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Abstract— Resistive switching memory (RRAM) devices
have been proposed to boost the density and the bio-
realistic plasticity in neural networks. One of the main
limitations to the development of neuromorphic systems
with RRAM devices is the lack of compact models for the
simulation of spiking neural networks, including neuron
spike processing, synaptic plasticity, and stochastic learn-
ing. Here, we present a predictive model for neuromorphic
networks with unsupervised spike timing-dependent plas-
ticity (STDP) in HfO2 RRAM devices. Our compact model
can predict the learning behavior of experimental networks
and can speed up the simulation of unsupervised learning
compared to Monte Carlo (MC) approaches. The model can
be used to optimize the classification accuracy of data sets,
such as MNIST, and to estimate the time of learning and the
energy consumption.

Index Terms— Neuromorphic engineering, resistive
switching memory (RRAM), spike-timing-dependent plasti-
city (STDP), stochastic learning, unsupervised learning.

I. INTRODUCTION

THE spiking neural network (SNN) is one of the most
suitable ways to perform brain-inspired computing [1].

Learning in the brain takes place via synaptic plasticity, where
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the synaptic weights are increased or decreased depending
on the timing of the spikes being fired from the presynaptic
(PRE) and the postsynaptic (POST) neurons. In spike-timing-
dependent plasticity (STDP), experimentally observed in the
brain [2], [3], weight potentiation takes place when the PRE
spike precedes the POST spike while weight depression occurs
when the PRE spike follows the POST spike [4]–[6]. Artificial
synapses capable of learning via STDP were proposed by
using CMOS technology [7], [8] and memristive devices such
as resistive switching memory (RRAM) [9]–[13] and phase
change memory (PCM) [14]–[17]. STDP was also shown to
be fundamental to achieve energy-efficient continual learning
in artificial neural networks (ANNs) [18], [19].

However, despite these achievements, unsupervised learning
via synaptic plasticity at the network level is still an open
challenge. Stochastic training has been proposed to support
unsupervised learning by STDP [12], [20], although the impact
of the density and frequency of pattern and stochastic noise
presentation has only been partially explored. The design of
neuromorphic circuits for STDP-based unsupervised learning
is usually addressed by Monte Carlo (MC) simulations, which
easily handle the stochastic spiking activities of the RRAM
synapses [12] but suffer from excessive computational time.

This article introduces an analytical framework for unsuper-
vised learning by STDP with RRAM synapses, starting from
theoretical rules [21], [22]. Based on rate equations of the
synaptic weights in the network, the model allows to predict
the learning speed and energy efficiency as a function of
the learning parameters, such as the pattern density or the
noise rate of submission. The compact tool thus provides fast
design and optimization of the algorithms for unsupervised
learning [23]. We also demonstrate that the model is robust
and flexible versus device nonidealities, and it can describe
other types of memory devices used as synaptic elements, like
PCMs.

II. STDP NETWORK

A. Experimental Study
Fig. 1(a) illustrates a scheme of a one-layer SNN with

NPRE PREs and one POST. The network is fully connected
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Fig. 1. (a) Schematic of a SNN with several preneurons connected to one
POST by 1T1R synapses implementing the STDP protocol. (b) Measured
and calculated I–V curves of the RRAM device used in this article.
(c) Illustration of synaptic potentiation following pattern presentation due
to STDP at positive delay. (d) Illustration of synaptic depression following
noise presentation due to STDP at negative delay.

