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Abstract— The Cox–Strack method is commonly applied
to assess the contact resistivity between a metal and
a semiconductor since the 1960s, while the underlying
assumptions have not yet been rigorously assessed. In
this article, a combination of finite-element modeling and
mathematical analysis is used to investigate the accuracy
of the conventional Cox–Strack equation for generic metal–
semiconductor junctions. A systematic error in the spread-
ing resistance equation is quantified, and alternative, more
accurate equations are presented. Furthermore, it is shown
that commonly used experimental configurations can lead
to highly overestimated contact resistivities. Guidelines are
formulated for accurate extraction of the contact resistivity
from the Cox–Strack measurements.

Index Terms— Accuracy, contact resistivity, metal–
semiconductor junctions, photovoltaics, resistance, test
structures.

I. INTRODUCTION

SEMICONDUCTOR devices rely on high-quality contacts
between external, metallic leads and the semiconductor.

As the device performance may be limited by these contacts,
the resistance occurring at the interface between metal and
semiconductor must be low and well-controlled in a fabrica-
tion process. This interface resistivity (contact resistivity) is,
however, difficult to quantify precisely, as any measurement
suffers from series resistance and current spreading effects [1].
This is particularly problematic when the contact resistivity is
very low, as we find in contemporary silicon-integrated circuit
technology (using advanced silicides) [2]. Accuracy issues are
also reported in contemporary photovoltaic cells (see [3]).
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Two commonly used methods to quantify the contact resis-
tivity between metal and semiconductor are the transfer length
method (TLM, sometimes called transmission line method) [4]
and the Cox–Strack method [5]. The latter was proposed
in 1967 and is often used for compound semiconductor tech-
nologies [6]–[8] and photovoltaic cells [9]–[12].

Cox and Strack already reported an inaccuracy in their
spreading resistance equation amounting to 8% at most,
and later works indicated even larger inaccuracies with that
equation [13], [14]. It is, therefore, important to account
for this.

In this article, we show that the Cox–Strack equation is
insufficiently exact to rely on without due consideration.
Finite-element simulations are used to show where the prob-
lems occur and what causes them. The spreading resistance
equations as presented in the literature are compared to such
simulations (see Section IV), and a new function is proposed
for the spreading resistance. Moreover, the assumption that
the current path can be described as three resistors in series
is investigated in this article (see Section V). In Section VI,
we discuss the quantitative impact of the treated inaccuracies
on the extracted contact resistivity. Using those findings,
we formulate general guidelines to obtain accurate contact
resistivity values with the Cox–Strack method.

II. METHODS

The finite-element simulations in this article are conducted
using the ATLAS-Silvaco software [15]. Axial symmetry is
chosen combined with cylindrical coordinates. At the outer
(noncontact) edges of the device, the homogeneous (reflecting)
Neumann boundary conditions are imposed. The width of the
simulated structure is always chosen much larger than the
substrate thickness. Metal contacts are chosen neutral [16] and
ohmic; the substrate doping is uniform. Dimensions, doping
levels, and contact resistivities are then varied. We use para-
meters typical for crystalline silicon photovoltaic cells. The
drift-diffusion equations are solved using Klaassen’s mobility
model [17]–[19]. The resulting current–voltage relations are
checked for ohmic behavior.

III. COX–STRACK METHOD

Cox and Strack proposed to use a series of circular metal
contacts on the semiconductor, with a range of diameters
(see Fig. 1). The current is then measured at a given applied
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Fig. 1. Sketch of the measurement approach proposed by Cox and
Strack [5]. Current flows from a probe needle (orange) via a circular ohmic
contact with diameter d and through a semiconductor with thickness t into
a bottom contact connecting the entire semiconductor slab. The conical
shaped region (green) indicates the current spreading from a probed
contact. The resistance of this stack is measured for several top contact
diameters. Contact resistivity is then extracted using (4).

