
IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 67, NO. 7, JULY 2020 2945

Time Complexity of In-Memory Solution
of Linear Systems

Zhong Sun , Member, IEEE, Giacomo Pedretti , Piergiulio Mannocci , Elia Ambrosi ,
Alessandro Bricalli , and Daniele Ielmini , Fellow, IEEE

Abstract— In-memory computing (IMC) with cross-point
resistive memory arrays has been shown to accelerate
data-centric computations, such as the training and infer-
ence of deep neural networks, due to the high parallelism
endowed by physical rules in the electrical circuits. By con-
necting cross-point arrays with negative feedback ampli-
fiers, it is possible to solve linear algebraic problems, such
as linear systems and matrix eigenvectors in just one step.
Based on the theory of feedback circuits, we study the
dynamics of the solution of linear systems within a memory
array, showing that the time complexity of the solution is free
of any direct dependence on the problem size N, rather it is
governed by the minimal eigenvalue of an associated matrix
of the coefficient matrix. We show that when the linear sys-
tem is modeled by a covariance matrix, the time complexity
is O(logN) or O(1). In the case of sparse positive-definite lin-
ear systems, the time complexity is solely determined by the
minimal eigenvalue of the coefficient matrix. These results
demonstrate the high speed of the circuit for solving linear
systems in a wide range of applications, thus supporting
IMC as a strong candidate for future big data and machine
learning accelerators.

Index Terms— In-memory computing (IMC), linear sys-
tem, resistive memory, time complexity.

I. INTRODUCTION

THE system of linear equations is among the most com-
mon problems in scientific and engineering fields, such

as quantum mechanics, statistical analysis, network theory,
and machine learning [1], [2]. Improving the time and energy
efficiencies of solving linear systems is constantly sought
in modern scientific computing [3] and data-centric applica-
tions [4]. Conventional digital computers solve linear systems
by using classical algorithms, such as the Gaussian elimina-
tion, lower–upper (LU) factorization, and conjugate gradient
(CG) method [5]. In these algorithms, the time complexity
is always a polynomial function of matrix size N , namely,

Manuscript received January 13, 2020; revised April 1, 2020 and
April 21, 2020; accepted April 23, 2020. Date of publication May 18,
2020; date of current version June 19, 2020. This work was supported
by the European Research Council (ERC) through the European Union’s
Horizon 2020 Research and Innovation Programme under Grant 842472.
The review of this article was arranged by Editor J. Kang. (Corresponding
authors: Zhong Sun; Daniele Ielmini.)

The authors are with the Dipartimento di Elettronica, Informazione
e Bioingegneria, Politecnico di Milano, 20133 Milan, Italy (e-mail:
zhong.sun@polimi.it; daniele.ielmini@polimi.it).

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TED.2020.2992435

O(poly(N)). In the era of big data and the Internet of Things,
however, such performance may not be sufficient, given the
exponential increase of data size and the approaching physical
limits of Moore’s law [6]. In the quest for an acceleration
of data-intensive tasks, quantum computing (QC) has also
been demonstrated to solve systems of linear equations with
an O(logN) time complexity [7], [8]. Although QC appears
promising for exponential speedup of the solution, cryogenic
temperatures and maintenance of quantum coherence in quan-
tum computers appear as strong obstacles toward practical
implementation especially for portable computing [9]. Here,
we show that in-memory computing (IMC), which relies on the
physical computing with cross-point analog resistive memory
arrays and negative feedback in circuit connections, solves a
linear system in a time that is dictated by the minimal eigen-
value of an associated matrix. As a result, the corresponding
time complexity is demonstrated to be extremely low, e.g.,
O(logN) or O(1) for solving linear systems of the model
covariance matrix. For sparse positive-definite (PD) linear
systems, the time complexity depends solely on the minimal
eigenvalue of the coefficient matrix, thus outperforming the
conventional digital and QC counterparts.

II. MULTILEVEL RRAM DEVICE

Resistive memories (also known as memristors) are
two-terminal devices whose resistance (conductance) can be
changed by a voltage stimulus [10], [11]. The class of resis-
tive memory devices includes various concepts, such as the
resistive switching memory (RRAM) [12], [13], the phase
change memory (PCM) [14], and the magnetoresistive mem-
ory (MRAM) [15]. Due to their small size and nonvolatile
behavior, resistive memories have been widely considered as
promising devices for memory technology [12], [13]. Most
importantly, resistive memories enable stateful logic [16], [17]
and in-memory analog computing [18], [19], thus circum-
venting the communication bottleneck between the mem-
ory and the processor that represents the main limitation
of the von Neumann machines. Fig. 1 shows the multilevel
current–voltage (I − V) characteristics of an RRAM device,
supporting the ability to store an arbitrary analog number
mapped in the device conductance [19]–[21]. The RRAM
conductance is controlled by the compliance current, namely,
the maximum current supplied by the select transistor during
the set transition from high resistance to low resistance [17].