since there is one synapse between each PRE and the POST.
The synapses have a 1T1R structure, where the synaptic
gate is connected to the PRE that generates the characteristic
input spike, while the top electrode (TE) and the bottom
electrode (BE) are connected to the POST [20], [23]. Fig. 1(b)
shows the I–V characteristics of the typical 1T1R RRAM
synapse, indicating the set voltage Vset, the reset voltage Vreset,
and the stop voltage VSTOP. The gate voltage is generally
biased to induce a maximum current IC across the RRAM
during set, thus enabling the control of the resistance. The
application of a PRE spike to the synaptic gate induces a
current flow through the RRAM device, which is collected
and integrated by the internal potential Vint of the POST.
As Vint reaches the threshold, it fires, sending a feedback
spike to all the TE of synapses connected to it. The feedback
spike consists of a positive pulse of voltage VTE+ > Vset,
followed by a negative pulse of voltage VTE− < Vreset.
The overlap between the PRE spike and the POST spikes
induces potentiation (set transition) or depression (reset) for
positive or negative delay between the two spikes [12]. The
stochastic presentation of a pattern and noise to the PRE
channels, results in potentiation [i.e., low resistive state (LRS)]
of the pattern synapses, namely, those located at pattern pixels,
and depression [i.e., high resistive state (HRS)] of background
synapses, namely all the other synapses [20]. The different
effects on pattern and background synapses are due to the time
correlation of the pattern spikes. As a result, the presentation
of the pattern is likely followed by a POST fire, satisfying
the STDP rule for potentiation [Fig. 1(c)]. On the other
hand, noise hardly induces POST fires, rather it may induce
depression due to STDP when it is submitted soon after a
fire event [Fig. 1(d)]. The stochastic submission of pattern
and random uncorrelated noise thus leads to unsupervised
learning of the pattern, irrespective of the initial configuration
of synaptic weights [20].

Fig. 2(a) shows the experimental setup, with the
RRAM synapses connected to the CMOS neurons and
to Arduino. Fig. 2(b) shows the synaptic evolution of an

Fig. 2. (a) Experimental setup with RRAM synapses, CMOS neurons
and an Arduino microcontroller as a control logic. (b) Measured conduc-
tances of the 1T1R synapses as a function of time under STDP learning
activity.

Fig. 3. (a) MC simulations in a SNN with 16 PREs and 1 POST of the
average conductance for pattern synapses and background synapses at
the end of stochastic learning with 500 epochs. (b) Optimized threshold
as a function of the pattern density P.

STDP-based learning activity. The depression is slow and
gradual compared to potentiation due to the uncorrelated
nature of noise that acts randomly on background synapses,
while potentiation occurs after the very first pattern
submission [20].

B. MC Simulations

MC simulations are the most suitable for the prediction of
the SNN performance during stochastic unsupervised learning.
The MC model can also describe the variable switching of the
RRAM devices, which plays an important role for the synaptic
weights. Although the MC simulations show a good agreement
with experimental data, several time-consuming simulations
(e.g., 1000) are needed to yield the average behavior of the
synaptic weights in the pattern and background.

C. Threshold Optimization

The fire threshold of the POST should be carefully set
to get the maximum resistive window between pattern and
background synapses. In the following, we will refer to the
current directly coming from the synapses, in order to be inde-
pendent of the effective POST realization. Fig. 3(a) reports the
MC results of the average pattern/background conductances
as a function of the threshold for a fixed pattern density
(P = 25%), after 500 epochs. The conductance window shows
a maximum for Ith ≈ 2.1 μA, corresponding to a single sub-
mission of the pattern with 53% of the full LRS conductance
GLRS. The pattern conductance shows a periodic behavior
where the first peak, at the optimum threshold, corresponds
to a fire with one single submission, whereas the second
peak corresponds to a fire with two sequential submissions
of the pattern. The peak of the background conductance
corresponds instead to the fire event after the submission of
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a pattern and a consequent noise presentation. Fig. 3(b) shows
the position of the optimum threshold as a function of the
pattern density P . A good resistive window with P = 25% is
achievable even for different pattern densities, thus avoiding
any peripheral circuit for adapting the threshold. The results
of the MC simulations can be linearly fit by the formula

Ith = K VC GLRS P NPRE (1)

where K = 0.53, VC is the read bias voltage at the TE
inducing the current spike, GLRS is the maximum conductance,
and NPRE the total number of pixels in the PRE channels.

