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Abstract— In-memory computing is a promising non-von
Neumann approach where certain computational tasks are
performed within resistive memory units by exploiting their
physical attributes. In this paper, we propose a new method
for fast and robust compressed sensing (CS) of sparse
signals with approximate message passing recovery using
in-memory computing. The measurement matrix for CS
is encoded in the conductance states of resistive mem-
ory devices organized in a crossbar array. In this way,
the matrix-vector multiplications associated with both the
compression and recovery tasks can be performed by the
same crossbar array without intermediate data movements
at potential O(1) time complexity. For a signal of size N,
the proposed method achieves a potential O(N)-fold recov-
ery complexity reduction compared with a standard soft-
ware approach. We show the array-level robustness of the
scheme through large-scale experimental demonstrations
using more than 256k phase-change memory devices.

Index Terms— Approximate message passing (AMP),
compressed sensing (CS), in-memory computing,
phase-change memory (PCM).

I. INTRODUCTION

IN-MEMORY computing is an attractive approach for per-
forming computationally expensive tasks of a high-level

algorithm in an energy-efficient manner. For instance, crossbar
arrays of resistive memory (memristive) devices can be used
to store a matrix and perform analog matrix-vector multiplica-
tions at constant O(1) time complexity without intermediate
movements of data. This capability can be exploited in a wide
range of applications from neural network inference to solving
systems of linear equations [1]–[3].

Another well-suited application domain is that of com-
plex optimization problems such as compressed sensing (CS)
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recovery. CS is an active research field in signal processing,
which attempts to perform sampling and compression simul-
taneously via a measurement matrix and allows the recovery
of a high-dimensional signal from low-dimensional noisy
measurements. CS is used in various applications, such as
MRI, facial recognition, holography, audio restoration, and in
mobile phone camera sensors. In a camera sensor, the approach
allows to significantly reduce the acquisition energy per
image or equivalently increase the image frame rate, by cap-
turing only few measurements, e.g., 10%, instead of the
whole image. However, CS recovery algorithms are usually
complex, and conventional implementations are confronted
with limited scalability owing to the large number of oper-
ations involved and high memory requirements. In-memory
computing promises to significantly reduce the memory and
computing resources needed to solve the problem as well as its
computational complexity, at the cost of potentially reducing
solution accuracy.

In Internet of Things systems, it may be desirable to
design implementations of CS with reconstruction on the same
device, e.g., a sensor, using very low power, in order to
have energy-efficient signal acquisition while at the same time
not having to send the compressed signal to the cloud for
reconstruction. Moreover, implementations of CS that can deal
with very large measurement matrices may be desirable in
applications where signals are received by large sensor arrays,
as, for example, envisaged for the Square Kilometre Array [4],
where the signal size may be on the order of 108.

In this paper, we propose an implementation of a CS recov-
ery algorithm, namely approximate message passing (AMP),
based on memristive crossbar arrays, of which we presented a
preliminary version in [5]. We experimentally investigate the
impact of this memristive implementation on the performance
of AMP, in particular on the reconstruction accuracy. The
benefits and limitations of the memristive implementation are
discussed for three use cases of the AMP algorithm, namely
linear estimation, CS with soft thresholding, and compressive
imaging with image denoising.

II. OVERVIEW OF COMPRESSED SENSING

A. Problem Setting

The basic idea of CS is to acquire few sampling measure-
ments from a high-dimensional signal and subsequently to
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recover that signal accurately. The compressive measurements
can be thought of as a linear mapping of a signal x0 of length
N to a measurement vector y of length M < N . If this
process is linear, it can be modeled by an M×N measurement
matrix A. The CS reconstruction problem is to determine the
signal x0 from the measurements y when sampled as

y = Ax0 + w (1)

where w represents the measurement noise. CS asserts that
signals can be recovered from fewer samples than dictated
by the Shannon–Nyquist theorem if they are sparse, that
is, if their information rate is lower than the Nyquist rate.
If the signal x0 is sparse in some transform domains, we can
represent it as x0 = �ξ , where ξ contains only a few (k)
nonnegligible elements. It can be shown that if � is incoherent
with A, ξ can be recovered from y when M < N , as long
as k is sufficiently small. � represents the inverse transform
matrix, for example, an inverse wavelet transform. CS is
fundamentally different from transform coding, which is used,
for example, in JPEG or MPEG compression. In the latter,
the signal x0 needs to be fully acquired, then the transform
ξ is computed, and the largest k transform coefficients and
their locations are kept so that the signal can be reconstructed.
In CS, however, only M < N measurements of x0 are acquired
while still being able to reconstruct the signal accurately. The
downside is the cost of complex CS reconstruction algorithms.

