)

where E, is the thermal activation energy, and E,, is
the average electric field in the depletion region, which is
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Fig. 6. (a) OFF-state IV characteristics of the vertical GaN Fin-JFET
under Vgs = 0 and Vgs = —4 V at 298 K, showing both Ip (solid) and /g
(dash). (b) OFF-state -V characteristics at 298—-473 K under Vgs = 0 V.
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Fig. 7. (a) Schematic of the PF conduction mechanism. (b) In(/p/Eavg)
versus E;{,zg/T plot at 298—-473 K. (c) Arrhenius plot of the drain leakage
current measured at 100-800 V. (d) Thermal activation energy E; as a
function of E;{,ZQ. A 0.57 eV trap level is extracted at zero Egyg.

given by

Eug = +/qNp(Voi + Vb) /265 4)

where Vy; is the built-in voltage of the p-n junction (~3.4 V
for GaN), and ¢, is the permittivity of GaN.

Fig. 7(b) shows the In(Ip/E.g) versus E;V/gZ/T plot from
298-473 K at Vpg from 50 to 1000 V. According to (3) and (4),
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Fig. 8. (a) UIS circuit schematic and (b) photo of the setup.

the fit validates that PF is the dominant drain leakage current
mechanism at high drain bias. Fig. 7(c) shows the Arrhenius
plots for Ip at Vpg from 100 to 800 V, where the E, within
the temperature range of 298-473 K can be extracted. In the
PF transport, E, can be also expressed as

Ey = q®p — frrv Eavg )

where ®@p is the barrier height for the electron emission
from the trap states without an external electric field, and
Ppr is the PF coefficient. Fig. 7(d) shows the plot of E,
as a function of Eiv/é A linear fitting yields a fpr of
2.592 x 107* eV-V-2.cm~1/2, which is very close to the
theoretical value (2.5 x 107* eV.-V~12.cm~1/2 [33]) of the
GaN material. A 0.57 eV trap level is obtained at the zero Ey,
intercept [see Fig. 7(d)], implying that the dominant trap for
the PF transport is likely the E¢—0.6 eV electron trap widely
reported in the GaN epitaxial layers on GaN substrates grown
by the metal-organic chemical vapor deposition (MOCVD)
[34]-[36], which may originate from the residual carbon
atoms [34], point defects [35], or nitrogen antisites [36].

IV. UIS TEST

To validate and evaluate the avalanche capability, the device
was characterized in the UIS test (a JEDEC industrial stan-
dard [37]). In the UIS test, an inductive load forces a high Iava
into the device at its BVaya, with the inductive load energy
dissipated in the device through avalanching.

A customized UIS test setup, as shown in Fig. 8, was built
based on our prior work on GaN HEMTs [10]. The device
under test (DUT) was in series with an inductor (L) and was
initially turned on for a certain time duration to build up a
linear current. The DUT was then switched off, forcing the
inductor energy into the DUT, hence, driving it into avalanche.
During the test, the turn-on duration was stepped up to increase
the avalanche current and energy applied on the DUT. After
each UIS test, the device was measured on the curve tracer to
identify any possible degradation. Standard MOSFET driver
IC Si8271GB-IS was used with the input gate voltage (Vi,) of
+5.1/=3.9 V. A 0.5-Q external gate resistor (Rg) and 40-mH
inductor were used. The dc bus voltage (Vpc) was 30 V.
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Fig. 9. Critical UIS test waveforms of the vertical GaN Fin-JFET. BV aya
increases from 1441 to 1715V, indicating the increase in Tj. Critical Eaya
is calculated to be 33.8 mJ (7.44 J/ cm?).
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Fig. 10. Failure UIS test waveforms. The failure happened at a higher
BV aya of 1790 V, suggesting that the failure is thermally induced.

Vps, Ip, and Vgs were measured by probes, and Ig was
calculated by measuring the voltage across Rg.

Fig. 9 shows the test waveforms of the last UIS pulse before
failure of the vertical GaN Fin-JFETs. After Vps reaches
BVva, a textbook-like avalanche waveform is shown, where
Vps first clamps at a BVaya of 1441 V and increases to 1715 V.
The increase in the BVaya indicates a dramatic junction
temperature (7)) rise during the ~24 us avalanche time (fava).
Ip gradually reduces to zero and resonates to the reverse
direction afterward. In the avalanche process, Ig is found to
follow Ip with an almost identical magnitude, verifying that
the avalanche current goes through the p-GaN gate region
instead of the n-GaN fin source for the value of Rg selected.
When the avalanche starts, a Vg rise of ~1.2 V suggests that
the internal gate resistance is ~0.8 Q. No permanent change
in the static /-V parameters was observed before the device
failure.

Fig. 10 shows the failure UIS waveforms. Under a higher
inductor current and energy, Vpgs is driven to and fails at a
higher BVaya (1790 V), suggesting that the failure is thermally
induced. All terminals were shorted after failure. From the
failure voltage (1790 V) and the temperature coefficient of
BVaya (0.89 V/K), T; at the failure can be roughly estimated
to be 503 °C (776 K).
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Fig. 11. (a) Schematic of the SiC normally-ON vertical JFET. (b) UIS test
waveforms of the SiC JFET. Its avalanche current is also found to flow
through the gate.