III. COMPACT MODEL OF STDP LEARNING

The goal of the model is to analytically describe the time
evolution of pattern and background average synaptic weights
depending on the stochastic variables of unsupervised STDP,
such as the densities and rates of pattern and noise signals.
The evolution is described as a dynamic equilibrium between
forces, arising from the external PRE stimulation that causes
either synaptic potentiation or depression. The presentation
of the pattern causes the potentiation of the average synaptic
weights in the pattern region, namely G p. The model describes
the time evolution of G p by the rate equation

dG p

dt
= AN RN (GLRS + GHRS − 2G p)

+ C(GLRS − G p)(G p − αNGHRS)(p − n)RP (2)

where A, C , and α are constants related to the STDP algorithm
with an epoch duration of 10 ms, N is the noise density
given by the average number of noise pixels divided by
NPRE, GHRS is the minimum conductance, RP and RN are
the pattern/noise probabilities, namely the average occurrence
of pattern/noise presentation with respect to all presentations.
Similarly, the time evolution of the average synaptic weight in
the background, namely Gb, is described by the rate equation

dGb

dt
= A� N RN (GLRS + GHRS − 2Gb)

+ D(βGLRS−Gb)(Gb−GHRS)(N − P)RN RP
N B

B + P
(3)

where A�, D, and β are constants related to the STDP algo-
rithms with an epoch duration of 10 ms. Table I summarizes
variables and parameters entering (2) and (3).

Note that (2) and (3) describe the behavior of a network
of synapses not a specific RRAM device. The only physical
parameters that depend on the device are the maximum and
minimum conductances, namely GLRS and GHRS, respectively.
In addition, the switching time is assumed to be much faster
than the typical neuron spike time, so that a single spike
applied to a RRAM synapse is capable of inducing a full
potentiation (set transition), or depression (reset transition).

Both equations have two terms on the right-hand side,
where the first term describes the random equalization of
weights induced by the noise. Noise is a random parameter of
the STDP learning activity with a uniform probability (given
by N) of falling in any position of the input neuron array.
In fact, if only noise is submitted, both G p and Gb randomly

TABLE I
VARIABLES AND PARAMETERS ENTERING THE COMPACT MODEL

Fig. 4. Measured and calculated synaptic weights as a function of time
for stochastic learning with purely random noise spikes for noise density
N = 5% and LRS starting condition for all the 16 synapses. Calculations
from both the MC model and the compact model are shown. The final
average conductance is intermediate between HRS and LRS nominal
values.

fluctuate, yielding an equalized average conductance between
HRS and LRS, namely (GHRS + GLRS)/2. To reflect the role
of noise as the driving force for equalization, the first term
is proportional to N and RN . The effect of noise is shown
in Fig. 4, indicating experimental data compared to MC and
model simulations of random weight potentiation/depression
under the submission of noise spikes. The average G p and
Gb remain almost constant close to the average conductance
between LRS and HRS. The second term in (2) represents the
potentiation of pattern synapses in response to pattern spikes.
A fire event in response to pattern presentation results in
pattern weight potentiation and background weight depression,
whereas a fire event in response to the presentation of noise
would lead to pattern depression and background potentiation,
which explains the proportionality of the second term to p-n
in (2) and to n-p in (3).

Note that the potentiation rate in (2) is proportional to RP ,
as the presentation of the pattern leads to both PRE spikes
and the responding POST fire [Fig. 1(c)]. On the other hand,
the depression rate in (3) is proportional to both RP and RN ,
as the PRE spikes are controlled by RN , whereas the POST
spikes are controlled by RP [Fig. 1(d)].

The pattern weight saturates as it approaches G p, thus the
potentiation rate in (2) is proportional to GLRS−G p. Similarly,
the depression rate in (3) is proportional to Gb−GHRS, to allow
for saturation of Gb as it approaches GHRS at sufficiently
long time. These boundaries occur for a standard stochastic
learning operation, that is, for P > N . On the other hand,
for unconventional operation of the network with N > P , G p

saturates at αNGHRS, whereas Gb saturates at βGLRS, which is
taken into account in (2) and (3), respectively. The parameters
α and β are obtained as fitting parameters from the comparison
with the MC simulations.
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Fig. 5. Measured and calculated (a) tlearn and (b) Gp and Gb as a
function of noise density N. Calculations by both the MC model and the
compact model are shown. All results were collected after 1000 epochs.
We used pattern density P = 25% and input pattern/noise probabilities
RP = RN = 50%. The best tradeoff between learning speed and
accuracy is at N ≈ 3%.

