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Abstract— In this article, we propose an efficient and
robust spike-driven convolutional neural network (SCNN)
based on the NOR flash computing array (NFCA), which is
mapped by the pretrained convolutionalneural network with
the same structure. The spike-driven system eliminates the
additional analog-to-digital/digital-to-analog (AD/DA) con-
version in the NFCA-based CNN. To study the performance
of the hardware implementation, an NFCA-based SCNN for
the recognition of the Mixed National Institute of Standards
and Technology (MNIST) data set is simulated. Simulation
results illustrate that the system achieves 97.94% accuracy
with the computing speed of 1 × 106 frame per second (fps).
Compared with the typical mixed-signal NFCA-based CNN,
the NFCA-based SCNN saves 97% area and 56% energy con-
sumption. Moreover, the NFCA-based SCNN demonstrates
great robustness to 30% image noise with less than 2%
accuracy loss. The impact of random telegraph noise (RTN)
is also greatly reduced in which less than 1% accuracy
decrease can be achieved at the 32-nm technology node.

Index Terms— In-memory computing, nor flash memory,
spike-driven convolutional neural network (SCNN).

I. INTRODUCTION

DEEP convolutional neural network (CNN) has showcased
the unprecedented computing power [1] and achieved

beyond human-level accuracy in terms of speech recognition,
image recognition, and machine translation [2]–[4]. However,
it is still a great challenge to process the gigabyte-level
data [5] in CNN efficiently owing to the “memory wall” of von
Neumann architecture [6]. Hence, researchers are exploring
strategies to improve the computing speed and the energy effi-
ciency of the CNN based on von Neumann processors [7]–[9].
Among the possible solutions, the in-memory computing
architecture [8], [9] based on nonvolatile memory (NVM) is
promising because the vector–matrix multiplication (VMM),
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Fig. 1. Schematic of the mixed-signal NOR flash memory-based CNN.

which accounts for more than 90% of the computation in the
CNN [10], can be efficiently carried out in the NVM with the
crossbar structure.

The NOR flash array has a crossbar-like structure, which
shows great potential for the implementation of the VMM.
Compared with the novel NVM technologies [11]–[13] such
as resistive random access memory (RRAM), the flash mem-
ory can be fabricated by the mature mass production tech-
nique [14], which promotes the large-scale integration with the
peripheral CMOS circuitry. Moreover, the flash memory has
an additional advantage over resistance switching memories in
terms of the current gain because the floating gate (FG) tran-
sistor is the active component [15], [16]. The typical mixed-
signal NOR flash memory-based CNN is shown in Fig. 1. The
VMM is carried out by the NOR flash memory [15], [16]. The
transconductance (gm) of FG transistors represents the matrix,
and the input digital voltage represents the vector. The multiply
and addition operations are realized using Ohm’s law and
Kirchhoff’s current law, respectively. To convert the analog
operation result of the previous layer to the binary input of the
subsequent layer, analog-to-digital/digital-to-analog (AD/DA)
converters are essential [17]. In this case, the complicated
peripheral CMOS circuit with AD/DA converters dominates
the hardware cost and the energy consumption (>85%) [18],
which becomes one of the major concerns about improving
the efficiency gains of the NOR flash memory-based CNN.
For instance, the 8-bit AD conversion (ADC) in [19] occupies
an area of 126.75 μm2 at the 65-nm technology and the power
consumption is 35 mW.

Recently, the spike neural network (SNN) has been
proposed at the algorithm level [20], [21], in which the
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Fig. 2. Schematic of the NFCA-based SCNN.

information is coded using spikes (1/0). Accordingly,
the AD/DA conversion in the NOR flash memory-based
CNN is no longer needed. However, the training of the
SNN is mainly achieved using the biology-like unsupervised
learning rules such as spiking time/rate dependent plasticity
(STDP/SRDP) [22]–[24], which makes it difficult to support
complex practical cognitive applications. Different from these
biological network, NOR flash computing array (NFCA)-
based spike-driven CNN (SCNN) we proposed in this article
is essentially a CNN trained with back-propagation (BP)
algorithm [25]. The trained CNN is coded using spikes (1/0)
instead of numerical values. In other words, the NOR flash
memory-based SCNN is mapped by the CNN with the same
structure. It promotes the scalability of the network and
provides a promising hardware implementation of cognitive
applications in large-scale neural networks.

