
IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 66, NO. 11, NOVEMBER 2019 4805

Effects of Injection Current on the Modulation
Bandwidths of Quantum-Dot

Light-Emitting Diodes
Hua Xiao , Xiangtian Xiao, Dan Wu, Rui Wang, Member, IEEE, Kai Wang , Member, IEEE,

and Kin Seng Chiang , Senior Member, IEEE

Abstract— This article presents an investigation of the
modulation bandwidths of quantum-dot (QD) light-emitting
diodes (QLEDs). The QLEDs used in our study are red-
emissive CdSe/ZnS QLEDs, which have a structure of
indium tin oxide (ITO)/poly(3.4-ethylene-dioxythiophene)
polystyrene sulfonate (PEDOT:PSS)/TFB/QD/ZnO/Al and an
emitting area of 2 or 4 mm2. We find that at a small
injection current (below ∼10 mA), the effects of the
resistance–capacitance (RC) time constant and the carrier
lifetime on the bandwidths of the QLEDs are comparable,
while at a large injection current, the bandwidths are mainly
determined by the carrier lifetime. The response time of
the QDs is not a limiting factor. The bandwidths of the
QLEDs increase with the injectioncurrent and are eventually
limited by the damage threshold current of the devices.
At the same injection current, the QLED that has a smaller
emitting area provides a larger current density, and thus
exhibits a larger bandwidth. At an injection current of 28 mA,
the 2-mm2 QLED provides a bandwidth of 11.4 MHz and a
luminance value of 156 000 cd/m2, and the 4-mm2 QLED
provides a bandwidth of 8.2 MHz and a luminance value
of 97 000 cd/m2. Our investigation provides a guideline for
QLED-bandwidth optimization and useful information for
the further development of QLEDs for lighting, display, and
communication applications.

Index Terms— Light-emitting diodes (LEDs), quantum
dots, visible light communication (VLC).
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I. INTRODUCTION

V ISIBLE light communication (VLC) has attracted much
attention as a new wireless communication technology

for its many unique advantages, such as immunity to elec-
tromagnetic interference, license-free operation, high security,
and energy-saving [1], [2]. Light-emitting diodes (LEDs) are
considered as suitable light sources for VLC [3]–[5]. Organic
LEDs (OLEDs), which are widely used in mobile phone
and TV screens, have been proposed for VLC [6], but their
bandwidths are low (from several kilohertz to several hundred
kilohertz) [7]–[10], though the micro-OLEDs with a fast
response of ∼10 ns have been reported [11].

In recent years, quantum-dot (QD) LEDs (QLEDs) have
emerged as promising light sources for panel display
applications because of their many distinct characteristics,
such as tunable emission wavelength, high efficiency, wide
color gamut, and high monochromaticity [12], [13]. In compar-
ison to common organic luminescent materials, the colloidal
QDs show better performance on the response speed and
color purity. Depending on the principle of light emission,
the QLEDs can be divided into photoluminescence (PL)-based
QLEDs and electroluminescence (EL)-based QLEDs. In a
PL-based QLED, the QDs are excited optically by a conven-
tional semiconductor LED and the emission spectra of the QDs
are usually chosen to provide a balanced white light output.
It is possible to use a colloidal-QD-based white LED (WLED)
for VLC [14]. Using red CdSe/ZnS QDs, the bandwidth of the
QD-based WLED has been increased to 2.7 MHz, while the
bandwidth of a conventional phosphor-based WLED is only up
to 1.55 MHz [15]. In an EL-based QLED, the QDs serve as the
active medium of an LED and the light emission is achieved
by injecting the electric current into the LED. To maintain
balanced electron/hole injection and a high EL efficiency,
the structure of an EL-based QLED is designed to consist
of a hole injection layer (HIL), a hole transport layer (HTL),
an emission layer, and an electron transport layer (ETL), which
are usually formed with organic [16], inorganic [17], or hybrid
materials [18]. In comparison to the OLEDs, the EL-based
QLEDs are becoming more stable and accessible in recent
years [19]. The EL-based QLEDs can be designed to generate
narrow emission peaks over the entire visible light spectrum,
which is particularly desirable for display applications [20].