In the case of a sparse signal x0 and w = 0, a reconstruction
of x0 from y is obtained by solving the basis pursuit (BP) L1
minimization problem. An alternative formulation known as
BP denoising (BPDN) extends BP to the more realistic noisy
measurement case with w �= 0. The solution of both BP and
BPDN can be obtained by convex optimization using linear
programming (LP) algorithms. However, the high computa-
tional complexity of LP represents an obstacle for the large
problem sizes that occur very often in applications.

An appealing alternative to LP algorithms is offered by
iterative thresholding algorithms because of their low com-
putational complexity. One particular iterative thresholding
scheme to recover x0 from y is of the form

xt+1 = ηt (A∗zt + xt )
zt = y − Axt . (2)

Here, xt ∈ R
N is the current estimate of x0 at iteration t ,

zt ∈ R
M is the current residual, ηt (·) is a (typically nonlinear)

function, A∗ denotes the transpose of A, and x0 = 0. However,
while offering low complexity, the sparsity-undersampling
tradeoff achieved by algorithm (2), that is, the smallest value
that M can take given a certain sparsity of x0 to successfully
recover the signal, is usually less favorable than for LP-based
reconstruction.

Recently, Donoho et al. [6] proposed an AMP algorithm,
which adds a simple modification to (2) that substantially
improves the sparsity-undersampling tradeoff without signif-
icantly increasing the computational complexity. The AMP
algorithm is formulated as [7]

xt+1 = ηt (A∗zt + xt )

zt = y − Axt + N

M
zt−1�η�

t−1(A∗zt−1 + xt−1)� (3)

where �v� ≡ N−1 �N
n=1 vn denotes the average of a vector

v, η�
t represents the derivative of ηt , xt ∈ R

N is the current
estimate of x0 at iteration t , zt ∈ R

M is the current residual,
A∗ denotes the transpose of A, and x0 = 0. With respect
to iterative thresholding (2), AMP includes the additional
term (N/M)zt−1�η�

t−1(A∗zt−1 + xt−1)� in the computation
of the residual, which is shown to substantially improve the
sparsity-undersampling tradeoff [6]. AMP has the remarkable
property that its solutions are governed by a state evolution
whose fixed points (when unique) yield the true posterior
means, in the limit M, N → ∞, with the ratio M/N
fixed, and assuming that the elements of A are indepen-
dent identically distributed (i.i.d.) Gaussian random variables
Amn ∼ N(0, 1/M) [7].

B. Compressed Sensing Hardware Implementations
Many works have focused on efficient hardware imple-

mentations for the acquisition of compressed measurements,
such as in a camera sensor [8]–[10]. In an image sensor,
the measurement matrix is typically binary, and the measure-
ment acquisition can be implemented either in the optical
domain [8] or on-chip [9], [10]. Efficient implementations of
single-shot imaging have been demonstrated with scalability
up to 256 × 256 pixels consuming less than 100 mW of
power and showing no loss in signal-to-noise ratio (SNR)
compared with normal (not compressed) capture [10]. In such
implementations, the reconstruction algorithm is typically not
implemented on-chip, and therefore, reconstruction has to be
done off-line.

For CS reconstruction, a number of implementations have
been reported on field-programmable gate arrays (FPGAs)
and application-specific integrated circuit (ASIC) designs.
ASIC implementations of the orthogonal matching pursuit
algorithm [11] and the AMP algorithm [12] have been pre-
sented, as well as the FPGA implementations of both [13].
Very recently, an implementation of the second-order cone pro-
gram recovery algorithm for CS based on memristive crossbar
arrays has been proposed [14], however, without experimental
validation.

In this paper, we propose an implementation of the AMP
algorithm based on memristive crossbar arrays, whereby
the memristive arrays are used to perform the required
matrix-vector multiplications. We aim to provide a robust
set of experimental results of this implementation using
phase-change memory (PCM) arrays. In comparison with
typical high-precision implementations on GPUs or FPGAs,
reconstruction with a memristive implementation will exhibit
lower accuracy. The expectation is that the energy efficiency
and scalability of a memristive implementation will allow to
deal with much larger signals than in a typical high-precision
implementation and will yield faster and low-power solutions,
at the cost of a reduced reconstruction accuracy, which may,
however, be considered acceptable in many applications.