This article is organized as follows. In Section II,
we first introduce the principle of the NFCA-based SCNN.
In Section III, we introduce the detailed implementation
scheme of the hardware neural network. In Section IV,
the solutions for addressing the capacitor discharge of the
neuron are developed and the simulation results are shown.
The evaluation method and the performance of the NFCA-
based SCNN are provided in Section V. The conclusion is
presented in Section VI.

II. PRINCIPLE OF NOR FLASH-BASED SCNN

Fig. 2 shows the working principle of the proposed NOR

flash memory-based SCNN. When the system starts to work,
the sampling block takes the samples of the normalized input
image X Input (0 ∼1) using the random sampling method and
generates input spikes. At time t0, input spikes in the first layer
are determined by

Spike = (Rand() ≤ X Input) (1)

where Rand() generates random numbers with distribution on
(0, 1). If the number generated by Rand() is smaller than
the corresponding value of X input , then the sampling block
produces a spike (1); otherwise, no spike is produced (0).
Therefore, the sampling block generates input spikes (0/1) of
the input image at each sampling cycle (T). Fig. 3 exemplarily
shows the results of first, second, third, and fourth samplings.
Then the input spikes are applied to the word lines (WLs) of
the NOR flash memory and the VMM operation is executed.

Fig. 3. Multiple samplings (N = t/T) within the duration (0 ∼ t)
guarantees the integrity of the image acquisition.

Each NOR flash cell multiplies the stored weight and the
input spike. The accumulation is achieved by the bitline (BL)
according to the Kirchhoff’s current law. Therefore, the accu-
mulated drain currents of different NOR flash cells in the
same BL denote the operation results. Next, the neuron circuit
integrates the current from the NOR flash memory. When the
integrated voltage (Vin) exceeds the preset threshold voltage
(VTH), the neuron would generate a high-voltage level (“fire”)
and trigger the spike generation circuit to produce a spike to
the subsequent layer. Then the neuron is reset to the initial
state. If Vin is lower than VTH, the neuron cannot be triggered
and the voltage stored by the neuron is maintained at Vin until
the next sampling (t +T , where T denotes the time step of the
sampling). The working principle of the neuron is expressed
as

Vin(t + T ) =
{

0, forVin ≥ VTH

Vin(t) + Vin(t ∼ t + T ), forVin < VTH.
(2)

In the SCNN, the output of each layer is binary and in
the form of spikes (0/1). Therefore, the AD/DA conversion
in the NOR flash memory-based CNN (Fig. 1) is eliminated
and replaced by the neuron integration. Note that the rectified
linear unit (ReLU: max (0, x)) is adopted as the activation
function in this article, mainly for the reason that the output
of ReLU in the CNN is equivalent to the number of spikes
produced by the neuron in the SCNN. It enables the neuron
to perform the function of ReLU and simplifies the hard-
ware implementation. In order to guarantee the integrity of
the image acquisition and enhance the performance of the
network, multiple samplings (N = t/T ) are essential and
the sampling–operation–integrate procedure would be repeated
within the duration (0 ∼ t). As shown in Fig. 3, 50 samplings
of the input image are combined and normalized. The dif-
ferential map is defined as the difference between the input
image and the combination of 50 samplings. The near-zero
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Fig. 4. (a) Schematic of the floating-gate transistor. (b) Measured
transfer characteristics and the calibrated SPICE model of different
states. (c) Measured drain current distribution of multilevel (3-bit) states.
(d) Extracted distribution from the measured data in (c).

differential map proves the validity of the random sampling
method. N-bit shift registers (spike counters) [26] in the output
layer count the number of spikes of each output neuron. The
maximum output is regarded as the recognition result of the
NOR flash memory-based SCNN.