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-1630-1348
https://orcid.org/0000-0003-0443-6955
https://orcid.org/0000-0002-8227-7905


4806 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 66, NO. 11, NOVEMBER 2019

Fig. 1. (a) Schematic showing the structure of the CdSe/ZnS QLED and
(b) energy level diagram showing the transport of holes and electrons
across the device.

In addition to display applications, we believe that the
QLEDs could also find potential applications in VLC. In gen-
eral, the QDs respond faster than phosphors and, therefore,
the QLEDs could offer larger modulation bandwidths than
the phosphor-based WLEDs and some OLEDs. In this arti-
cle, we present our results on the study of the modula-
tion bandwidths of the EL-based QLEDs. The bandwidth
of a QLED may depend on the response time of the
QDs, the resistance–capacitance (RC) time constant of the
device, and the carrier lifetime in the device. To understand
the relative importance of these factors, we fabricate two
batches of CdSe/ZnS QLEDs with two different emitting areas
(2 and 4 mm2) and evaluate their bandwidths. For each sample,
we find that the bandwidth increases with the injection current.
At the same injection current, the 2-mm2 QLED shows a
larger bandwidth than the 4-mm2 QLED. At an injection
current of 28 mA, the 2-mm2 QLED provides a bandwidth
of 11.4 MHz and a luminance value of 156 000 cd/m2, and
the 4-mm2 QLED provides a bandwidth of 8.2 MHz and
a luminance value of 97 000 cd/m2. The highest external
quantum efficiency (EQE) of the QLED achieved is 9.2%. The
luminance characteristics of our QLEDs compare favorably
with those of the OLEDs [21]–[23]. To our knowledge, this
is the first report of the investigation of the modulation
bandwidths of the QLEDs.

II. DEVICE FABRICATION AND CHARACTERIZATION

A. Structure and Fabrication of QLEDs

Fig. 1(a) shows the structure of our QLEDs, which
consists of the following layers: indium tin oxide (ITO,
100 nm)/poly(3.4-ethylene-dioxythiophene) polystyrene sul-
fonate (PEDOT:PSS, 40 nm)/poly (9, 9-dioctylfluorene-co-N-
(4-(3-methylpropyl)) diphenylamine) (TFB, 29 nm)/CdSe/ZnS
QDs (18 nm)/zinc oxide (ZnO, 33 nm)/Al (100 nm). The
thicknesses of different layers were measured by a Bruker
Stylus Profiler. The ITO, PEDOT:PSS, TFB, QDs, ZnO, and
Al layers serve as the anode, the HIL, the HTL, the emitting
layer, the ETL, and the cathode, respectively. The emitting
area of the device is determined by the cross-sectional area
of the Al and ITO electrodes. This typical QLED structure
can achieve high stability and low threshold voltage [24]. The
transport of the holes and electrons through the structure is
shown in Fig. 1(b), where the values of the energy levels
are taken from [25, 26]. The use of the TFB can provide a
high hole mobility, and it has a lowest unoccupied molecular

Fig. 2. (a) Steps in the fabrication process of QLED and (b) photographs
of a 2- and 4-mm2 QLED under test.

orbital (LUMO) (−2.1 eV) that is much higher than that
of the QDs (−4.4 eV). This energy gap effectively blocks
the electrons from flowing from the QDs to the anode [27].
On the other hand, the ZnO ETL serves as a blocking layer
to prevent the holes from being injected from the QD layer
to the Al layer. According to the transfer rule of electrons
and holes in the energy bands of the semiconductors [28],
the holes are injected into the QD layer through the ITO anode,
the PEDOT:PSS layer, and the TFB layer from the highest
occupied molecular orbital (HOMO). Meanwhile, the electrons
are injected into the QD layer through the Al cathode and the
ZnO layer from the conduction band. The large Coulomb force
that arises from the small space of QDs forces the electrons
in the LUMO and the holes in the HOMO to bond together to
form electron–hole pairs as excitons. The excitons have limited
lifetime and release energy in the form of light as they revert
to the ground state [29].