III. REALIZATION USING IN-MEMORY COMPUTING

A. Implementation of Compressed Sensing With AMP
Recovery Using Resistive Memory Arrays

The key idea of realizing CS using in-memory computing
relies on the encoding of the elements of A as conductance
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Fig. 1. (a) N × M memristive crossbar encoding the measurement matrix A used to acquire the CS measurements and to realize the matrix-vector
computations of the AMP recovery algorithm. (b) Architecture of the memristive implementation of AMP.

values of memristive devices organized in a crossbar array,
as shown in Fig. 1(a). One possible method to program
the conductance values is by an iterative program-and-verify
procedure. The compressed measurements (1) are acquired by
applying x0 as voltages to the crossbar rows via digital-to-
analog conversion and obtaining y through analog-to-digital
conversion of the resulting output currents at columns. The
positive and negative elements of A can be coded on separate
devices together with a subtraction circuit, whereas negative
vector elements can be applied as negative voltages.

Once the matrix A has been programmed in the crossbar
array and the measurements y have been obtained, the AMP
algorithm can be implemented as shown in Fig. 1(b). The
AMP algorithm is run in a dedicated processing unit, whereas
the computation of qt = Axt and ut = A∗zt is performed
using the (same) crossbar array. The vector qt is computed
by applying xt as voltages to the rows and reading back the
resulting currents on the columns, and ut by applying zt as
voltages to the columns and reading back the resulting currents
on the rows. In a memristive crossbar, it has been argued
that the matrix-vector multiplications can be performed with
constant time complexity O(γ ), where γ is independent of
the crossbar size [3]. The reason is that the computation is
performed in parallel through Kirchhoff’s circuit law locally
at the same place where the matrix data are stored. Therefore,
the complexity of (3) is potentially reduced from O(M N)
to O(N) if A is dense, as it is the case for A with i.i.d.
Gaussian elements. The precise value of γ will depend on
the read current settling time and the time required to digitize
the current by the peripheral circuitry. Consequently, larger
crossbars may eventually lead to higher γ if some of the
readout circuitry must be shared across columns/rows and
multiplexed.

B. Physical Implementation on Prototype PCM Chip

We implemented CS with AMP recovery using a prototype
multilevel PCM chip that contains 1 million usable PCM cells.
PCM is a resistive memory technology that is based on the
rapid and reversible transition between the crystalline and
amorphous phases of certain materials by the application of
suitable electrical pulses. Each PCM cell consists of a PCM

device in series with an access transistor. The PCM devices
are based on doped-Ge2Sb2Te2 and are integrated into the
prototype chip in a 90-nm CMOS baseline technology [15].
In addition to the PCM cells, the prototype chip integrates
the circuitry for cell addressing, on-chip analog-to-digital
converter (ADC) for cell readout, and voltage- or current-
mode cell programming. The PCM chip is interfaced to a
hardware platform comprising two FPGA boards and an ana-
log front-end board. The layout, picture, and specifications of
the experimental PCM chip with integrated read/write circuitry
can be found in [5].

The selection of one PCM device is done by serially
addressing a word line and a bitline (BL). For reading a PCM
device, the selected BL is biased to a constant voltage (typi-
cally 0–300 mV) by a voltage regulator via a voltage generated
off-chip. The sensed current is integrated by a capacitor, and
the resulting voltage is then digitized by the on-chip 8-bit
cyclic ADC. The total time of one read is 1 μs. The readout
characteristic is calibrated via on-chip reference polysilicon
resistors. For programming a PCM device, a voltage generated
off-chip is converted on-chip into a programming current.
This current is then mirrored into the selected BL for the
desired duration of the programming pulse. Each programming
pulse is a box-type rectangular pulse (∼1 ns rise/fall times)
with a duration of 400 ns and an amplitude varying between
0 and 500 μA. Iterative programming involving a sequence of
program-and-verify steps is used to program the PCM devices
to the desired conductance values [16]. After each program-
ming pulse, a verify step is performed, and the value of the
device conductance programmed in the previous iteration is
read at a voltage of 0.2 V. The programming current applied
to the PCM device in the subsequent iteration is adapted
according to the sign of the value of the error between the
target level and the read value of the device conductance. The
total time of the one program-and-verify step is approximately
2.5 μs. The array can be erased (RESET) using the maximum
amplitude pulse of 500 μA and reprogrammed at will, and
each cell can sustain approximately 109 programming pulses.