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-1856-0279
https://orcid.org/0000-0002-4501-8672
https://orcid.org/0000-0002-0083-5804
https://orcid.org/0000-0002-5418-7099
https://orcid.org/0000-0002-0706-8628
https://orcid.org/0000-0002-1853-1614

2946 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 67, NO. 7, JULY 2020

Fig. 1. I−V characteristics of multilevel operations of the RRAM device.
Eight conductance levels are shown, and the values read at a small
voltage are 120, 80, 60, 50, 30, 20, 15, and 10 μs, respectively. The
inset shows the RRAM device structure.

Fig. 2. (a) Cross-point resistive memory circuit for solving linear systems,
illustrated with N = 3 as the problem size. The conductance matrix G A
maps A, the input voltages [Vin1; Vin2; Vin3] represents −b, and the output
voltages [Vout1; Vout2; Vout3] give the solution of x. (b) Block diagram of
the cross-point circuit as a control system. The cross-point array conveys
the output x to interact with the input b.

The device is fully reconfigurable, in which the application
of a negative voltage can restore a high resistance in the
device, thus preparing for another analog set operation. The
eight conductance levels in Fig. 1 will be employed in the
following as discrete values to construct matrices and simulate
the solution of linear systems within the circuit.

III. TIME COMPLEXITY OF SOLVING LINEAR SYSTEMS

A. Time Complexity Analysis of the Cross-Point Circuit

Cross-point resistive memory arrays can be conveniently
used to accelerate the matrix-vector multiplication (MVM),
which is a core operation in many computing tasks, such as
sparse coding [18], signal processing [19], and neural network
training [22]. Recently, a cross-point circuit of resistive mem-
ory arrays has been demonstrated to solve linear systems or
eigenvector equations in one step [23]. Fig. 2(a) shows the

circuit to solve a system of linear equations, which reads

Ax = b (1)

where A is an N × N matrix of coefficients, b is a known
vector, and x is the unknown vector to be solved. In the
cross-point circuit, each coefficient Ai j of matrix A is coded as
the analog conductance Gi j of a resistive memory, the input
voltages represent −b, and the output voltages of the oper-
ational amplifiers (OAs) provide the solution x = A−1b.
The reconfigurable resistive memory enables the cross-point
circuit of Fig. 2(a) to map an arbitrary matrix A with positive
coefficients.

To address the time complexity of the cross-point circuit,
namely, the time it takes to yield the correct answer to the
problem, we first note that the closed feedback loop plays a
leading role in ensuring a physical iteration between input and
output. In other words, instead of completing a certain number
of open-loop iterations with a gradually diminishing error,
we let the signal physically circulate within the closed loop
to minimize the error in the feedback network, thus enabling
a virtually instantaneous solution. In reality, the nonidealities
of the circuit, such as the limited response time of the OAs,
result in finite time complexity of the solution.

Fig. 2(b) shows a block diagram of the cross-point circuit,
where the cross-point array plays the role of feedback network
conveying the weighted output to be compared with the input,
thus establishing a stable output. To study the time response
of the circuit, we write the input–output relationship in terms
of the Laplace transform of the i th OA in Fig. 2(a) according
to the Kirchhoff’s voltage and OA theory, namely∑

j Gi j Vout, j(s) + G0Vin,i(s)∑
i Gi j + G0

L(s) = Vout,i(s) (2)

where Gi j is the conductance of the j th device in the i th row,
G0 is the input conductance, L(s) is the open-loop gain of the
OA, and s is the complex variable in the Laplace transform.
The ratio between Gi j and G0 gives the corresponding element
of matrix A, namely, Ai j = Gi j/G0. Replacing Vout and Vin

with x and −b, respectively, results in the following equation:

− 1

1 + ∑
j Ai j

⎡
⎣∑

j

Ai j x j(s) − bi (s)

⎤
⎦L(s) = xi(s). (3)

For the whole system, all equations can be combined in the
form of a matrix equation, namely

−U[Ax(s) − b(s)]L(s) = x(s) (4)

where U is a diagonal matrix defined as U = diag(1/(1 +∑
j A1 j), 1/(1 + ∑

j A2 j), . . . , 1/(1 + ∑
j AN j)). As all OAs

in the circuit are assumed identical, L(s) is a scalar linking
the inverting input and the output of each OA. Assuming
a single-pole transfer function [24] for the employed OAs,
namely, L(s) = L0/(1+(s/ω0)), where L0 is the dc open-loop
gain and ω0 is the 3-dB bandwidth, (4) becomes

sx(s) = −L0ω0

[(
M + 1

L0
I
)

x(s) − Ub(s)

]
(5)