IV. RESULTS

The purpose of our model is the prediction of the synaptic
weights during unsupervised learning for various spiking stim-
ulation affecting potentiation and depression, such as the signal
densities (P and N) and probabilities (RP and RN ) of pattern
and noise presentation, respectively. Equations (2) and (3)
can be used to predict the performance of an SNN such as
the magnitude of the learning window, G p − Gb, and the
learning time. The learning window should be maximized
for best separation of pattern and background synapses after
1000 epochs. The learning time tlearn is the time needed for
depression of the background synapses below a conductance
of 15 μs. This figure of merit is due to the fact that background
depression is generally slower than pattern potentiation.

Simulation results from the compact model and the MC
model were compared to experimental data for a perceptron-
type SNN with 16 PRE fully connected to a single POST [20].
Every data point was obtained as the average among five
experiments conducted on a hardware SNN with 1T1R RRAM
synapses [20]. MC simulations were repeated 1000 times to
assess the average value.

A. Dependence on Noise Density N

Fig. 5 shows the measured and calculated tlearn [Fig. 5(a)]
and synaptic weights G p and Gb [Fig. 5(b)] as a function
of the noise density N . The stochastic learning session was
1000 epochs long, and the submitted pattern had a density
P = 25%. The learning time decreases at increasing N due to
the enhanced depression rate in (3) at high N . Fig. 5(b) shows
that the conductance window is relatively large at low N , with
an optimum learning window for N ≈ 3%, as evident from
MC simulations. For lower values of N no full depression
of the background can be attained as the learning time is
too long. For larger values of N , approaching the pattern
density P , instability effects occur for both the pattern and
the background synapses, leading to a window closure and
degraded learning. Both the MC model and the compact model
predict an inversion of synaptic weights for N exceeding P .

B. Dependence on Pattern Density P

Fig. 6 shows the measured and calculated tlearn [Fig. 6(a)]
and the average synaptic conductance G p and Gb [Fig. 6(b)]

Fig. 6. Measured and calculated (a) tlearn and (b) Gp and Gb as a function
of pattern density P. Calculations by both the MC model and the compact
model are shown. A noise density N = 3% and pattern/noise probabilities
RP = RN = 50% were assumed. Stable learning takes place for P � N.

Fig. 7. Measured and calculated (a) tlearn and (b) Gp and Gb as a function
of input pattern probability of appearance RP with noise probability
RN = 1 − RP. A noise density N = 3% and pattern density P = 25%
were assumed.

as a function of P . Based on Fig. 5, we adopted an average
noise density N = 3% in the experiments and calculations.
The learning time decreases with P , since the background
size increases for P close to 0, thus the time required for
background depression at a given N increases. The synaptic
conductance in Fig. 6(b) shows that the learning window is
relatively low for P comparable or smaller than N . As P
increases, the window reaches a large value, indicating stable
learning. The results confirm the relevance of the competition
between pattern and noise, which requires P � N for stability.

C. Dependence on Pattern Rate RP and Noise Rate RN

Fig. 7 shows the measured and calculated tlearn [Fig. 7(a)]
and the average synaptic conductance G p and Gb [Fig. 7(b)]
as a function of RP increasing from 0% to 80%, with RN =
1 − RP . The learning time first decreases at increasing RP ,
then slightly increases. The optimum condition is found for
RN = RP , which maximizes the product RN ∗RP in (3) for the
background depression. The average conductance in Fig. 7(b)
reaches the best window for relatively large RP .