The steps in the fabrication process of the QLEDs are shown
in Fig. 2(a). The electrode patterns in the form of narrow
strips were first formed on an ITO glass substrate with a
laser marking system. The patterned glass was cleaned in an
ultrasonic bath with liquid detergent, deionized water, acetone,
and isopropanol, for 10 min, respectively. After cleaning,
the ITO glass was dried by nitrogen and baked in a UV-O3
cleaning machine for 20 min. PEDOT:PSS was next spin-
coated onto the cooled ITO glass at 3.5 krpm and annealed at
130 ◦C for 20 min. The sample was subsequently transferred to
an N2-filled glovebox. A TFB solution was spin-coated onto
the sample at 3.5 krpm and baked at 120 ◦C for 15 min.
The TFB solution was prepared by mixing the TFB powder
and chlorobenzene (C6H5Cl) at a concentration of 10 mg/ml.
A solution of CdSe/ZnS core-shell QDs (diluted to 15 mg/ml
with more than 99% octane) was next spin-coated onto the
sample at 3 krpm and baked at 100 ◦C for 5 min. A ZnO
nanoparticle (20 mg/ml) film was then spin-coated onto the
QD film at 3 krpm and baked at 80 ◦C for 10 min. Finally,
the sample was transferred into a high-vacuum deposition
chamber (background pressure, 4×10−4 Pa), where a layer of
Al film cathode was deposited onto the sample to a thickness
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Fig. 3. (a) HRTEM image and (b) EDX analysis of the CdSe/ZnS QDs.

Fig. 4. Experimental setups for the measurement of (a) emission
spectrum and (b) bandwidth of the QLED.

of 100 nm with a shadow mask. Two batches of QLEDs,
which had emitting areas of 2 and 4 mm2, respectively, were
fabricated. Fig. 2(b) shows the photographs of a 2- and 4-mm2

QLED under test.

B. Characterization of QDs

The red-emissive CdSe/ZnS QD solution used in our study
was acquired from Mesolight Co. Ltd., Fig. 3(a) shows an
image of the QDs taken by high-resolution transmission
electron microscopy (HRTEM, FEI Tecnai G2 F30), which
confirms that the average diameter of the QDs is 11.5 nm.
Fig. 3(b) shows the result of the energy-dispersive X-ray
(EDX) analysis, which confirms the elementary compositions
in the QDs.

C. Optical and Bandwidth Measurement

The experimental setups for the measurement of the
emission spectrum and the bandwidth of the QLED are shown
in Fig. 4(a) and (b), respectively. The emission spectrum
of the QLED was measured with a fiber-optic spectrometer
(Ocean Optics USB 2000) through an integrating sphere and
a current–luminance–voltage (J–V –L) measurement system
together with a dual-channel power supply (Keithley 2614B).
This system can provide direct measurements of the injection
current, the luminance, and the EQE of the QLED sample.
For the measurement of the modulation bandwidth, the QLED
was driven with a signal that consisted of a bias dc voltage
(Keysight E3641A) superimposed with a sinusoidal ac sig-
nal generated from a function/arbitrary waveform generator
(RIGOL, 100 MHz, 500 MSa/s). The output light from the
QLED was monitored with a photodetector (THORLABS
APD120A2/M) and a digital oscilloscope (RIGOL DS4054
500 MHz 4 GSa/s). In our study, the current of the QLED

Fig. 5. (a) Normalized emission spectra of the QLED measured at
various injection currents and (b) variation in the EQE of the QLED with
the injection current for the 2- and 4-mm2 QLEDs.

Fig. 6. Time-resolved PL spectrum for the measurement of the
fluorescent lifetime of a CdSe/ZnS QD film.

was controlled by varying the dc bias voltage over the range
of 2–12 V with the amplitude of the ac signal fixed at 1 V. The
corresponding range of the dc injection current was 0–28 mA
and the corresponding peak amplitude of the ac current was
4 mA. The 3-dB bandwidth of the QLED was determined from
the measured frequency response of the output light.

III. RESULTS AND DISCUSSION

The emission spectra of a 2- and 4-mm2 QLED measured
at different injection currents are shown in Fig. 5(a). These
QLEDs provide stable emission at 634 nm with a narrow
full-width-at-half-maximum (FWHM) of ∼22 nm. The narrow
FWHM and the stability in the emission peak guarantee pure
color emission, which is important for display applications.
At the same injection current, the 2-mm2 QLED delivers
more intense light, which can be attributed to the larger
current density. The variation in the EQE with the injection
current is shown in Fig. 5(b). The EQE of the 4-mm2 QLED
increases rapidly from 0% to a maximum value of 9.2% at a
current of 1.6 mA and then decreases gradually as the current
increases. The EQE of the 2-mm2 QLED follows the same
trend but is slightly lower. Similar trends have been observed
with InGaN LEDs [30].