SUN et al.: TIME COMPLEXITY OF IN-MEMORY SOLUTION OF LINEAR SYSTEMS 2947

Fig. 3. Time response to solving a linear system with the circuit.
The conductance matrix is G A = [120, 15, 80; 50, 50, 60; 60, 10, 80]
μs, and G0 = 100 μs. The input vector is b = −[0.12; 0.36; 0.24].
Colored full lines: transient curves in SPICE simulation. Colored dash
lines: analytical solutions. Black dash lines: simulated time response with
the FD algorithm.

where M = U A is the matrix associated with matrix A, and
I is the N × N identity matrix. As L0 is usually much larger
than 1, the second term in M + (1/L0)I can be omitted.
As a result, the inverse Laplace transform of (5) into the time
domain gives the differential equation

d x(t)

dt
= −L0ω0[M x(t) − Ub(t)] (6)

which describes the dynamics of the cross-point circuit for
solving (1). Though an analytical solution can be obtained
for (6), we developed an iterative algorithm to analyze the
transient behavior and evaluate the time complexity of the
cross-point circuit. Equation (6) can be approximated by a
finite difference (FD) equation, namely

x(t+�t) = αUb + (I − αM)x(t) (7)

where α is a small dimensionless number given by α =
L0ω0�t with �t being the incremental time. To verify the FD
algorithm, we have run the transient simulation for solving
a linear system, comparing the iterative solution according
to (7) with the simulation program with integrated circuit
emphasis (SPICE) transient simulation result. A 3 × 3 matrix
was randomly constructed with the eight discrete values in
Fig. 1, and the corresponding linear system was solved. Fig. 3
shows the time evolution of the output x(t) for the linear
system. The trajectories of FD algorithm results appear highly
consistent with the ones of circuit simulation, and both the
asymptotic results are in line with the steady-state solution.
Concern about the OAs is the slew rate, which limits the
response time of the output in case of large signals. Our
adopted OA (AD823 from analog devices) has a slew rate
of 22 V/μs, which guarantees that the circuit operates in
the small-signal response area in our simulation. From the
simulation results, the steady-state output amplitude is reached
in a computing time below 1 μs, which is defined as the time
for the norm of error dropping below 10−3.

The convergence of the iterative algorithm in (7) requires
that the spectral radius of the matrix I − αM has to be less
than 1, which implies that the minimal eigenvalue (or real
part of eigenvalue) λM,min of the associated matrix M has to
be positive. The λM,min condition can also be understood from
the viewpoint of the transfer function of the circuit, which is

T(s) = −(M +s/(L0ω0)I)−1U according to (5). The poles of
the system can be determined by assigning M+s/(L0ω0)I as a
singular matrix, which implies that the poles are located at s =
−L0ω0λM , where λM is an eigenvalue of matrix M . For the
system to be stable, the N λM ’s (or their real parts) have all to
be positive [25]. As U is a positive diagonal matrix, the λM,min

condition is conveniently satisfied by the PD matrix, which is
widely encountered in various fields and applications, such as
statistical analysis [26], quantum chemistry simulation [27],
and network theory [28]. For this reason, we shall focus our
attention on the PD matrix in the following.

To provide an analytical model for the computing time as a
function of λM,min, we have analyzed the convergence behavior
of the iterative algorithm. The convergence is measured in the
A-norm, which is defined as �x�A = (xT Ax)1/2 [5]. In the
case of the PD matrix A, there is �x�A = �A(1/2)x�2, where
�·�2 is the �2-norm. Similarly, the induced matrix norm follows
�B�A = �A(1/2) B A−(1/2)�2. If a linear system is solved with
a precision � at time t , the A-norm of solution error has to
satisfy

�x(t) − x∗�A ≤ � (8)

where x∗ = A−1b is a precise solution. �x(t) − x∗�A as
follows:
�x(t)−x∗�2

A = �αUb + (I − αM)x(t − �t) − x∗�2
A

= �(I − αM)x(t − �t) − (I − αM)x∗�2
A

≤ �I − αM�2
A�x(t − �t) − x∗�2

A

= �A
1
2 (1 − αU A)A

1
2 �2

2�x(t − �t) − x∗�2
A

= �A − α A
1
2 U A

1
2 �2

2�x(t − �t) − x∗�2
A. (9)

By defining W = A(1/2)U A(1/2), which is a PD matrix, there
is �I − αW�2 = 1 − αλW,min , with λW,min being the minimal
eigenvalue of W . Matrix M has the same eigenvalues as W ,
so the inequality of (9) becomes

�x(t) − x∗�A ≤ (
1 − αλM,min

)2�x(t − �t) − x∗�2
A. (10)

Repeating the above mentioned process iteratively leads to

�x(t) − x∗�2
A ≤ (1 − αλM,min)