D. Flexibility and Robustness

We tested our model for other synaptic devices, like PCMs,
and the robustness against device nonidealities, such as a
limited switching time and LRS/HRS variations.

Fig. 8(a) shows the PCM distributions for LRS and HRS.
Compared to HfO2 RRAM, the resistive window is larger,
approaching two orders of magnitude [16]. We first ran MC
simulations and then tested the prediction capability of the
compact model by adapting GLRS and GHRS according to the
PCM distributions. All other parameters were kept constant.
Fig. 8(b)–(d) shows the fitting of the compact model versus
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Fig. 8. (a) Distributions of LRS and HRS values fo the PCM device.
Calculated Gp and Gb as a function of (b) N, (c) P, and (d) RP.
The optimum operation is found at low N, N ≈ 3%, and at high RP,
RP ≈ 60%. The dashed-dot lines show the tendencies of the model when
the statistical distributions for LRS and HRS are taken into consideration
in the equations.

MC simulations for the average synaptic conductances G p and
Gb as a function of N , P , and RP , respectively. Concerning
the switching time, it comes out that the variations are not a
problem because the bio-inspired reference time for STDP is
slow [Fig. 1(c) and (d)] compared to the device worst case
switching time (≈100 μs for HfO2 RRAMs); on the other
hand, the conductance variations directly affect (2) and (3).
To stress this point, we extracted a set of GLRS and GHRS

values from PCM distributions aiming to statistically describe
the time evolution of the average synapse of the experimental
setup (16 PREs, 1 POST). The extended model was tested
to predict the average synaptic conductances G p and Gb as
a function of N , P , and RP , respectively. The tendencies are
represented by the short-dashed lines in Fig. 8(b)–(d), showing
consistency respect to MC calculations.

E. Impact on Learning Efficiency

To evaluate the learning efficiency, we measured Plearn and
Perr, namely the probabilities of POST fire in response to the
submission of the true pattern and the error in response to
a submission of a false pattern with the same P , respec-
tively [23]. To extend the compact model to the statistical
study, we assumed the relationship between the average con-
ductance and its standard deviation obtained by experimental
distributions of HfOx RRAMs [12]. Fig. 9(a)–(c) shows the
measured Plearn and Perr as a function of N , P , and RP ,
respectively, compared with calculations from the MC and the
compact models.

V. MODEL-BASED OPTIMIZATION OF LEARNING

The compact model of (2) and (3) can be used to optimize
the stochastic STDP learning algorithm. To illustrate the
optimization methodology, Fig. 10(a) shows the contour plot
of tlearn calculated with the compact model as a function of

Fig. 9. Measured and calculated Plearn and Perr as a function of
(a) noise density N, (b) pattern density P, and (c) pattern probability
RP, with RN = 1 − RP. Plearn is the probability of POST fire in response
to the true pattern, i.e., the one used for training; Perr is the probability
of fire in response to the presentations of false patterns with the same P
but different shapes.

Fig. 10. (a) Contour plot of the calculated tlearn obtained from the
compact model as a function of P and N. The white line shows the
values of N which maximize the learning window. (b) Contour plot of
the calculated learning window Gp − Gb from the compact model as a
function of P and N. The dashed-dotted lines indicate the region P < N,
where learning cannot converge.

Fig. 11. (a) Pattern densities per class in the MNIST data set are between
3% and 35%. (b) However, there is a single threshold value capable
of providing a good resistive window between pattern and background
average synapses. Color map of the MC simulations for tlearn as a function
of P and the input size NPRE, from a 3×3 to a 28×28 pattern. (c) Note that
tlearn depends on P but not on the dimensions of the input. (d) Learning
activity of an MNIST image showing the evolution of the synaptic weights.

P and N for HfO2 RRAM synapses. Note that every stable
learning requires N � P (region above the red dashed line).
It is possible to identify an “optimized N” which maximizes
the learning window �G, as reported in Fig. 10(b).