By integrating the avalanche power (voltage and current)
over time on Fig. 9, the critical avalanche energy (Eava) in
GaN JFET is calculated to be 33.8 mJ (7.44 J/cm?). As a
thermally sensitive metric, Eava highly relies on taya as T;
depends on the heating/cooling process. Tested at the similar
fava, state-of-the-art SiC MOSFETs showed an Eaya density
of 6-15 J/cm? [38], [39]. The comparable Eaya density values
in GaN FinFETs and SiC MOSFETs manifest the excellent
avalanche robustness of the vertical GaN Fin-JFET.

It should be noted that the avalanche process of the vertical
GaN Fin-JFET has also been studied by the TCAD device
simulation with Silvaco Atlas, and the results were presented
in [17]. The simulated contours of the impact ionization
generation rates and hole current at BVaya validate that the
avalanche happens at the gate—drain p-n junction and the
avalanche current mainly flows through the gate [17].

The avalanche-through-gate phenomenon in GaN Fin-JFETs
is very different from that in power MOSFETs, and it requires
new considerations of the gate driving circuitry. Driver ICs,
as well as other components in the gate loop, should be
selected with a peak sink current higher than the Fin-JFET
avalanche current. On the other hand, it should be mentioned
that this avalanche behavior does not come from GaN but from
the power JFET structure under this specific driving condition.

To verify the generalization of this avalanche behavior in
power JFETSs, a commercial 1.2-kV SiC JFET [40] was tested
in the similar UIS setup. Fig. 11(a) shows the cell structure of
the SiC JFET, which features a normally-ON operation with
a Vryg of around-12 V [40]. Vi, was then set as —18/0 V.
External Rg was 2 Q. Other circuit parameters remained the
same as in the ones in Fig. 8. Fig. 11(b) shows the UIS
test waveforms of the SiC JFET. During its avalanche, /g is
also found to follow Ip, indicating the avalanche-through-gate
phenomenon in SiC JFET under similar driving conditions.

V. BENCHMARK AND DISCUSSION

Fig. 12 benchmarks the specific Ron versus BV at
25-200 °C of the NexGen'’s vertical GaN Fin-JFETs with the
state-of-the-art GaN [3]-[5], [7]-[9] and SiC [41]-[44] power
transistors. The unipolar physical limits of the Si, SiC, and

Breakdown Voltage (V)

Fig. 12. Specific Ron versus BV of the NexGen'’s vertical GaN Fin-JFET
at25°C, 150 °C, and 200 °C, benchmarked with the state-of-the-art GaN
and SiC power transistors. The data of all the benchmarked devices used
in this figure are at 25 °C. The unipolar limits of Si, SiC, and GaN at 25 °C
are also plotted.

GaN materials at 25 °C are also plotted in the figure. Note
that the BV at 1 mA Ip is used in this benchmark, whereas the
vertical GaN Fin-JFET can sustain higher BVaya in the circuit
applications. The vertical GaN Fin-JFETs show superior Rox
versus BV tradeoffs over the similarly rated SiC MOSFETSs
and one of the highest Baliga’s FOMs (2.5 GW/cm?) in
vertical GaN power transistors. The vertical GaN Fin-JFET
also shows faster switching speed, smaller switching losses,
and minimal reverse recovery loss when compared with Si and
SiC superjunction devices, which has been presented in [17].

Based on the experimental results, we provide compara-
tive perspectives on vertical GaN Fin-JFETs and SiC power
JFETs. The SiC JFET also utilizes a vertical n-type chan-
nel but forms the p*-regions through ion implantation onto
channel sidewalls [see Fig. 11(a)]. Both normally-OFF and
normally-ON SiC JFETs have been demonstrated. However,
it was later found that the narrow and implanted fin channel
in normally-OFF SiC JFETs makes their R,y several times
higher than the normally-ON counterparts [45]. As a result,
the commercially available SiC JFET is normally-ON; it is
co-packaged with a Si MOSFET in a cascode configuration to
realize the normally-OFF operation.

In GaN JFETs, the p-GaN regrowth allows better control
of dopant diffusion when compared with ion implantation and
obviates the need for ion activation at high temperatures. This
inherent advantage of GaN processing favors the realization
of fin channel with low ON-resistance [13] and, therefore,
the high-performance of normally-OFF vertical GaN JFETs.
Their high-temperature stability and avalanche ruggedness
make them a preferred alternative to SiC cascode-JFETsS or SiC
MOSFETs, which are limited by the Si MOSFET capability
and the SiC gate oxide instability, respectively, in the high-
temperature applications.

VI. CONCLUSION

This work presents the high-temperature characteristics
and avalanche capabilities of the 1.2-kV-class vertical GaN
Fin-JFETs manufactured by NexGen Power Systems, Inc. on
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100-mm GaN-on-GaN wafers. The device shows excellent
thermal stability up to at least 200 °C, with a Vry shift
below 0.15 V, a merely 2.2-fold higher Ry, an increased
BVava, and small gate—drain leakage currents at 200 °C.
The device demonstrates one of the best Baliga’s FOM in
vertical GaN transistors and at least 2-3-fold lower specific
Ron than the best-performance 1.2-kV SiC MOSFETs in
the literature. The UIS test reveals a critical Eaya density
similar to state-of-the-art SiC MOSFETs. These results show
the great potential of vertical GaN Fin-JFETs for medium-
voltage power electronics and the harsh-environment power
applications.
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