In our implementation of CS with AMP recovery,
the element-by-element multiplications of the matrix-vector
products were realized in the PCM chip, and the remaining
operations were implemented in software. The elements of A



LE GALLO et al.: CS WITH AMP USING IN-MEMORY COMPUTING 4307

Fig. 2. Iterative programming of five representative conductance levels
[vertical lines in (b)] on 5000 devices of the PCM chip. (a) Number
of iterations needed for the convergence of the iterative programming
algorithm. (b) Conductance distributions at approximately 50 μs after
programming. (c) Evolution of the mean conductance values of the
five programmed levels versus time; filled areas represent the standard
deviation for each level, and the plot on the right shows the calculated
drift exponent ν of the five levels computed from G(t) = G(t0)(t/t0)−ν .
(d) Readout current of the 5000 programmed PCM devices for a voltage
range 0–0.3 V, plotted versus GT · V, where V is the applied voltage and
GT is the target conductance of the different levels. (e) Readout current
plotted versus GT · f(V), where f(V) = V + 5V 3 .

were mapped to conductance values between 0 and 50 μS and
programmed on four PCM devices averaged per element using
iterative programming, with a conductance margin of 1.74 μS
per device, that is, the iterative algorithm converges when
the programmed conductance reaches a value within at most
1.74 μS from the target value. The matrix is programmed only
once before CS is performed. Fig. 2(a) shows the number of
programming cycles required, and Fig. 2(b) and (c) show the
conductance distributions for five representative levels. Here,
only five levels are shown for clarity, but in our experiments,
the conductance may assume any value in the range 0–50μS.
We mapped the vector elements to voltage values in the range
0–0.3 V using a nonlinear mapping f (V ) to account for the
slight nonlinearity of the current–voltage (I–V ) characteristics
of the PCM devices [17]. The effect of this mapping is shown
in Fig. 2(d) and (e), where each point corresponds to the

Fig. 3. Comparison of the precision in the computation of y = Ax0 by
the experimental PCM chip and 4×4-bit multiplications. A is a 256×256
Gaussian matrix coded in the PCM chip, x0 is a 256-long Gaussian vector
applied as voltages, and yi is the ith element of y.

Fig. 4. Calibration procedure to prevent errors due to conductance drift.

current of one PCM device measured at the applied voltage.
The accuracy of the matrix-vector computation with our PCM
chip for a 256 × 256 matrix with i.i.d. Gaussian elements is
comparable to that of a fixed-point implementation where the
matrix and vector elements are quantized to 4 bits, as shown
in Fig. 3.

To prevent errors in the multiplication results due to con-
ductance drift of the PCM devices, we developed a drift cal-
ibration procedure which consists in periodically reading the
summed current of L columns in the array during an experi-
ment. Those L columns contain devices programmed to known
conductance values Gmn(t0), and therefore, by reading them
periodically at a constant voltage Vcal, we can compensate for a
global conductance shift, as shown in Fig. 4. This procedure is
especially simple because L can be chosen to be small, enough
to get sufficient statistics, and the sum

�N
n=1

�L
m=1 Gmn(t0)

needs to be computed only once. The additional operations
for drift calibration can be efficiently implemented and are
not expected to incur significant time/power overhead. Reading
the subset of L columns of the crossbar can be done while the
PCM array is idle, i.e., when the digital unit performs the addi-
tional computations of the recovery algorithm, and additional
means are needed to perform the L current summations as well
as computing and storing α̂. They could be implemented either
with on-chip digital circuitry or in the control/processing unit.
In our experiments, the calibration procedure was performed
in the control unit on L = 40 columns after every five
matrix-vector multiplications.

IV. EXPERIMENTAL RESULTS

A. Linear Estimation

First, we study the simple use case of linear estimation,
where the vector x0 is not sparse and its entries are i.i.d.
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Fig. 5. (a) Normalized mean square error as a function of the number
of AMP iterations for linear estimation with N = M = 256. The filled
areas represent the standard deviation over 16 different realizations of
A and x0. (b) Empirical distribution of the effective noise A∗zt + xt − x0
at the last AMP iteration t = 29 for the three implementations. All the
16 experiments were used to build the empirical distributions.