voltage from the circular contact through the substrate to its
grounded metallized backside. They assumed that the total
resistance measured RT is the sum of three contributions:
contact resistance Rc (between metal and semiconductor);
spreading resistance Rs (in the semiconductor); and residual
resistance R0 (“due to the substrate or the backside contact”)

RT = Rs + Rc + R0. (1)

In this article, we will refer to this assumption as the “three-
resistor approximation.” This series connection of resistors
uses the implicit assumption that no potential variation may
occur laterally at the nodes between the resistors. In other
words, the potential in the semiconductor just under the metal
contact and the potential just above the backside metallization
should be independent of the lateral position.

Cox and Strack continued to describe the spreading resis-
tance in the substrate with the following expression:

Rs = ρw

2d
B (2)

where ρw is the substrate resistivity, d is the diameter of the
top contact, and B is a geometrical factor. Through electrolytic
tank measurements, discussed in more detail in Section IV,
Cox and Strack found that B depends on the ratio between
the substrate thickness t and the top contact diameter d
approximately according to

B ≈ 2

π
arctan

(
4t

d

)
(3)

where t is the substrate thickness.1

Furthermore, Rc in (1) is determined by the contact resis-
tivity (or specific contact resistance) ρc divided by the contact
area. An implicit assumption here is that the current flow
through the contact is uniform. Finally, the residual resistance
R0 is presumed geometry and resistivity independent, leading
to the Cox–Strack equation

RT ≈ ρw

πd
arctan

(
4t

d

)
+ ρc

1
4πd2

+ R0. (4)

1To be exact, Cox and Strack made use of low-ohmic substrates with a thin
high-ohmic epitaxially grown semiconducting layer of 0.9 mil (23 μm). The
thickness t is that of the epitaxial layer. Later studies apply the Cox–Strack
method on semiconductor material with uniform resistivity.

The Cox–Strack contact resistivity determination procedure
consists of measuring RT on a range of top contacts with
different diameters d and determining ρc and ρw from the
RT(d) dependence.

IV. SPREADING RESISTANCE TERM

To estimate the spreading resistance, Cox and Strack con-
ducted electrolytic tank measurements. These results match
reasonably well with the arctangent function (3) with a maxi-
mum difference of 8% around d = 3t . Gelmont and Shur [20]
confirm that (3) leads to a considerable (but unquantified)
error for intermediate d/t ratios compared with a rigorous
numerical calculation. Denhoff [13] presents finite-element
calculations showing that the arctangent function is 13% off
at d = 2t . Kristiansson et al. [14] report a maximum error
of 16.6% compared with an exact solution published by Leong
et al. [21].

The arctangent approximation is less accurate than Cox
and Strack originally established, the root cause being the
inaccuracy of the electrolytic tank measurements. It is difficult
to state with certainty what caused this inaccuracy. Refer-
ence [5] does not provide any detail on these experiments, and
other publications by Cox and Strack or the acknowledged
Dr. J. R. Biard do not provide a clue. It is, however, likely
that a planar salt bath was built according to the original
concept [22], [23]. Mathematical corrections may have been
made to translate the planar model to an axially symmetric
configuration (as reported, for example, in [24]). Although
accuracies better than 1% have been achieved with electrolytic
bath experiments, a difficult aspect is the arrangement of side
electrodes to impose the boundary conditions, especially when
the bath is small [25].

In Fig. 2, we reproduce the original data by Cox and
Strack [26] and compare these to the polynomial model of
Denhoff and our own finite-element simulations. Details of
the polynomial model and how we used it can be found in
Appendix A.

Fig. 2 confirms that Denhoff’s model matches well with
finite-element modeling results and we assume these are accu-
rate. Fig. 2 further confirms that the arctangent approximation
is inaccurate over a wide range. It exhibits a maximum
error of 17% at d = 3t . The full range practically used in
experimentation is affected by this systematic error.