III. HARDWARE IMPLEMENTATION

A. NFCA
Fig. 4(a) shows the schematic of the FG transistor, and the

threshold voltage (Vth) of the NOR flash memory cell can be
tuned by tunneling erase and hot-electron injection write [14].
It is possible to write and store multilevel values in the FG
by controlling the number of the trapped electrons [27]–[29].
In this article, the value of the weight stored by the NOR flash
memory cell is defined as the ratio of the drain current (Id)
to the reference current (Iref = 1 μA) at Vgs = 6 V and
Vds = 0.8 V. Different from the definition of weight as
reported in [30] and [31], in which the weight of a memory
transistor operated as a synaptic transistor is related to the
subthreshold operation of the device, the FG transistors in this
article work in the linear or saturation region. The experiments
are performed to verify the multilevel storage characteristic
within a fully processed 128-Mb NOR flash memory which
is fabricated in the 65-nm technology node [32]. Although
the mainstream incremental step pulse programming (ISPP)
algorithm [33] enables place cell Vth within a certain range,
there is a high probability of over programing when the inter-
val between adjacent states is small (e.g., 1 μA). In this case,
the over-programed cells should be erased and reprogrammed.
However, the structure of NOR flash memory determines that
the cells of the same block would be erased at the same time.
To achieve efficient and precise programming of multibit NOR

flash, the fixed pulse programming method with lower Vg is
adopted in this article. During the programming, the source is
connected to the ground, while the control gate (CG) and the
drain are applied with 9.1 V (1 μs) and 3.1 V (1 μs) voltage
pulses, respectively. The program-and-verify algorithm [34] is
adopted. Fig. 4(b) shows the measured transfer characteristics
of different states. The measured data demonstrate that the
NOR flash cell can store multilevel values (3-bit) through
multiple erase and write operations, which is fit well with the

Fig. 5. Schematic of the weight mapping principle of the NFCA for
(a) fully connected and (b) convolution operations.

calibrated BSIM 3v3 model [35] in SPICE. The measured Id

distribution of 3-bit states (100 cells) is shown in Fig. 4(c).
Despite device-to-device variations, the tight Id distribution
of different states can also be achieved experimentally. The
mean (μ) and the standard deviation (σ) of the measured data
are extracted and the extracted distribution from the measured
data [Fig. 4(d)] is applied to the simulation.

NFCAs with multilevel storage characteristics are adopted
to carry out the VMM including the convolution and the
fully connected operations. The weight mapping principle is
shown in Fig. 5. The weight matrix splits into two matrices
which represent positive values (mapped to odd bit lines)
and negative values (mapped to even bit lines), respectively.
In other words, the differential pairs are adopted to store the
weights. If we assume that G+ and G− denote the conductance
of the two flash cells, the value w stored by the pair can
be described as w = k ∗ (G+–G−), where k denotes the
coefficient of weight mapping from the algorithm to the NOR

flash memory. When the spikes (0/Vgs) that represent the input
vector are applied to WLs, the differences of currents between
adjacent odd and even BLs denote the operation result. The
key to achieving different operations is the programming
region (black dotted box in Fig. 5). Specifically, the weight
matrix (M × N) is directly mapped to the NFCA with the size
of M × N× 2 for the fully connected operation [Fig. 5(a)].
However, since the kernel matrix F with size of s is convoluted
with the submatrix (s × s) of the input matrix X (m ×n), only
s × s NOR flash memory cells of every two BLs are mapped
according to the mapping rule illustrated in [15]. The parallel
convolution is achieved by setting up redundant NOR flash
memory cells with the redundancy rate of (m×n – s×s)/m×n.

B. Neuron
The schematic of the neuron is shown in Fig. 6. The analog

part of the neuron is implemented by the integration circuit,
which integrates the result of the VMM (Vvmm) from the
NFCA. The output of this accumulated integral Vin at time t2
is closely related to Vin (t1) (T = t2– t1), expressed as

Vin(t2) = −1/RC ·
∫ t2

t1

Vvmmdt + Vin(t1). (3)
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Fig. 6. Schematic of the neuron circuit.

Fig. 7. Simulation results of the neuron circuit. When Vin exceeds VTH,
the neuron fires and then is reset after 2.5 ns.