Gaussian N(0, 1). In this case, the optimal AMP algorithm
uses ηt (x) = λt x with λt = (1/1 + τ 2

t ), where τ 2
t is the

variance of the empirical distribution of A∗zt + xt − x0, which
can be seen as the effective noise of the algorithm at iteration
t [7]. τ 2

t can be estimated by τ̂ 2
t = �zt�2

2/M , which is shown
to be a good approximation of the variance of A∗zt + xt − x0
in the large system limit [18].

We implemented this algorithm on the PCM chip for a
random signal x0 of size N = 256 and M = N measurements.
The M × N measurement matrix A was programmed in the
PCM chip with i.i.d. Gaussian elements normalized, such
that the norm of its columns is approximately 1 [7]. The
measurements y were obtained by applying x0 as voltages
on the PCM chip after matrix A had been programmed, thus
realizing Ax0 in hardware. Subsequently, x0 was reconstructed
with AMP using the PCM chip to compute the matrix-vector
operations Axt and A∗zt , as shown in Fig. 1(a). We per-
formed the experiment 16 times for 16 different realizations
of randomly generated A and x0 and reported the mean
and standard deviation of the normalized mean square error
(NMSE) �xt − x0�2

2/�x0�2
2 over those 16 experiments. The

different realizations of A and x0 were chosen, such that proper
convergence of the AMP algorithm was obtained.1

1Due to the small system size (N = 256), AMP does not converge properly
for all combinations of randomly generated A and x0. In the experiments,
we ensured that for all realizations of A and x0 chosen, the NMSE neither
floors nor starts monotonically increasing in the floating-point implementation
within the number of AMP iterations performed, in the case 29.

The evolution of the NMSE between the original and recon-
structed signals is shown in Fig. 5(a). The NMSE decreases as
1/(1 + t) for the floating-point implementation as dictated by
state evolution [7]. For the PCM chip and an implementation
where the multiplications in Axt and A∗zt are done in 4 × 4-
bit fixed-point arithmetic, the NMSE floors at values of
approximately 0.15 and 0.12, respectively. However, the initial
convergence rate of AMP is not affected by the inexact
implementations. This finding will be further confirmed in the
next experiments of Sections IV-B and IV-C.

An important feature of AMP is that the effective noise
A∗zt +xt −x0 is approximately Gaussian [18]. This allows the
asymptotically exact analysis of AMP whereby the variance
of this noise can be computed exactly from state evolution for
any t when N → ∞ [7]. Moreover, the variance can be used
as an input to the function ηt in order to optimally denoise this
Gaussian noise [7]. For iterative thresholding (2), the effective
noise is generally not Gaussian, and state evolution does not
hold [6], [7]. Hence, it is important to verify whether the
Gaussianity of this noise is affected by the PCM implemen-
tation. We obtained the effective noise A∗zt + xt − x0 at the
last AMP iteration for the three implementations. We found
no clear departure from a Gaussian distribution for both
the PCM and fixed-point implementations [see Fig. 5(b)].
The tails which deviate from an exact Gaussian distribution
close to percentiles 0.01 and 99.99 observed in all three
implementations are likely a consequence of the small system
size (N = 256).

B. Compressed Sensing With Soft-Thresholding

In this use case, the vector x0 is k-sparse, i.e., it contains k
nonzero elements, and its nonzero elements are i.i.d. Gaussian
N(0, 1). In order to reconstruct x0 from the measurements
y, we use the AMP algorithm (3) with a sequence of
soft-threshold functions ηt (x) defined as [6]

ηt (x) =

⎧
⎪⎨

⎪⎩

x − τt , if x > τt

0, if − τt ≤ x ≤ τt

x + τt , if x < −τt

(4)

with thresholds τt = �zt�2/
√

M . For the soft-threshold
function (4), the term (N/M)zt−1�η�

t−1(A∗zt−1 + xt−1)�
in the AMP algorithm can be calculated explicitly
and yields (N/M)zt−1�η�

t−1(A∗zt−1 + xt−1)� =
(1/M)zt−1�ηt−1(A∗zt−1 + xt−1)�0, where �x�0 denotes
the number of nonzero elements of x .