2t/�t�x(0) − x(∗)�2
A

< e2λM,min L0w0t�x∗�2
A

= e2λM,min L0w0t x∗T b. (11)

The upper bound of �x(t) − x∗�A satisfying in (8) finally
reveals the computing time as

τ = 1

λM,min L0ω0
log

√
x∗T b
�

. (12)

Note that the inner product x∗T b of input and output is
always positive by the definition of the PD matrix. Also, com-
pared with the reciprocal impact of λM,min on the computing
time, the logarithmic role of x∗T b is suppressed. Therefore,
the time complexity for solving linear systems with the cross-
point circuit is O(1/(λM,min)log(1/�)), which shows no direct
dependence on the matrix size N . The time complexity of con-
ventional iterative algorithms is usually a polynomial function
of N , with also the matrix properties, such as eigenvalues
involved [2]. We write the time complexity of the cross-point

2948 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 67, NO. 7, JULY 2020

Fig. 4. (a) Transient behavior of solving a linear system of a 3 × 3 PD
matrix with a relatively large λmin, which is labeled on the top. (b) Same
as (a) but for a matrix with a one-order smaller λmin.

Fig. 5. (a) Summary of computing time for solving linear systems with
different λmin’s. The inset shows the computing time as a function of
1/λmin. (b) Computing time as a function of λM,min. The inset shows
the computing time as a function of 1/λM,min, indicating a precise linear
upper bound (green line).

circuit in a similar form, by linking λM,min to the minimal
eigenvalue λmin of matrix A, namely, λM,min = uλmin. There-
fore, the time complexity is O(1/(uλmin)log(1/�)), where
the critical role of λmin is recognized, and the factor u may
contribute an N-dependence.

To support the λmin-controlled time complexity of the
cross-point circuit, we considered two 3 × 3 PD matrices
containing discrete conductance levels in Fig. 1 with λmin =
0.49 and 0.053, respectively. Fig. 4 shows the SPICE transient
responses for the two linear systems. The simulation results
indicate a faster response for the larger λmin, thus supporting
the dominant role of λmin. Fig. 5(a) summarizes the computing
times for various 3 × 3 PD matrices, spanning two decades
of λmin, and assuming 15 random vectors b for each matrix
A. The results show that the computing time is inversely pro-
portional to λmin, as also supported by the plot of computing
time as a function of 1/λmin in the inset. As can be observed,
there is a rough upper bound for the computing time, which
scales linearly with 1/λmin and defines the time complexity
of solving linear systems. In Fig. 5(b), the computing time
shows precise linearity for the upper bound with the increase
in 1/λM,min, demonstrating the precise description of time
complexity by (12).

B. Time Complexity of Solving Model Linear Systems

To show the time complexity dependence on the matrix
size N , we considered a model covariance matrix to represent

Fig. 6. (a) 10 × 10 first-order model covariance matrix mapped by
discretized and randomized RRAM devices. The conductance unit is
100 μs. (b) Inverse matrix solved with the cross-point RRAM circuit, as a
function of the precise analytical solution. The relative errors (right y-axis)
are generally small, except for the entries near close to zero.

a real-world problem [4], [29], [30], namely

Ai j =
⎧⎨
⎩

1

|i − j |β , if i �= j

1 + √
i, if i = j

(13)

where β > 0 is a decay factor. The covariance matrix
plays an important role in statistical inference and financial
economics, such as in the portfolio theory. The decrease of
off-the-diagonal elements of the matrix was chosen to simulate
the decreasing correlation of high-dimensional data samples in
a realistic covariance matrix. In the following, we consider
model covariance matrices of the first order (β = 1) and
the second order (β = 2). Note that λmin is asymptotically
constant as the size of the model covariance matrix increases;
thus, the N-dependence of time complexity is related solely
to the factor u.

In simulating the solution of a linear system of a model
covariance matrix, the coefficients in (13) were mapped in the
cross-point array with 64 discrete and uniform conductance
levels, which is feasible for previously reported resistive
memories [19], [31]–[33]. The conductance ratio, defined as
the ratio between the maximum conductance Gmax and the
minimum conductance Gmin, was assumed equal to 103, which
is also achievable for various RRAM devices [34], [35]. Each
level was randomized according to a normal distribution with
a standard deviation σ = �G/6, where �G = Gmax/64 is
the nominal difference between the two adjacent conductance
levels.

Fig. 6(a) shows the cross-point conductance for a
10 × 10 first-order covariance matrix implemented with
RRAM devices. We simulated matrix inversion by the cross-
point circuit, which is equivalent to solving N linear systems
where the input vector b is set equal to each column of
the identity matrix [23]. Fig. 6(b) shows the 100 computed
elements of A−1 as a function of the analytical results, which
indicates good accuracy.