The digital part of the neuron is made of a dynamic latch
comparator and a D flip-flop. Whenever Vin exceeds the fixed
threshold (VTH), the output of the comparator would be set to
a high-voltage level and the positive edge triggers the flip-flop
to produce a spike. At the same time, the neuron is reset to the
initial state by the feedback signal from the comparator. All
the neurons are reset before processing a newer input image.

The speed of the integration circuit is determined by the
time constant τ (τ = RC). A large τ is usually required to
coordinate with the frequency response of other components.
Considering that large capacitors are very expensive in terms
of area [36], R and C are set as 250 k� and 1 pF, respectively.
The delay of the dynamic latch comparator is 2.5 ns in our
design. The duration of the output spike of neurons is 10 ns.
The sampling frequency is set as 50 MHz (T = 20 ns, duty
cycle: 50%) so that there is enough time for the computing
in the NFCA and the postprocessing in the neuron. The
simulation results of the neuron circuit are shown in Fig. 7.
When Vin exceeds VTH, the neuron is reset after the comparator
outputs the result (2.5 ns). However, if Vin is lower than VTH,
it remains an issue that the voltage stored by the neuron cannot
be maintained owing to the discharge of the capacitor. The
details of the problem and the solutions will be shown in
Section IV.

IV. DESIGN EXPLORATION

The network used in the evaluation is LeNet-5 for the Mixed
National Institute of Standards and Technology (MNIST)
recognition [37], as shown in Table I.

TABLE I
HARDWARE IMPLEMENTATION OF LENET-5 (SCNN)

Fig. 8. Recognition accuracy of the five-layer NFCA-based SCNN with
different quantization levels. The sampling frequency and the duration
are set as 50 MHz and 1 μs, respectively.

A. Weight Quantization

On the one hand, limited by the resolution of different
storage states coming from the program algorithm [34] and
the physical limit of the electron number in the FG [38], each
NOR flash cell can only store finite values (0 ∼ N). On the
other hand, low precision weights are sufficient for inference
applications. For example, 4b-log quantized AlexNet shows
only marginal accuracy degradation compared with 32-bit
FP [39]. Therefore, the trained weights of LeNet-5 (32-bit FP)
are quantized and mapped into the NFCAs. Here, the impact
of the weight quantization precision on the accuracy of the
network is evaluated at the algorithm level. Simulation results
in Fig. 8 show that the recognition accuracy of the network
with 3-bit linear-quantized weights is comparable with the
FP-32 network (1.15% accuracy loss at 1 μs). To reduce
the hardware cost and the energy consumption, the weight
quantization precision is set as 3-bit in this article because
the multilevel storage characteristic of the NOR flash memory
fulfills the requirement of the SCNN exactly.

B. Neuron Discharge and Solutions

As illustrated in Section II, if Vin is lower than VTH, Vin at
t1 is maintained until t2 (T = t2 – t1) theoretically. Actually,
Vin of the proposed neuron circuit would change because of
the discharge of the capacitor, expressed as

Vin(t2) = Vin(t1) · e−T/RC. (4)

The impact of the discharge problem on the neuron is
shown in Fig. 7. When a pulse with an amplitude of 0.9 V
(duty cycle: 50%) is continuously applied to the input
of the neuron (0–80 ns, red line), Vin would exceed VTH
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Fig. 9. Solutions for the discharge problem of the neuron circuit.
(a) Increasing RC. (b) Decreasing VTH. The red baseline denotes the
accuracy of the NFCA-based CNN.

(Vset = 0.5 V) at t = 30 ns/70 ns and trigger the flip-flop
to generate a spike after the comparator delay (2.5 ns).
In that case, the function of the neuron is not affected by
the discharge of the capacitor. However, if the time interval
between adjacent voltage pulses is 40 ns (blue line), the spike
cannot be generated at t = 70 ns. The discharge problem is
destructive for the NFCA-based SCNN, as shown in Fig. 9.