We performed the experiments for a random signal x0 of
size N = 256 and k = 64 randomly distributed nonzero
elements. We tested cases for sampling rates of M/N = 1
(no compression) and M/N = 0.75, each with 16 different
realizations of randomly generated A and x0. The evolution
of the NMSE between the original and reconstructed signals
is shown in Fig. 6(a). As in the previous use case, the initial
convergence rate of AMP is unaffected by the approximate
multiplications done in the PCM chip, and the magnitude of
the NMSE floor obtained with the PCM chip is comparable
to the 4 × 4-bit fixed-point implementation. When using a
lower sampling rate M/N = 0.75, the convergence rate of
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Fig. 6. (a) Normalized mean square error versus the number of AMP
iterations for CS with soft thresholding; filled areas represent the standard
deviation over 16 different realizations of A and x0. (b) Example of
the original and reconstructed signals for the PCM implementation with
M/N = 0.75.

AMP decreases, and the NMSE floor increases for the inexact
implementations compared with M/N = 1.

In certain applications, it is sufficient to recover only the
sparsity pattern of x0, without being concerned with the exact
values of the nonzero elements. We show in Fig. 6(b) the
original and reconstructed signals for one of the experiments
performed with 0.75 sampling rate. We see that the general
shape and the sparsity pattern of the signal are well recovered
in the PCM implementation. Thus, in applications where
the reconstruction accuracy is not of paramount importance,
the accuracy obtained with our current prototype PCM chip
may already be sufficient.

C. Compressive Imaging With Image Denoising

Compressive imaging refers to performing CS on image
signals. The elements of x0 thus represent the pixel intensities
of an image. The goal is to acquire the image with M � N
measurements and to reconstruct it accurately. A general
methodology for compressive imaging with AMP was recently
introduced by Metzler et al. [18]. They developed an extension
of the AMP algorithm that uses a denoiser within its iterations.
The proposed algorithm is given by

xt+1 = Dτt (A∗zt + xt )

zt = y − Axt + 1
M zt−1divDτt−1(A∗zt−1 + xt−1)

τ 2
t = �zt�2

2/M
(5)

where Dτ denotes a denoiser, which takes as input a signal
plus Gaussian noise and an estimate of the standard deviation

Fig. 7. (a) Evolution of the NMSE in image reconstruction for wavelet
thresholding and BM3D denoisers with M/N = 1/2. (b) Original and
reconstructed images with the PCM implementation.

of that noise τ , and divDτ (x) = �N
n=1(∂ Dτ (x)n/∂xn) denotes

the divergence of the denoiser, where Dτ (x)n is the nth
element of Dτ (x) and xn is the nth element of x .

We tested this algorithm using the 128 × 128 pixel “house”
image shown in Fig. 7(b) as signal x0. We implemented the
two following denoisers.

1) Wavelet Thresholding: It transforms the signal into
a wavelet basis, thresholds the coefficients, and then
inverts the transform. If W denotes the wavelet
transform, this denoiser is defined as Dτt (x) =
W−1ηt (W x). We used the soft-threshold function (4)
as ηt and 2-D Haar wavelet transform. The divergence
of this denoiser can be calculated explicitly and yields
divDτt−1 (A∗zt−1+xt−1) = �ηt−1(W (A∗zt−1+xt−1))�0,
which is the number of nonzero elements of the thresh-
olded sparsified estimate.

2) Block Matching 3-D Collaborative Filtering (BM3D):
It can be considered a combination of nonlocal means
(averaging weighted neighboring pixels) and wavelet
thresholding. The term divDτt−1(A∗zt−1 + xt−1) cannot
be calculated explicitly and thus is estimated using the
Monte Carlo procedure described in [18]. The diver-
gence is estimated with divDτ (x) � (b∗/
)(Dτ (x +

b) − Dτ (x)) for small 
 and vector b with elements
i.i.d. N(0, 1). BM3D performs much better on images
than wavelet thresholding because images are not exactly
sparse in the wavelet domain.

