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Abstract— We report on a floating buffer model to explain
“kink,” a hysteresisin the output characteristics of Fe-doped
AlGaN/GaN HEMTs observed at low drain bias. Unintention-
ally doped background carbon can make the GaN buffer
p-type allowing it to electrically float. We further note
that reverse bias trap-assisted leakage across the junction
between the 2DEG and the p-type buffer can provide a
mechanism for hole injection and buffer discharging at
just a few volts above the knee, explaining the “kink” bias
dependence and hysteresis. We show that HEMTs with
a different background carbon have dramatically different
kink behaviors consistent with the model. Positive and
negative magnitude drain current transient signals with 0.9-
eV activation energy are seen, corresponding to changes
in the occupation of carbon acceptors located in different
regions of the GaN buffer. The observation of such signals
from a single trap calls into question conventional interpre-
tations of these transients based on the bulk 1-D deep-level
transient spectroscopy (DLTS) models for GaN devices with
floating regions.

Index Terms— Carbon doping, drain current transient
spectroscopy, floating buffer, GaN, HEMT, iron doping, kink
effect, traps.

I. INTRODUCTION

HE kink effect is a hysteretic instability of FET drain

current, which is observed during a slow drain bias
sweep. The current shows a small step to increase a few
volts above the knee region on the forward-sweep, with a
little or no reduction on the return sweep. It has been observed
in all generations of FETs, irrespective of the material system,
whenever the substrate or surface is able to store charge and
achieve a potential which diverges from ground. In partially
depleted silicon on insulator MOSFETS or silicon on sapphire
MOSFETs. [1], the floating conducting Si buffer is charged
by a hole current from impact ionization. In GaAs FETs,
the buffer is semi-insulating and can store impact ionization
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derived charge in deep trap states back-biasing the 2DEG
and causing a kink [2]. Kink has also been observed in GaN
HEMTs at both cryogenic [3] and room temperatures (RTs),
with surface related traps originally assigned as the cause
[4], although this explanation became untenable as it was
unchanged as the passivation schemes improved. Previously,
kink in GaN HEMTs has been attributed to impact ionization
[5]. However, the fact that the kink is often seen just a
few volts (as little as 2 and 3 V) above the knee makes
it implausible for the carriers to have sufficient energy to
cause impact ionization and provide a supply of holes. As a
result, models have been suggested based on the unusual defect
properties. Meneghesso et al. [6] proposed a strongly field-
dependent detrapping process from deep acceptor states in the
vicinity of the gate could be responsible for this effect. These
states were linked to the epitaxy rather than being processing-
related and showed a complex light sensitivity, which was
related to yellow cathodoluminescence [7]. On the other hand,
Wang and Chen [8] found that in their devices there was no
kink in the very first bias sweep, contrary to the observations
in [6] and [7], and that the kink magnitude increased with the
maximum drain voltage [8]. They proposed a model based on
strongly field-dependent trapping into deep donor states, again
in the vicinity of the gate. In both of these models, the required
field-dependent capture cross sections and trapping/detrapping
processes cannot be explained by the conventional defect
models.

In this paper, we show that the kink is strongly dependent
on the growth conditions, which impact carbon concentra-
tion. We propose an explanation for kink in iron-doped (Fe)
GaN/AlGaN HEMTs based on a “leaky dielectric” model of a
floating semi-insulating p-type GaN buffer, [9] together with
the conventional deep-level defect behavior. The supply of
holes to charge the buffer then arises primarily due to band-
to-band trap-assisted leakage paths rather than via impact
ionization. Simulations of the hysteresis associated with the
kink show that it can be enabled and modified by small
changes in the concentration of background carbon that are
well below the Fe density. We also demonstrate that conven-
tional interpretations of drain current transient spectroscopy
can be flawed in devices with a floating p-type GaN buffer.