Following a geometrical approximation commonly applied
for vertical power transistors [28]–[30], we derived a new
physics-based equation that matches Denhoff’s polynomial
model to within 1%. It assumes that the current flows in a
cone of resistive material capped by the top contact. Compared
with Denhoff’s polynomials, it has the advantage that a single
equation covers the entire range of dimensions; furthermore,
it contains only one fit parameter. As documented in Appen-
dix B, we find

B = 4

π

[
d

2t
+ 4

π
+

(
1 − 4

π

)
arctan

(
2d

3t

)]−1

. (5)

Fig. 2 indicates that (5) tightly follows Denhoff’s polyno-
mial equations. To visualize this more clearly, Fig. 3 shows the
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Fig. 2. Functional dependence of the geometrical parameter B on the
ratio d/t according to the equations provided by Cox and Strack [5],
Denhoff [13], finite-element simulations carried out with fixed t and
varying d [27]; and (5). The electrolytic tank measurements as reported
by Cox and Strack are also included [26].

Fig. 3. Relative error on B of (3) and (5) compared with Denhoff’s
polynomials (see Appendixes A and B). The small kinks appearing
around d/t = 0.8 and d/t = 4 indicate the switch to a different polynomial
in Denhoff’s formulation.

relative discrepancy between the approximating (3) and (5) on
one hand and Denhoff’s polynomials on the other hand.

Fig. 2 further allows us to derive a rule of thumb for the
choice of contact diameters for the Cox–Strack method. To
separate ρw from ρc, Rs should exhibit a functional depen-
dence on d different from inverse quadratic because Rc has
such a dependence [see (4)]. The parameter B should then not
be inversely proportional to d/t . This occurs when d is smaller
than 2t . Test structures must, therefore, include diameters
d ≈ 2t or smaller to accurately separate ρc.

V. THREE-RESISTOR EQUIVALENT CIRCUIT

At first sight, there seems little question about the validity
of the last two terms in the Cox–Strack equation [see (4)].

Fig. 4. Potential directly under the contact as a function of the lateral
position x, where x = 0 indicates the center of the contact. The potential
is related to the center potential V(x = 0) and normalized to the externally
applied test voltage Vbias. The contact diameter d = 80 μm, wafer
resistivity ρw = 3 Ωcm, and wafer thickness t = 165 μm. The top contact
was grounded, while a positive bias voltage was applied to the bottom
electrode.

The total contact resistance Rc scales with the reciprocal
area; a series resistance R0 may appear in the measurement
setup. However, an underlying assumption, as mentioned in
Section III, is that we can describe the configuration as a
lumped element circuit of three resistors in series. One case
in which this assumption loses validity is when the top-
metal resistivity cannot be neglected [31]. A more general
approximation of a two-dimensional resistive system would be
a distributed network of resistors, just as finite-element models
assume.

Fig. 4 shows the potential directly under the contact for
several contact resistivity values as computed by finite-element
simulation. The potential shows a dependence on the distance
to the contact center. The assumption that Rc and Rs can
be modeled as two resistors in series implies that one fixed
potential can be identified with a single point in between these
resistors. Fig. 4 shows that this is not the case. At the highest
and lowest ρc, the effect is very small; it presents itself most
clearly in the intermediate case of ρc = 10−3 �cm2. In effect,
the existence of a resistivity-dependent lateral potential gradi-
ent makes Rc and Rs mutually dependent when we maintain
this three-element model.

Along with the lateral voltage drop, a nonuniform current
density emerges at the contact interface. This nonuniformity
is the largest at low ρc. While the original expressions of
Cox and Strack imply a constant lateral voltage, a uniform
current density through the contact, and a large nonuniformity
of current density in the substrate, such conditions only occur
when ρc = 0. In all other situations, an interplay exists between
the current spreading in the contact and in the substrate. It is
worth noting that also in other prior works, a uniform current
density was assumed [31].