The length of x0 in this experiment is N = 16384. For
such a large value of N , it is not possible to code all elements
of an M × N Gaussian matrix in our PCM hardware, which
has only 1 million usable devices. To overcome this diffi-
culty, we use a block-based compression approach, whereby
a small measurement matrix H of size Ms × Ns is used, with
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TABLE I
PSNR (IN dB) OF THE 128 × 128 “HOUSE” IMAGE RECONSTRUCTIONS

Ns = 256. We perform measurements on consecutive
16 × 16 pixel blocks using the same measurement matrix H .
In order to obtain uncorrelated measurements and ensure the
convergence of AMP, we perform a (fixed) random permuta-
tion P of the pixel intensities before doing the measurements.
The matrix A can thus be written as A = blkdiag(H )P , where
blkdiag(H ) is an M × N matrix with N/Ns main diagonal
blocks matrices H , where it is assumed that N is a multiple
of Ns and Ms/Ns = M/N . The elements of H are i.i.d.
∼ N(0, 1/Ms ).

We programmed a 128×256 Gaussian measurement matrix
H in the PCM chip (sampling rate M/N = 1/2), divided the
image into 16 × 16 pixel blocks, and compressed each block
individually with the PCM chip. Subsequently, the image was
reconstructed with algorithm (5) using the PCM chip to com-
pute the matrix-vector operations Axt and A∗zt . In Fig. 7(a),
we show the NMSE evolution for the PCM, fixed-point, and
floating-point implementations for wavelet thresholding and
BM3D denoisers. The peak SNR2 (PSNR) at the last AMP
iteration is reported in Table I. It can be seen that using a
better denoiser (e.g., BM3D) results in a lower final NMSE
in the PCM and fixed-point implementations. It indicates that
denoisers can be used effectively to improve the reconstruc-
tion accuracy by mitigating the errors from the PCM chip.
Moreover, the convergence rate of AMP is only affected
by the choice of the denoiser but not by the approximate
implementations.

V. DISCUSSION

There are several reasons why AMP is well suited for a
memristive implementation. First, matrix A does not change
over iterations, and thus, only read operations are performed
during AMP reconstruction. Therefore, matrix A needs to
be programmed only once and will be retained in the array
thanks to the nonvolatility of the PCM devices. The read
operations that are performed during reconstruction require
significantly less power than programming and thus can be
heavily parallelized. With the 90-nm PCM technology used in
this paper, we estimate the read energy to be between 1 and
100 fJ per device depending on the programmed resistance
state, compared with approximately 100 pJ for program-
ming (assuming five program-and-verify iterations). Moreover,
unlike programming endurance, the read endurance (at least in
PCM) is essentially unlimited; hence, this implementation is
favorable with respect to device reliability issues and will not
lead to device degradation due to excessive reprogramming at
every iteration.

The effect of device imperfections and failures on the final
reconstruction NMSE is discussed in [5]. We found that the
AMP recovery can tolerate conductance variations due to
programming errors (up to 20%) and up to 20% stuck-SET and

2PSNR = 10 log10(2552/(�x̂ − x0�2
2/N )), where x̂ is the estimate of x0.

stuck-RESET device failures. Device imperfections that have
a detrimental effect on the reconstruction accuracy include
the device conductance noise (most dominant effect) and
the I–V nonlinearity. Finally, the achievable reconstruction
NMSE is ultimately limited by the resolution of the digital-
to-analog/analog-to-digital converters used at the input/output
of the crossbar array.

To quantify the potential energy gains of the memristive
implementation over a digital design, based on the figures cur-
rently achieved with our prototype PCM chip, we made
an FPGA design that operates at the same speed and the
same precision at which we expect a PCM-based crossbar
to perform [5]. In (3), the matrix-vector multiplications are
the most expensive operations, so we compared the memris-
tive crossbar analog multiplier with a 4-bit FPGA multiplier
design. The 4-bit matrix elements are stored in the FPGA
block-RAM, and 32 dot-product units operate in parallel to
compute a 256 × 256 matrix-vector product in 1.2 μs. The
dynamic power consumption achieved with this design is
800 mW [5]. In a 256×256 PCM-based crossbar, the dynamic
power dissipation in the devices for one read operation would
be in the order of 13.1 mW (read current of 1 μA per
device at 0.2 V). Thus, a 256 × 256 PCM-based crossbar
in the 90-nm technology operating at 1 μs cycle time plus
two 8-bit ADCs operating at 125 MS/s to convert the current
(12-mW/GS/s power consumption) is expected to consume
16.2 mW, which is 50 times less than the FPGA design.
The power advantage arises because only read operations,
which consume little energy, are performed in the memristive
crossbar for multiplications.