A. Estimation of tlearn and Minimum Energy
Consumption for MNIST Images

To test the scalability of the model, we simulated the unsu-
pervised learning of 60 000 independent handwritten digits
from the MNIST training data set. Note that the pattern density
of MNIST data set ranges from 3% to over 30%, as shown
in Fig. 11(a). This raises the issue of identifying a unique
unsupervised threshold for all the 60 000 learning activities.
To this purpose, MC simulations in Fig. 11(b) confirm that
the STDP learning methodology can operate with a single
threshold ITH = 35 μA for a wide range of P , thus avoiding
the need of any peripheral adaptive circuit.
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Fig. 12. (a) Block scheme of a mixed supervised–unsupervised neural
network, with trained convolutional filters and WTA STDP. (b) Confusion
matrix for the standard results of full MNIST testing [19]. (c) Confusion
matrix of the optimized learning procedure enabled by the use of the
compact model.

The STDP algorithm is scalable, as the learning time and
window is independent of the effective size of the input
pattern. This is demonstrated in Fig. 11(c), showing a color
map of the learning time obtained from MC simulations as
a function of pattern size NPRE and density P . The learning
time is approximately constant for each P irrespective of NPRE.
Similar results were obtained for the learning window �G.

The learning time can be evaluated from the compact
model, Fig. 10(a). Assuming a bio-compatible epoch of 10 ms,
a learning time of 2.5 s (i.e., 250 epochs) is obtained.
Fig. 11(d) shows the MC simulations of a fast learning activity
of an MNIST digit and the corresponding synaptic evolutions
in time. By reducing the time of each epoch, it is possible to
achieve a faster response of the network per single image [18].

The compact model can also predict the average energy
consumption for the learning of an MNIST image. The
energy includes two contributions, namely fire and integra-
tion. The energy required by the single synapse for firing
is Efire = Iset/reset × Vset/reset × tfire, while for integrating is
Eint = GLRS/HRS × Vread

2 × tint. Considering the model esti-
mations for which the fire occurs at every pattern presentation
(RP = 50%), assuming an average tlearn of 250 epochs from
Fig. 10(a), an average P for MNIST from Fig. 11(a), and
the setup values of Fig. 1, we estimate the minimum energy
required for learning a single MNIST image to be in the range
of 3 mJ.

B. Improvement of the MNIST Classification

Unsupervised learning based on STDP is a robust technique
for achieving accurate continual learning when introduced
in the last layer of a convolutional neural network (CNN)
[18], [19]. These supervised/unsupervised networks rely on
custom training algorithms to extract, after convolution,
a single-bit response relative to a found/not found trained
feature, as illustrated in Fig. 12(a). A combinational logic
equalizes the response of the CNN filters to ensure a fixed-
density pattern as input to the winner-take-all (WTA) unsu-
pervised network. The WTA network consists of ten POSTs
with inhibitory signals, where a neuron that fires induces
the drop of the internal potential in all other neurons [20].
Our compact model can optimize the accuracy of the mixed
supervised–unsupervised network acting on the unsupervised
STDP. Since the equalized patterns are partially overlapping
one to each other, we chose P = 40% to increase Plearn

and to reduce Perr, according to Fig. 9. Furthermore, to speed

up the learning process and maximize the learning window
�G, we selected N = 6%, from Fig. 10, and RP = 60%.
The optimization provided by the compact model allows a
significant improvement (≈1%) for the full testing accuracy of
the MNIST data set, as evident by the comparison between the
confusion matrices of Fig. 12(b) and (c), thus highlighting the
relevance of the compact model for the design of unsupervised
learning networks.

VI. CONCLUSION

A compact model describing unsupervised learning in
SNN based on biological plasticity rules, as the STDP, has
been shown. Results of the model have been tested against
experimental data and MC simulations as a function of the
parameters controlling the learning process. The model can
estimate and optimize SNNs for fast and efficient learning,
like the case of unsupervised learning of the MNIST data
set. The model provides a valuable tool and methodology
toward the development and optimization of SNNs capable
of information processing and learning similar to the human
brain.
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