Il. DEVICE UNDER TEST AND MEASUREMENTS

Two wafers were grown using metal-organic chemical vapor
deposition (MOCVD) with nominally identical layer structure
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Fig. 1. dc Ip—Vpg sweeps for wafers A and B. (a) Wafer A and (b) Wafer B show the difference between Vg stepping from —3 to 0 V and stepping
from 0 to —3.5 V in the steps of 0.5 V. Vpg is swept from 0 up to 40 V. (c) Wafer A and (d) Wafer B show the impact of maximum Vpg sweep voltage
on kink. Vpg swept up to 10, 20, 30, and 40 V with Vgg stepped from —3 to 0 V. Sweep rate is 1 V/s for all cases.

of AlGaN barrier, GaN buffer, and AlGaN nucleation layer
on insulating SiC. Secondary ion mass spectrometry (SIMS)
measurements were undertaken on similar wafers [shown in
Fig. 3(b)] [10], [11]. Both wafers incorporated a conventional
Fe doping profile in the GaN bulk to suppress short-channel
effects, having a peak density of 3 x 10'® cm™3, which
decreased exponentially towards the surface. Both wafers had a
0.2-um GaN channel region with unintentionally incorporated
carbon density of 5 x 10'® ¢cm™3, but different growth condi-
tions in the lower part of the GaN layer resulted in different
carbon profiles. Wafer A had 3 + 1 x 107 cm™3 carbon and
wafer B had 2 x 10'® cm™3 carbon. Oxygen and silicon were
below the SIMS background of 5 x 103 ¢cm™3,

AlGaN/GaN HEMTs with a width of 2 x 125 um, a gate
length of 0.25 um, source—drain spacing of 4 xm, and source—
gate spacing of 1 um were fabricated using Ti/Al/Ni/Au and
Ni/Au for ohmic and Schottky contacts, respectively, and
with identical silicon nitride passivation. Repeatability was
demonstrated by processing a further pair of wafers grown
with the same conditions, with essentially identical results (not
shown). Fig. 1(a) and (b) shows the result of a dc Ip—Vps
measurement at sweep rate of 1 V/s demonstrating the effect of
stepped gate voltage sweep direction. Wafer A showed a strong

kink effect, with hysteresis observable at Vpg below the kink,
which is sweep history-dependent. It has been reported that
the first forward-sweep can be kink free [8], however, in this
case a small kink is observable at Vgs = 0 for Wafer A, with a
much lower magnitude than subsequent sweeps Fig. 1(a). The
kink was seen ~3-5 V above the knee in all cases and was
found to increase in magnitude with increasing the maximum
drain bias Fig. 1(c). Above the kink, all signs of hysteresis
are suppressed. These observations are broadly similar to the
prior reports in [5]. By contrast, for wafer B the kink and its
associated hysteresis was almost entirely suppressed, as shown
in Fig. 1(b), and did not show a significant dependence on the
maximum drain voltage in the sweep, Fig. 1(d).

Fig. 2 shows the result of the drain current transient mea-
surements at Vps = 4 V (above the knee but below the kink)
following a step from Vpg = 20 V at Vgs = —1.7 V
and at different temperatures. The transient drain current
corresponds to measure the hysteretic recovery seen in Fig. |
following a bias sweep to high Vps. Wafer B shows a relatively
simple behavior, displaying a recovery consistent with electron
detrapping with a single time constant of ~10~2s at RT and
activation energy of ~0.55 eV comparable with the measured
values reported for Fe-doped devices [12], [13], superimposed
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Fig. 2. Drain current transients measured in the kink region at the
indicated temperatures from 30 °C to 210 °C at Vgg = —1.7 V and after
Vps is stepped from 20 to 4 V for (a) Wafer A and (b) Wafer B. Activation
energies have been extracted for the circled features. The vertical line at
1 s indicates the approximate timescale for the dc sweep of Fig. 1.