To study the scaling behavior of the computing time, linear
systems were solved for matrix size ranging from N = 3
to 300. For each matrix A, 100 linear systems were solved
with random input vectors b. Fig. 7(a) shows the simulated
computing time for the first-order covariance matrix. The
results reveal that the computing time scales logarithmically

SUN et al.: TIME COMPLEXITY OF IN-MEMORY SOLUTION OF LINEAR SYSTEMS 2949

Fig. 7. (a) Summary of computing time for solving linear systems
of the first-order model covariance matrix with different sizes, ranging
from 3 × 3 to 300 × 300. Results from both the ideal matrix and
RRAM conductance matrix are shown. λmin’s of both ideal matrix and
RRAM matrix are shown as the right y-axis. (b) Same as (a) but for the
second-order model covariance matrix.

with the matrix size N , i.e., the time complexity is O(logN).
The O(logN) time complexity indicates the coefficient u
scales as u ∝ (1/lnN). The figure also shows the analytical
minimal eigenvalues and those calculated for the conductance
matrices implemented in the cross-point circuit. The difference
between the analytical and calculated eigenvalues due to
conductance discretization and randomization is responsible
for the inconsistency of the computing times obtained by
the ideal and conductance matrices. This interpretation is
supported by the fact that, for instance, the computing time
for the cross-point resistive-memory simulation with N = 10
is smaller than the ideal value, while the minimal eigenvalue
is larger. The opposite case applies to N = 150. To guarantee
that the minimal eigenvalue is in the vicinity of the ideal one
and, thus, the computing time is predictable, it is important to
reduce device variations by using devices of large conductance
window accommodating sufficient analog levels, also by using
verify algorithms for device programming [20].

Fig. 7(b) shows the scaling behavior of computing time
for the second-order covariance matrix, indicating a constant
computing time, i.e., the time complexity is O(1). Due to the
strong decaying behavior, the elements far from the diagonal
are close to zero, thus requiring a larger conductance ratio
(Gmax/Gmin = 104) of resistive memories to map the entire
matrix. The O(1) time complexity in Fig. 7(b) reveals that the
coefficient u is asymptotically constant for the second-order
covariance matrix. Therefore, depending on the matrix struc-
ture, extremely low time complexity, such as O(logN) or
O(1), can be achieved, which hugely reduces the computing
time for large-scale problems.

C. Comparison With Other Computing Paradigms

The quantum algorithm for solving linear systems addresses
the sparse Hermitian matrix, and its time complexity is
O((s2λ2

max)/(�λ
2
min)logN), where λmax is the maximum eigen-

value of the matrix, λmax/λmin is the condition number, and s
is the sparsity, which means the matrix has at most s nonzero
entries per row [7]. To make a direct comparison with QC,
we also consider the sparse PD matrix that is a subset of
the real-valued Hermitian matrix. By defining Umin as the
minimal eigenvalue (also the minimal element) of the diagonal
matrix U , there is a relation λM,min ≥ Uminλmin due to the

Fig. 8. (a) Summary of computing time for solving 1000 sparse PD linear
systems, plotted as a function of N and λmin. (b) Subset of simulation
results for λmin limited within [0.9, 1], showing a constant computing time
for IMC. The relative computing time of the conventional CG method and
QC for solving these linear systems is also calculated, according to their
time complexity formulas.

eigenvalue inequality for a matrix product [36]. As Umin is
determined by the inverse of the largest row sum of matrix
A, there is (1/λM,min) ≤ 1/(Uminλmin) ∼ (s/λmin). As a
result, the time complexity of the cross-point circuit in (12)
is reduced as O((s/λmin)log(1/�)), or O((1/λmin)) in line
with the O((λ2

max/λ
2
min)logN) time complexity of the quantum

algorithm.
We tested a set of sparse PD linear systems to verify the

time complexity of the cross-point circuit, with the sparsity
assumed as s = 10. We generated 1000 linear systems, i.e.,
1000 sparse PD matrices and one random input vector for each,
with sizes from 20 × 20 to 200 × 200. Fig. 8(a) shows the
computing time for solving the 1000 linear systems, which
is independent of N and is solely determined by λmin, thus
supporting the O(1/(λmin)) time complexity. Fig. 8(b) shows
the computing time for a subset of the 1000 linear systems
with limited λmin to exclude its contribution. The relative
computing time of the quantum algorithm for solving the same
linear systems is also shown according to its time complexity
formula. Fig. 8(b) also reports the relative computing time of
the CG method [37], which is the most efficient algorithm for
solving PD linear systems in conventional digital computers
due to time complexity of O(Ns((λmax/λmin))

1/2log(1/�)) for
sparse matrix. The results indicate that IMC, QC, and digital
computing display O(1), O(logN), and O(N) time complex-
ities, respectively, for solving sparse PD linear systems.