In the two limiting cases, ρc = 0 and ρw = 0,
the region directly under the contact is short-circuited to
an equipotential plane (the top contact or the bottom con-
tact, respectively). In realistic situations, the lateral potential
drop is appreciable, and the current through the contact



1760 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 67, NO. 4, APRIL 2020

Fig. 5. Values of RT −Rs as determined using finite-element simulations
(details: see main text). The slope of the curve, which should equal
the input contact resistivity of 2 mΩcm� , is systematically too high for
wafer resistivities above 0.1 Ωcm. The series resistance R0 appears
dependent on the substrate resistivity from this analysis.

is nonuniform. Bearing notice of the different dimensional-
ity of ρc and ρw, the ratio between ρc and ρwt determines
the ratio Rc:Rs, the significance of the lateral variation of
potential and current density at the contact, and their effect
on the contact resistivity as quantified by the Cox–Strack
method.

Simulation of an elementary construction, as shown in
Fig. 1, illustrates how the three-resistor approximation can
lead to significant errors. The simulated configuration has an
n-type monocrystalline silicon substrate with t = 200 μm and
5 �cm resistivity. We first determine the spreading resistance
Rs by simulation for a range of diameters by setting ρc to an
insignificantly low value for the front contact and the back con-
tact. Consequently, RT = Rs. Then, the total resistance RT is
determined with a realistic top contact resistivity of 2 m�cm2.
The chosen values are representative of contemporary silicon
solar cells.

The Cox–Strack equation (4) can be written as

RT − Rs = ρc
1
4πd2

+ R0 = ρc

A
+ R0 (6)

in which A = 1
4πd2 the top contact area. A linear fit of

RT − Rs versus 1/A yields estimates for ρc and R0.
Fig. 5 shows the outcome of this exercise. The fits have a

good R2 > 0.999 but deliver erroneous values. The extracted
contact resistivity strongly depends on the substrate doping
level and is up to 60% too high. The fit error becomes
negligible around 0.1-�cm substrate resistivity. At this point,
ρc/ρwt = 1 and the errors emerge when ρc/ρwt < 1. Indeed,
it was earlier observed that lower substrate resistivities yield
more accurate contact resistivity values with the Cox–Strack
method [6], [31].

A further observation from the same simulation exercise
is that the obtained R0 is nonzero, whereas no back contact
resistance was assumed. Additional simulations indicate that
R0 as determined in this manner depends on ρw, ρc, and t [27].
Again, these are consequences of the erroneous three-resistor
approximation of (6).

TABLE I
PARAMETER VALUES FOR THE FINITE-ELEMENT SIMULATIONS USED

TO QUANTIFY THE PARAMETER EXTRACTION ERRORS WITH THE

COX–STRACK METHOD

VI. IMPACT ON RESISTIVITY DETERMINATION

An accurate determination of contact resistivity requires
good control over measurement circumstances. In general,
the following aspects should be taken into account.

1) Measurement conditions should be chosen such that
voltage and current are accurately determined. High
injection effects and current-induced heating of the test
structure should be negligible.

2) The diameters of the top contacts should be known
to sufficient accuracy. Textured wafers (as common for
solar cells) may lead to uncertainty in both the contact
area and the wafer thickness.

3) The top and bottom metal contacts to a semiconducting
wafer should be ohmic. Wang et al. [32] recently treated
the effects of a Schottky barrier on the Cox–Strack
method.

However, even if these effects are under control, the Cox–
Strack method may yield erroneous ρc and ρw values because
of the two inherent weaknesses in the method described in
Sections IV and V. The used model can lead to inaccurate
estimates of Rc and Rs for each probed diameter d . The effect
of these errors on the extracted ρc and ρw is further quantified
below.

A wide range of finite-element simulations was conducted,
in which the parameters d , ρc, ρw, and t were varied, as listed
in Table I. For each set of (ρc, ρw, t), the RT(d) data
were used to obtain ρc

fit and ρw
fit in a nonlinear least-

squares fit procedure. The fit function was the three-resistor
approximation using either the arctangent approximation (3),
Denhoff’s polynomials, or (5) to estimate the B-parameter in
the spreading resistance.