We measured the fluorescent lifetime of the QD film from
the time-resolved PL spectrum using a spectrometer (Edin-
burgh Instruments FLS980). As shown in Fig. 6, the QD
film has a fluorescent lifetime of 10 ns. We should note that
the QD solution has a longer fluorescent lifetime of 55 ns.
The faster response of the QD film is due to an increase in the
nonradiative decay rate as the QD molecules are aggregated
within the film [31], [32]. The fluorescence spectrum of the
QD film is also shown in the inset of Fig. 6. The peak
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Fig. 7. Variations in (a) resistance and (b) capacitance values with the
injection current measured for the 2- and 4-mm2 QLEDs.

wavelength of the fluorescence spectrum is shorter than that
of the EL spectra shown in Fig. 5(a) by ∼3 nm, which
is due to the Förster resonant energy transfer from smaller
(donor) to larger (acceptor) dots within the QDs [33]. Our
results confirm that the emission peaks of the CdSe QDs under
photoluminescent and EL conditions are close [34].

The relationship between the response time τ and the
modulation bandwidth f is given by f = 1/(2πτ). If the
bandwidth of the QLED was limited by the fluorescent lifetime
of the QD film, with τ = 10 ns, the theoretical and measured
bandwidth are 15.9 and 15.5 MHz, respectively. The RC time
constant should also affect the bandwidth of a QLED [35].
To obtain the R and C values of the QLED, we measured
the current–voltage and capacitance–voltage relationships of
the QLED with a semiconductor parameter analyzer (Keithley
4200A-SCS, 50 kHz). The variations in the R and C values
with the injection current for the 2- and 4-mm2 QLEDs are
shown in Fig. 7(a) and (b), respectively. At the same current,
the R and C values of the 2-mm2 QLED are smaller than
those of the 4-mm2 QLED. The resistivity coefficient ρ can
be expressed as [36]

ρ = ρ0

κ(1 − Inκ)
(1)

with

ρ0 = mνF

ne2lbulk
(2)

where ρ0 is the bulk resistivity, κ is a thickness-dependent
parameter, n is the electron concentration, νF is the Fermi
velocity, e is the electron charge, m is the effective mass of
electron, and lbulk is the bulk mean free path. As the bulk
resistivity is inversely proportional to the electron concentra-
tion, which is proportional to the current density, the resistance
of the device decreases with an increase in the current. The
total capacitance of a QLED is given by C = CD + CR ,
where CD is the diffusion capacitance and CR is the radiative-
recombination-based capacitance [37]. An increase in the
current causes a decrease in the radiative-recombination-based
capacitance, which thus leads to a reduction in the total
capacitance. Knowing the R and C values of the QLED,
we can estimate the RC-limited bandwidth by f = 1/(2π RC).

We measured the bandwidths of both the 2- and 4-
mm2 QLEDs at various injection currents and compared the
results calculated by the RC time constants. The results are
shown in Fig. 8. For both QLEDs, at a small current, the
RC-limited bandwidth agrees with the measured bandwidth

Fig. 8. Variations in the measured bandwidth and the bandwidth
calculated from the RC time constant with the injection current for (a)
2-mm2 QLED and (b) 4-mm2 QLED.

of the QLED. As the current becomes sufficiently large
(∼10 mA), the RC-limited bandwidth becomes larger than
the measured bandwidth and the discrepancy increases rapidly
with the current. These results indicate that the bandwidth of
the QLED is not only limited by the RC time constant. The
measured bandwidth is also much smaller than ∼15.5 MHz,
that is, the bandwidth of the QD film, which suggests that
the bandwidth of the QLED is not limited by the response
time of QDs. The remaining factor that affects the bandwidth
of a QLED is the carrier lifetime τc, which is given by
Zhang et al. [33]