IV. DISCUSSION

The analysis of circuit dynamics and time complexity is
based on the assumption of an ideal cross-point resistive
array, as the RC delay in cross-point MVM is extremely
low, e.g., 0.5 ns in a 1024 × 1024 array [38]. To evalu-
ate the impact of wire resistance, parasitic capacitance, and
device capacitance on the time complexity of the circuit,
we have simulated the solution of linear systems of the model
covariance matrix in SPICE with these parasitic components
considered. Specifically, each cross-point resistive device was
replaced by a subcircuit module (see Fig. 9), where the wire
resistance and the parasitic capacitance are assumed according
to interconnect parameters at the 65-nm node in the ITRS
table [39], and the device capacitance is calculated with the

2950 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 67, NO. 7, JULY 2020

Fig. 9. Subcircuit module of a single cross-point resistive memory device.
Rr is the device resistance, storing an element value in the matrix, Cr is
the device capacitance, Rw is the wire resistance, Cw is the parasitic
capacitance.

Fig. 10. Time complexity of the cross-point circuit without or with
parasitics for (a) first- and (b) second-order model covariance matrices.
The solution precision ε is limited to 10−2 due to the more discrete outputs
when approaching the steady state in SPICE; thus, the computing time is
less than the ones in Fig. 7. Also, the matrix was limited to 100 × 100 for
the circuit complexity consideration with parasitic components.

dielectric constant of HfO2 [40]. The simulation results of
the solution of linear systems for increasing size are reported
in Fig. 10. The results indicate the same time complexity as
the ideal circuit, namely, O(logN) and O(1) for solving linear
systems of the first- and second-order model variance matrices,
respectively. Such a comparison supports the robustness of
the cross-point computing circuit against parasitics. The wire
resistance imposes a relatively small error to the steady-state
solution, which is alleviated by the intermediate interconnect
technology for cross-point arrays, in contrast to the aggressive
downscaling of conventional high-density memory [38]. Also,
increasing the cross-point device resistance and adopting 3-D
integration are helpful in improving the solution accuracy [23].

In conventional computers, linear systems of a dense matrix
can be solved with standard algorithms, such as Gaussian
elimination and LU factorization, which are of O(poly(N))
time complexities. The solution can be accelerated with
parallel algorithms; for instance, the Gaussian elimination
can be carried out in parallel with the time complexity
of O(N) by using N2 processors [41]. Csanky’s algorithm
reports a better time complexity that is O(log2 N), while N4

processors are required [42]. In the cross-point computing
circuit, O((1/λM,min)) time complexity that may implicate
O(logN) or even O(1) is achieved with only N2 memory
devices to necessarily implement the matrix, thus representing
a much more efficient method for solving linear systems. Note
that the N × N cross-point array is imperative to store the

matrix, and the data are processed directly in the memory,
whereas, in conventional computers, the memory cost also
scales as N2, and a number of additional processors are
required. Compared with IMC, digital computing possesses
additional data access complexity due to the communication
between the separated memory and processor [43]. Therefore,
there is an obvious efficiency advantage for solving linear
systems with the cross-point resistive memory circuit due
to the concept of IMC and the unique time complexity of
computation. In the linear system problem, different matrices
may be involved to be stored in the cross-point array, thus
requiring device reprogramming. In this sense, fast and reliable
writing schemes [21] are favored to retain the advantage of
IMC. The high efficiency of our method is attributed to the
parallelism in the circuit, where Kirchhoff’s voltage law and
the concurrent feedback play major roles. According to the
output update algorithm in (7), the whole system resembles
the Hopfield network [44], [45], which is well known for
its physics-inspired high parallelism. In contrast, there is no
discrete iteration in the cross-point circuit; instead, the output
evolves in a self-sustained fashion, thus contributing to an even
higher speed in addition to the architecture parallelism.

V. CONCLUSION

In conclusion, we have studied the time complexity of solv-
ing linear systems with an IMC circuit. Based on the feedback
theory, we show that only if the minimal eigenvalue (or real
part of eigenvalue) λM,min of the associated matrix is positive,
the linear system can be solved by the circuit. According to
an FD algorithm developed for the circuit dynamic, we show
that the time complexity is free of direct N-dependence, rather
determined solely by λM,min. For solving linear systems where
λM,min possesses a weak (or none) N-dependence, the speed
of the circuit is expected to be unprecedentedly high, e.g.,
the time complexity is O(logN) or O(1) for solving linear
systems of the model covariance matrices. When addressing
sparse PD linear systems, the time complexity is O((1/λmin)),
thus outperforming its counterparts of conventional digital
computing and QC. We project that when analog nonvolatile
memory technology becomes maturely industrialized, IMC can
play a leading role in boosting the computing performance for
big data in a wide range of real-world applications.