While PCM devices were used for the experiments pre-
sented in this paper, other memory devices could be con-
sidered to perform the analog matrix-vector multiplications
in the proposed CS implementation. Potential candidates
include metal–oxide resistive random-access memory [3],
NOR Flash [19], and static random-access memory [20]. The
main advantages of PCM for this application are its multilevel
capability along with fast read/write latency and nonvolatility;
however, the PCM programming current is generally higher
than the other technologies, and resistance drift poses addi-
tional challenges that need to be addressed. Assessing dif-
ferent technologies for in-memory computing should account
for array-level variability, device noise, and accuracy/ease
of device programming in addition to latency and power
consumption.

In the ASIC implementation of AMP reported in [12],
the multiply–accumulate (MAC) units and the matrix gener-
ating unit take most of the chip area and are responsible for
most of the power consumption, which amounts to > 90% in
the proposed AMP-M design for arbitrary matrices. In such an
implementation, matrix A would have to be explicitly stored
[in off-chip dynamic random-access memory (DRAM)], or its
coefficient would have to be generated on the fly at every
AMP iteration. In a memristive implementation, matrix A is
stored in the memristive array(s) in a nonvolatile manner, thus
avoiding the need of a unit to generate its coefficients or using
an off-chip DRAM, while still being able to reprogram it
without redesigning the entire circuit. Moreover, by computing
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the matrix-vector multiplications inside the memristive array,
the use of MAC units, which are expensive in both power and
area when implemented in CMOS, is completely avoided.

Furthermore, a remarkable property of AMP is that its
convergence rate is independent of the precision of the
matrix-vector multiplications. This is a highly desirable prop-
erty for this type of implementation, as the number of AMP
iterations needed for reconstruction will not be larger than
in a floating-point implementation. We also found that the
NMSE floor due to computational errors can be lowered by
using appropriate denoisers within AMP. Obviously, using
a complex denoiser, such as BM3D, might not be efficient
from an implementation point of view, because the speedup
obtained by performing the matrix-vector multiplications in
the memristive array may be overcompensated by the time
required to apply the denoiser. However, an interesting avenue
would be to design a denoiser that is specifically aimed
at removing the computational errors from the memristive
array.

Regarding the limitations of the memristive implementation,
the computational errors from the memristive array are cur-
rently the biggest drawback. Very accurate reconstruction can-
not be currently achieved with our prototype PCM chip, which
performs with a precision similar to that of a matrix-vector
product in the 4 × 4-bit fixed-point implementation. However,
the precision of analog in-memory computation is expected
to improve as the technology matures, e.g., with concepts
such as projected memory to reduce the noise and drift [21].
The precision could be further increased by mapping a single
column of the matrix across multiple physical columns of an
array encoding different bits and applying the input vector
to the array one or several bits at a time, still performing
in-memory computing, at the expense of area and energy
penalty, and additional support required by the peripheral
circuitry.

Another limitation is that, for CS applications, it might be
hard to justify the memristive implementation versus a digital
implementation with a 1-bit measurement matrix, as the latter
shows no loss in SNR for the compressed measurement acqui-
sition and no multipliers are needed for a binary matrix [10].
However, this type of implementation is limited to one specific
application only, i.e., only a binary measurement matrix is
supported, whereas a memristive implementation can be used
for any arbitrary measurement matrix. Moreover, such effi-
cient implementations currently only acquire the compressed
measurements and do not support reconstruction, which has
to be done off-chip. The attractiveness of the memristive
implementation is that both compression and reconstruction
could be done on the same platform.

VI. CONCLUSION

We propose an implementation of CS with AMP recovery
based on the memristive crossbar arrays. The measurement
matrix elements are programmed as conductance values of
memristive devices in crossbar arrays, which are used to per-
form the matrix-vector multiplications in both the compression
and the recovery algorithm. In this way, the computational
complexity of AMP recovery is potentially reduced from

O(M N) to O(N). We tested this implementation experimen-
tally for three use cases of AMP using more than 256k PCM
devices in a prototype multilevel PCM chip to perform the
matrix-vector multiplications. We found that the convergence
rate of AMP is not affected by performing the matrix-vector
multiplications in the PCM array. The accuracy achieved with
our prototype PCM chip is comparable to that of a fixed-point
implementation where the matrix and vector elements are
quantized to 4 bits. In applications where the reconstruction
accuracy is not of paramount importance, the memristive
implementation could represent a viable solution to provide
more efficient AMP reconstruction than a full von Neumann
implementation.
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