These fits gave good agreement for all RT(d) data. Using the
Denhoff polynomials, the difference between fit and simulated
RT data points was typically < 1% with incidental maximum
variations of 5%. Using the Cox–Strack equations, incidental
deviations up to 8% were found.

The fit values ρc
fit and ρw

fit can then be directly compared
with the input values ρc

input and ρw
input in the simulation.

We define the (relative) error as

Error in fitted ρc = �ρc

ρc
= ρfit

c − ρ
input
c

ρ
input
c

; (7)

and likewise for ρw.
Figs. 6 and 7 show the results. For clarity, data are only

shown for t = 16.5 μm, but essentially identical results were
obtained for t = 165 μm. Data are plotted as a function of
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Fig. 6. Systematic error on ρc extracted using the Cox–Strack method
when using (3), Denhoff’s polynomials, or (5) to calculate Rs.

Fig. 7. Systematic error on ρw extracted using the Cox–Strack method
when using (3), Denhoff’s polynomials, or (5) to calculate Rs.

ρc/ρwt as motivated in Section V. From the lack of scatter in
the data set, it is clear that the error introduced by the model
imperfections is solely determined by the ρc/ρwt ratio. We find
that it is necessary to fit ρw (even if this is known) in order
to obtain an accurate value for ρc. A comparison of Figs. 5
and 6 corroborates this.

Fitting the ρw value gives superior agreement with the simu-
lation data because the expressions for the spreading resistance
are only strictly valid when ρc is zero. When ρc increases,
the current density distribution at the contact becomes more
and more uniform, leading to a larger contribution of the
spreading resistance, i.e., an apparently larger ρw.

Regardless of the expression used for the spreading resis-
tance, the Cox–Strack method considerably overestimates ρc

at low contact resistivity, which is, in general, the area of
interest. The error in ρw, however, is quite acceptable across
the entire range. In order to keep the ρc accuracy better than
10%, the ρc/ρwt ratio should be above 0.12 if (3) is used. This
requirement can be relaxed to ρc/ρwt > 0.03 when using the
Denhoff polynomials or (5).

Extracted values could also be corrected manually on the
basis of the trend shown in Figs. 6 and 7. The systematic error

on ρc roughly amounts to

�ρc

ρc
≈ 1.2%

ρwt

ρc
(8)

when the conventional Cox–Strack equation is used.
Fig. 6 shows that the applicability of the Cox–Strack

method is questionable at lower ratios ρc/ρwt . Given the
accuracy of the finite-element calculations, there is no appre-
ciable difference between the accuracy of (5) and Denhoff’s
polynomials.

As a final note, the experimental measurement accuracy
was not considered in Figs. 6 and 7; they only quantify the
fundamental systematic error of the Cox–Strack extraction
approach. Any measurement inaccuracy will show a similar
trend with ρc/ρwt because the inaccuracy goes mostly to Rs

or Rc, whichever is the smallest.

VII. CONCLUSION

In this article, the accuracy of the Cox–Strack method [5]
is analyzed and quantified. It is found that the formalism
accompanying it has two deficiencies.

The first source of inaccuracy is the spreading resistance
equation as proposed by Cox and Strack, which produces a
systematic error up to 17% as quantified in Fig. 3. Polynomial
approximations reach much better accuracies, as does the mod-
ified conical approximation proposed in this article [see (5)].
The analysis of the spreading resistance further yields the
design criterion that diameters d < 2t should be used to obtain
useful data for contact resistivity determination.