ACKNOWLEDGMENT

This work was partially carried out at Polifab, Micro- and
Nano-fabrication Facility, Politecnico di Milano.

REFERENCES

[1] C. D. Meyer, Matrix Analysis and Applied Linear Algebra. Philadelphia,
PA, USA: SIAM, 2000.

[2] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed.
Philadelphia, PA, USA: SIAM, 2003.

[3] K. Bourzac, “Stretching supercomputers to the limit,” Nature, vol. 551,
no. 7682, pp. 554–556, 2017.

[4] M. Le Gallo et al., “Mixed-precision in-memory computing,” Nature
Electron., vol. 1, no. 4, pp. 246–253, Apr. 2018.

[5] G. H. Golub, C. F. van Loan, Matrix Computations, 4th ed. Baltimore,
MD, USA: Johns Hopkins Univ. Press, 2013.

[6] M. M. Waldrop, “The chips are down for Moore’s law,” Nature, vol. 530,
no. 7589, pp. 144–147, Feb. 2016.

SUN et al.: TIME COMPLEXITY OF IN-MEMORY SOLUTION OF LINEAR SYSTEMS 2951

[7] A. W. Harrow, A. Hassidim, and S. Lloyd, “Quantum algorithm for
linear systems of equations,” Phys. Rev. Lett., vol. 103, no. 15, Oct. 2009,
Art. no. 150502.

[8] Y. Zheng et al., “Solving systems of linear equations with a supercon-
ducting quantum processor,” Phys. Rev. Lett., vol. 118, no. 21, May 2017,
Art. no. 210504.

[9] T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and
J. L. O’Brien, “Quantum computers,” Nature, vol. 464, no. 7285,
pp. 45–53, Mar. 2010.

[10] R. Waser, R. Dittmann, G. Staikov, and K. Szot, “Redox-based resistive
switching memories–nanoionic mechanisms, prospects, and challenges,”
Adv. Mater., vol. 21, nos. 25–26, pp. 2632–2663, Jul. 2009.

[11] D. Ielmini, R. Waser, Resistive Switching: From Fundamentals
of Nanoionic Redox Processes to Memristive Device Applications.
Hoboken, NJ, USA: Wiley, 2015.

[12] H.-S. P. Wong et al., “Metal-oxide RRAM,” Proc. IEEE, vol. 100,
pp. 1951–1970, Jun. 2012.

[13] D. Ielmini, “Resistive switching memories based on metal oxides:
Mechanisms, reliability and scaling,” Semicond. Sci. Technol., vol. 31,
no. 6, Jun. 2016, Art. no. 063002.

[14] S. Raoux, W. Welnic, and D. Ielmini, “Phase change materials and their
application to nonvolatile memories,” Chem. Rev., vol. 110, pp. 240–267,
Jan. 2010.

[15] A. D. Kent and D. C. Worledge, “A new spin on magnetic memories,”
Nature Nanotechnol., vol. 10, no. 3, pp. 187–191, Mar. 2015.

[16] J. Borghetti, G. S. Snider, P. J. Kuekes, J. J. Yang, D. R. Stewart, and
R. S. Williams, “‘Memristive’ switches enable ‘stateful’ logic operations
via material implication,” Nature, vol. 464, no. 7290, pp. 873–876,
Apr. 2010.

[17] Z. Sun, E. Ambrosi, A. Bricalli, and D. Ielmini, “Logic computing with
stateful neural networks of resistive switches,” Adv. Mater., vol. 30,
no. 38, Sep. 2018, Art. no. 1802554.

[18] P. M. Sheridan, F. Cai, C. Du, W. Ma, Z. Zhang, and W. D. Lu, “Sparse
coding with memristor networks,” Nature Nanotechnol., vol. 12, no. 8,
pp. 784–789, Aug. 2017.

[19] C. Li et al., “Analogue signal and image processing with large memristor
crossbars,” Nature Electron., vol. 1, no. 1, pp. 52–59, Jan. 2018.

[20] F. Alibart, L. Gao, B. D. Hoskins, and D. B. Strukov, “High precision
tuning of state for memristive devices by adaptable variation-tolerant
algorithm,” Nanotechnology, vol. 23, no. 7, Feb. 2012, Art. no. 075201.

[21] C. Li et al., “Efficient and self-adaptive in-situ learning in multilayer
memristor neural networks,” Nature Commun., vol. 9, no. 1, p. 2385,
Dec. 2018.

[22] G. W. Burr et al., “Experimental demonstration and tolerancing of
a large-scale neural network (165 000 Synapses) using phase-change
memory as the synaptic weight element,” IEEE Trans. Electron Devices,
vol. 62, no. 11, pp. 3498–3507, Nov. 2015.