τc =
(

ed

J B

)1/2

(3)

where d is the thickness of the QD layer, J is the current den-
sity, and B is the recombination constant. From (3), we known
the bandwidth f has a direct relationship with J and B .
With the experimental obtained values of J under various
currents, and the already known values of e and d , we fit the
measured bandwidth (the black curve in Fig. 8) and obtain
the fitting curve (the blue curve in Fig. 8). Our fitting curves
match well with the experimental results both for the 2- and
4-mm2 QLEDs, indicating the bandwidth of the QLED is
mainly limited by the carrier lifetime at large currents.
The values of B in (3) are obtained as 0.95 × 10−10 and
1.15 × 10−10 cm3s−1 for the 2- and 4-mm2 QLEDs, respec-
tively, which agree well with the theoretical ones, such as
10−10 cm3 s−1 given in [38] and 1.1 × 10−10 cm3 s−1 given
in [39]. The smaller B of the 2-mm2 QLED is due to its larger
perimeter/area ratio, which leads to a higher probability of
current leakage [40], and hence, less effective recombination
(i.e., a smaller B value). The fact that the bandwidth–current
relationship fits very well the expression f = 1/(2πτc),
as shown in Fig. 8, confirms that the bandwidth of the QLED
is mainly limited by the carrier lifetime above 10 mA.

According to (3), the carrier lifetime decreases with the
thickness of the QD layer. In our study, the thickness of the QD
layer is 18 nm, which is close to the QD diameter (∼12 nm).
There is not much room to further decrease the carrier lifetime
by decreasing the thickness of the QD layer. As the thickness
of the QD layer is small, compared with the thickness of the
whole device, the RC time constant depends only weakly on
the thickness of the QD layer. The response time of the QDs,
which is an intrinsic property of the QDs, should not depend
on the structure of the QLED.
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Fig. 9. Comparison of (a) luminance and (b) bandwidth characteristics
of the 2- and 4-mm2 QLEDs.

We should note that the bandwidth of a conventional GaN
LED chip is limited by the RC time constant when the junction
area is larger than 200 × 200 μm2 [41]. The carrier lifetime
in a GaN LED is typically several nanoseconds [42], which is
shorter than that in a QLED (∼10 ns).

The variations in the luminance and the bandwidth with
the injection current for the 2- and 4-mm2 QLEDs are shown
in Fig. 9(a) and (b), respectively. Our results show that at the
same injection current, the luminance and the bandwidth of the
2-mm2 QLED are larger than those of the 4-mm2 QLED. This
is because the 2-mm2 QLED provides larger current density
than that of the 4-mm2 QLED under the same current, and
therefore provide shorter τc and higher bandwidth. The idea of
increasing the bandwidth of an LED by reducing its emitting
area has been proposed [43]. Our study of QLEDs concurs
with this proposal.

As shown in Fig. 9, at an injection current of 28 mA, which
is close to the damage threshold currents of our fabricated
devices, the 2-mm2 QLED provides a bandwidth of 11.4 MHz
and a luminance value of 156 000 cd/m2, and the 4-mm2

QLED provides a bandwidth of 8.2 MHz and a luminance
value of 97 000 cd/m2.

IV. CONCLUSION

We have studied the effects of the injection current on
the modulation bandwidths of the QLEDs that have different
emitting areas. Our experimental results and analysis for the
2- and 4-mm2 QLEDs confirm that at an injection current
below ∼10 mA, the RC time constant and the carrier lifetime
have comparable effects on the bandwidths of the QLEDs,
while at a larger injection current, it is mainly the carrier
lifetime that determines the bandwidths. The response time
of the QDs is not a limiting factor. The bandwidths of the
QLEDs increase with the injection current and are limited by
the damage threshold current. At the same injection current,
the luminance and the bandwidth of the QLED that has a
smaller emitting area are larger than those of the QLED that
has a larger emitting area. At an injection current of 28 mA,
which is close to the damage threshold currents of our
fabricated devices, the 2-mm2 QLED provides a bandwidth
of 11.4 MHz and a luminance value of 156 000 cd/m2, and
the 4-mm2 QLED provides a bandwidth of 8.2 MHz and a
luminance value of 97 000 cd/m2. The highest EQE achieved
is 9.2%. Our results should be useful for the development of
QLEDs for lighting, display, and communication applications.
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