From (4) and Fig. 9(a), we find that increasing RC can
weaken the discharge of the capacitor and increase the
accuracy of the network. However, the number of spikes
generated in the inference is increasing gradually, leading to
additional energy consumption. Moreover, larger RC means
longer integration time and increasing area overhead induced
by the capacitance. Hence, there is a limit to the increase
of RC. Another solution is to compensate for the discharge
by decreasing the threshold (VTH). As shown in Fig. 9(b),
the approach performs well without introducing additional
area consumption and time delay. As VTH shrinks, the number
of spikes together with the energy consumption required for
the image recognition task increases. The tradeoff between
the accuracy and the energy is needed in the wide range
(0.3 Vset ∼ 0.6 Vset). By decreasing VTH, the NFCA-based
SCNN achieves 97.94% recognition accuracy for the MNIST
test set, which is comparable with the accuracy of the
NFCA-based CNN.

V. PERFORMANCE EVALUATION

A. Area and Energy

LeNet-5 for the MNIST recognition is served to evaluate
the performance of the NFCA-based SCNN and the mixed-
signal NFCA-based CNN. The computing units and peripheral
circuits are considered. For a reasonable comparison, we adopt
the 4-bit ADC in the CNN to achieve the AD conversion
between neighboring layers. The 4-bit ADC adopts the design
of [40] with 2-mW power consumption, 105 × 110 μm2 active
area, 1.2 GS/s sampling rate at the 65-nm technology node.
The sense amplifier (SA) in [19] is also used in the evaluation,
in which the power and the area are 0.25 mW and 244 T
(T = W/L×F2, F: technology node), respectively. The details
of other components are depicted in Section III. Specifically,

Fig. 10. Area and energy distribution of the NFCA-based CNN/SCNN.

Fig. 11. Recognition accuracy as a function of Gaussian noise
intensity (σ) with noise occurrence probability of 10%, 30%, and 50%.

the MIM capacitance density is about 10 to 30 fF/μm2 [27].
In the worst case, the area of the 1 pF capacitor is 100 μm2.

The energy and area distribution of the NFCA-based
CNN/SCNN for the MNIST recognition is shown in Fig. 10.
It is found that most of the energy and area are dissipated on
ADCs in the CNN. As the output of each layer in the SCNN
is in the form of spikes (binary: 0/1), the number of NFCAs
is determined by the number of kernels of each layer, and the
size of the NFCA is reduced by four times compared with
the CNN. More importantly, the significant overhead induced
by ADCs in the CNN is reduced greatly, although multiple
samplings increase the energy consumption in terms of the
NFCA in the SCNN.

B. Noise Tolerance
The image noise and the random telegraph noise (RTN)

are considered in the evaluation. We adopt the Gaussian
distributed noise to analyze the impact of the image noise
on the proposed hardware system, in which the noise inten-
sity and density are defined as the standard deviation (σ)
of the Gaussian noise and the noise occurrence probability,
respectively. In the simulation, the Gaussian distributed noise
(0, σ) is generated randomly and added to the original image.
According to the simulation results in Fig. 11, the NFCA-
based SCNN shows great robustness to the image noise of 30%
noise density (σ = 0.3) with less than 2% accuracy loss. Even
if the noise density (σ = 0.3) reaches 50%, the recognition
accuracy is still above 93%, while the 15% accuracy decrease
is observed in the NFCA-based CNN.

As the dimension of the flash memory device continu-
ously shrinks, the increasing Vth fluctuation (�Vth) induced
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Fig. 12. Accuracy of the NFCA-based CNN/SCNN at different
technology nodes.

by RTN [41] is becoming one of the major issues to be
considered in the NFCA-based SCNN which requires severe
Vth control. The origin of RTN is attributed to the electron
trapping/detrapping near the substrate (Si)/oxide (SiO2) inter-
face [42]. The change of Vth of a cell due to RTN depends
on the statistics of the amplitude of RTN fluctuations and the
probability that a cell is affected by the change of Vth within
a certain stretch of time [43]. In this article, we focus on
the study of the impact of the statistics behavior of RTN on
the performance of the NFCA-based CNN and SCNN. The
statistical cumulative distribution of |�Vth| in [44] shows a
clear exponential behavior, and its slope (λ, unit: mV/dec) in
the semilogarithmic scale is the critical parameter describing
RTN in the flash memory, which is expressed as

λ = d|�Vth|
d lg(p)