[23] Z. Sun, G. Pedretti, E. Ambrosi, A. Bricalli, W. Wang, and D. Ielmini,
“Solving matrix equations in one step with cross-point resistive arrays,”
Proc. Nat. Acad. Sci. USA, vol. 116, no. 10, pp. 4123–4128, Mar. 2019.

[24] B. Razavi, Design of Analog CMOS Integrated Circuits. New York, NY,
USA: McGraw-Hill, 2001.

[25] C. Moler and C. Van Loan, “Nineteen dubious ways to compute the
exponential of a matrix, twenty-five years later,” SIAM Rev., vol. 45,
no. 1, pp. 3–49, Jan. 2003.

[26] R. Bhatia, Positive Definite Matrices. Princeton, NJ, USA:
Princeton Univ. Press, 2007.

[27] R. G. Parr and W. Yang, Density-Functional Theory of Atoms and
Molecules, vol. 16. Oxford, U.K.: Oxford Univ. Press, 1989.

[28] R. Rojas, Neural Networks: A Systematic Introduction. Berlin, Germany:
Springer-Verlag, 1996.

[29] C. Bekas, A. Curioni, and I. Fedulova, “Low cost high performance
uncertainty quantification,” in Proc. 2nd Workshop High Perform. Com-
put. Finance (WHPCF), Portland, OR, USA, 2009, pp. 1–8.

[30] J. M. Tang and Y. Saad, “A probing method for computing the diagonal
of a matrix inverse,” Numer. Linear Algebra Appl., vol. 19, no. 3,
pp. 485–501, May 2012.

[31] K. Seo et al., “Analog memory and spike-timing-dependent plas-
ticity characteristics of a nanoscale titanium oxide bilayer resis-
tive switching device,” Nanotechnology, vol. 22, no. 25, Jun. 2011,
Art. no. 254023.

[32] J. Park, M. Kwak, K. Moon, J. Woo, D. Lee, and H. Hwang,
“TiOx-based RRAM synapse with 64-levels of conductance and sym-
metric conductance change by adopting a hybrid pulse scheme for
neuromorphic computing,” IEEE Electron Device Lett., vol. 37, no. 12,
pp. 1559–1562, Dec. 2016.

[33] J. Tang et al., “ECRAM as scalable synaptic cell for high-speed,
low-power neuromorphic computing,” in IEDM Tech. Dig., Dec. 2018,
p. 13.

[34] T.-C. Chang, K.-C. Chang, T.-M. Tsai, T.-J. Chu, and S. M. Sze,
“Resistance random access memory,” Mater. Today, vol. 19, no. 5,
pp. 254–264, Jun. 2016.

[35] A. Mehonic et al., “Silicon oxide (SiOx): A promising material for
resistance switching?” Adv. Mater., vol. 30, Jun. 2018, Art. no. 1801187.

[36] R. Bhatia, Matrix Analysis. New York, NY, USA: Springer-Verlag,
1997.

[37] J. R. Shewchuk, “An introduction to the conjugate gradient method
without the agonizing pain,” Carnegie Mellon Univ., Pittsburgh, PA,
USA, Tech. Rep. CMU-CS-94-125, Aug. 1994.

[38] S. Yu, P.-Y. Chen, Y. Cao, L. Xia, Y. Wang, and H. Wu, “Scaling-up
resistive synaptic arrays for neuro-inspired architecture: Challenges and
prospect,” in IEDM Tech. Dig., Dec. 2015, p. 17.

[39] International Technology Roadmap for Semiconductors (ITRS). [Online].
Available: http://www.itrs2.net/2013-itrs.html

[40] J. Robertson, “High dielectric constant oxides,” Eur. Phys. J. Appl. Phys.,
vol. 28, no. 3, pp. 265–291, Dec. 2004.

[41] D. Heller, “A survey of parallel algorithms in numerical linear algebra,”
SIAM Rev., vol. 20, no. 4, pp. 740–777, Oct. 1978.

[42] L. Csanky, “Fast parallel matrix inversion algorithms,” SIAM J. Comput.,
vol. 5, no. 4, pp. 618–623, Dec. 1976.

[43] V. Elango, F. Rastello, L.-N. Pouchet, J. Ramanujam, and P. Sadayappan,
“On characterizing the data access complexity of programs,” in Proc.
42nd ACM SIGPLAN-SIGACT Symp. Princ. Program. Lang. (POPL),
New York, NY, USA, 2015, pp. 567–580.

[44] J. J. Hopfield, “Neural networks and physical systems with emergent
collective computational abilities,” Proc. Natl. Acad. Sci. USA, vol. 79,
pp. 2554–2558, Apr. 1982.

[45] A. Cichocki and R. Unbehauen, “Neural networks for solving systems
of linear equations and related problems,” IEEE Trans. Circuits Syst. I,
Fundam. Theory Appl., vol. 39, no. 2, pp. 124–138, Feb. 1992.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