This article shows how lateral potential gradients may exist
directly under the contact and nonuniform current densities
occur in the contact. This renders the three-resistor equivalent
circuit incorrect, leading to errors in the extraction of contact
resistivity. It is argued that the three-resistor equivalent circuit
is safely applied when the fraction ρc/ρwt is not too low;
otherwise, the error in the extracted contact resistivity can be
very significant. In the latter case, data are the best compared
with finite-element simulations for a more precise contact
resistivity estimate.

As the errors reported in this article are systematic, an alter-
native approach is to determine the contact resistivity with
the inaccurate extraction method and manually correct for the
error using Fig. 6 or (8).

This article provides tangible guidelines for an accurate
determination of ρc using the Cox–Strack methodology that
can be applied in a wide range of semiconductor technolo-
gies, including photovoltaic cells, compound semiconductor
devices, and silicon integrated circuits.

APPENDIX A
DENHOFF’S POLYNOMIALS

Denhoff used mathematical approximations and polynomial
fits to finite-element simulation results in order to estab-
lish equations for B(d/t). Denhoff first defined the aspect
ratio h as

h = 2t

d
. (9)
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Fig. 8. Geometry of the model assuming the current spreads out linearly
with depth y with a tapering angle θ from a front contact with diameter d.

For h > 1, Denhoff then determined the spreading resistance
as a power series of h. Expressed in terms of B , this is

B =
[

1 + 0.441271
1

h
+ 0.194720

1

h2

− 0.009732
1

h3
− 0.046505

1

h4
+ 0.002110

1

h5

+ 0.052204
1

h6
− 0.011044

1

h7

]−1

. (10)

For small h, Denhoff fitted a fifth-order polynomial to finite-
element simulation results. The result for 0 < h < 2.6 is

B = 4[0.31338h − 0.25134h2 + 0.12512h3

−0.03436h4 + 0.003908h5]. (11)

For 0 < h < 0.5, a similar fit approach yields

B = 4[0.31844h − 0.28374h2 + 0.21145h3

−0.17193h4 + 0.10657h5]. (12)

In this article, we used (10) for h > 2.6, (11) for 0.5 < h <
2.6, and (12) for 0 < h < 0.5.

APPENDIX B
CONICAL APPROXIMATION

The spreading resistance in the substrate is commonly
approximated as a triangular conduction path in the area of
(vertical) power transistors [28]–[30]. For circular contacts,
one can analogously assume a conical shape for the current
conducting region under the contact.

Fig. 8 shows the configuration under study. If we assume
that the current spreads out under an angle θ , a wider path is
used for conduction as we get deeper into the wafer.

The resistance contribution of an infinitesimal slab with
thickness dy at depth y then amounts to

d Rs = ρw
1
4π(d + αy)2

dy (13)

where α = 2 tan(θ). Integration over y yields

Rs = 4

π

ρwt

d(d + αt)
. (14)

The equation represents a parallel connection of two resistors,
one cylindrical under the contact (Rcyl), and one describing
the edge (Redge):

Rcyl = ρwt
1
4πd2

; Redge = 4ρw

απd
. (15)

The expression for B in this conical approximation becomes

B = 8t

π(d + αt)
= 4

π

2t

d

(
αt

d
+ 1

)−1

. (16)

This equation accurately estimates B for 2t
d < 1 when we use

θ = 45◦ (so α = 2) after [30]. However, in the limit
d/t → 0, the function B should converge to 1, yielding
α = 8

π
. The underlying problem is that θ becomes larger

than 45◦ when d goes to zero. If we introduce a slight
d/t dependence in α, this problem is fixed. We propose the
following correction:

B = 4

π

[
d

2t
+ 4

π
+

(
1 − 4

π

)
arctan

(
2d

3t

)]−1

. (17)

This function meets the Denhoff polynomials with less
than 1% relative error over the full range of d/t . The average
relative difference amounts to only 0.4%. Its merit is that a
single function can be used for all d/t ratios. The factor 2/3
in the arctangent is the only fit parameter in this equation,
established through a minimization of the error between this
function and Denhoff’s polynomials.
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