= 1

v
(5)

p = 1 − F(|�Vth|) = 10−|�Vth|·v (6)

where F is the cumulative distribution of |�Vth|. The depen-
dence of λ on the technology ranging from 130 to 22 nm
is shown in Fig. 12. The numerical value of λ at the 32 nm
technology is calculated according to the data in [45]. The
values of λ at other technology nodes are derived according
to the model in [44]. It is found that λ (|�Vth|) increases
with the technology scaling. The Vth distribution of different
technology nodes is extracted according to λ and added to the
simulation of the network. Fig. 12 shows the MNIST recogni-
tion accuracy of the CNN/SCNN at different technology. The
tolerance of RTN is effectively enhanced in the SCNN. The
accuracy loss is less than 1% at the 32 nm technology.

In summary, simulation results indicate that the
NFCA-based SCNN shows greater tolerance to the random
noise, which is attributed to the design principle described in
Section II.

1) For the NFCA-based CNN, the image noise or RTN
directly affects the output of each layer. The computing
errors are accumulated layer by layer and then fed into
the linear classifier, leading to the misjudgment.

2) In the NFCA-based SCNN, the output of each layer is
determined by the relative value of the integrated voltage
Vo and VTH, which is in the form of spikes (0/1). As long
as the sign of (Vo −VTH) is not changed, tiny computing
errors have little impact on the output result, thus the
accuracy of the SCNN can be maintained to the utmost.

TABLE II
COMPARISON BETWEEN NFCA-BASED CNN AND SCNN

C. Summary
The comparison between the NFCA-based CNN and SCNN

is summarized in Table II. Regarding the MNIST recognition,
SCNN achieves 42.1 times area and 2.3 times energy savings
at the cost of negligible accuracy loss (0.45%). The synchro-
nous clock is adopted in the design of SCNN. Therefore,
the delay of SCNN is determined by sampling frequency (T1),
number of samplings (N1) for each input image, and network
scale (N): Delay1 = (N + N1) ∗ T1. Similarly, the delay of
CNN is expressed as Delay2 = N ∗ (1 + NADC) ∗ T2, where
T2 is the clock cycle of CNN and NADC denotes the number
of clock cycles required by ADCs for AD conversion. Note
that the speed of SCNN is worse compared with CNN, which
is partly induced by multiple samplings. More importantly,
the estimated delay of CNN assumes that summed currents
along different BLs are processed by ADCs in parallel.
However, limited by the area and power consumption of
ADC [17], it is impossible to arrange thousands of ADCs on
the single chip. Therefore, the time-division multiplexing of
ADCs in CNN is essential, which would lead to an increase
in delay. On the other hand, according to the simulation
results in Fig. 8 (Linear-3: t = 0.6 μs, 97.08% accuracy;
t = 1 μs, 97.16% accuracy), the accuracy becomes stable
(almost unchanged) when t > 0.6 μs. Therefore, the evalua-
tion of the time delay of SCNN (T = 20 ns, 50 samplings,
layers, delay: 1.1 μs) is conservative. By reducing the number
of samplings on the premise of ensuring the recognition accu-
racy, and redesigning the neuron circuit using more advanced
CMOS process to reduce RC constant and integration delay,
the speed of SCNN can be further improved. Furthermore, for
large-scale neural networks, the 4-bit ADC for the evaluation
of the NFCA-based CNN is far from enough for complex cog-
nitive benchmarks such as CIFAR-10 or ImageNet. ADCs with
higher precision mean higher NADC, leading to the increase of
Delay2. In this case, the speed of NFCA-based SCNN may
even be an advantage for applications with large-scale neural
networks.

VI. CONCLUSION

In this article, the SCNN with high energy/area efficiency,
great tolerance for image noise, and RTN is proposed based on
the NFCA for the first time. The overhead of peripheral circuits
is effectively minimized and the AD/DA converters needed in
the typical mixed-signal NFCA-based CNN are eliminated.
Regarding the MNIST recognition, the proposed hardware
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implementation achieves 97% area and 56% energy savings
compared with the NFCA-based CNN. More importantly,
the great scalability promotes the applications of the NFCA-
based SCNN in large-scale neural networks, which is promis-
ing for complex cognitive tasks in artificial intelligence (AI).
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