on a background of slow drift at higher temperatures.
A minimum of five temperatures have been used to calculate
activation energies as summarized by Bisi et al. [14]; since
the temperature range is at most 70 °C, the energies are
subject to a significant error. By contrast, wafer A shows
more complex behavior. Below 100 °C, wafer A shows two
time constants, one at 102 s with activation energy ~0.59 eV
(similar to wafer B), and the second one at ~1 s with very
low activation energy. At temperatures > 100 °C, a new regime
is observed with overlapping positive and negative going
transients; the positive going component having an activation
energy of roughly 0.9 eV and the negative going one having
a similar value but with larger error. At RT, it is clear that
there is a reasonable consistency between the transient and
sweep measurements. Wafer B shows a little kink because its
recovery after high drain bias stress is faster than the effective
time constant of the voltage sweep, whereas wafer A’s longer
recovery time makes the kink visible. In both cases for the
sweeps, charge trapping occurs rapidly at higher drain bias,
which is then neutralized more slowly below the kink (not
shown here).

In order to determine where within the device the changes in
current observed in the drain current transients were occurring,
the transient measurements of the distribution of channel
resistance were undertaken. The ON-resistance was taken as
Ron = Rs+ Rp, where Rg and Rp are the access resistances
on either side of the gate. Using the gate as a potential probe a
small probe voltage of —100 to +100 mV was applied on the
drain (nominal Vpg = 0 V), and Rg and Rp were measured
within 2 s following a stress at 4 or 20 V, as shown in Table I.

TABLE |
SUMMARY OF SOURCE RESISTANCE (Rg) AND DRAIN
RESISTANCE (Rp) MEASURED FOR BOTH WAFERS FOR
NO STRESS AND AFTER Vpg = 4 AND 20 V STRESSES

Rs Rd
(2.mm) (2.mm)

No stress 0.40 2.5

Wafer-A 4V stress 0.36 2.7
20V stress 0.28 3.2

No Stress 0.33 2.0

Wafer-B 4V stress 0.33 2.3
20V stress 0.34 3.4

For wafer A, we observed a decrease in Rg and an increase in
Rp after stress, whereas for wafer B an increase in Rp and
no change in Rg was seen.

I1l. MODEL

The GaN buffer in this case is Fe-doped which has an
acceptor trap level 0.5-0.7 eV below the conduction band [15]
and is normally assumed to be n-type due to Fe pinning of the
Fermi level (EF) in the upper half of the gap, preventing the
buffer from floating. However, as pointed out in [16] and [17],
unintentionally incorporated doping (UID) with carbon can
convert it into p-type. Carbon on the nitrogen site (Cy) has an
acceptor trap level 0.9 eV above the valence band (VB) [18].
Fe and Cy are both deep acceptors, and in the absence of any
external field, the Fermi level will lie near the lowest energy
level (Cn), with acceptors above the Fermi level being neu-
tral (Fe). The degree of compensation by donors is critical in
determining the n- or p-type nature of the GaN but is normally
unknown. The Fermi level will switch between close to the
Fe trap level and close to the Cy level, a shift of ~1.8 eV,
when the donor density is greater than or less than the Cy
density, respectively. There are several literature reports of
related effects. Raman measurements of commercial Fe-doped
devices fabricated by Cree (CGHV1J006D) suggested that the
bulk GaN was indeed p-type [19]. In that case, the SIMS
background carbon density was 10'7 cm™3 with an unknown
donor density, which presumably must have been less than
that value. Scanning probe measurements in carbon-doped
GaN have shown that the material can change from p-type at
high C density to n-type at low density [20]. Koller et al. [21]
measured the built-in voltage in a p-n diode and showed that
high C density material is p-type.

The consequence of high carbon doping making the material
p-type is that the highly resistive GaN buffer will be isolated
from the 2DEG by a p-n junction. Hence the buffer can
float and act as a reservoir for time-dependent charge storage.
We argue here that this can be the origin of the kink effect,
with the buffer reaching a bias history-dependent potential at
low bias below the kink and coming into equilibrium with
the 2DEG at higher drain bias above the kink as a result of
field-dependent leakage across the p-n junction.

To understand the effect of UID carbon on the HEMT,
an Fe-doped GaN device with Lsp = 3.75 um and Lg =
0.25 pum has been simulated with Silvaco Atlas for a
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TABLE Il
GAN BUFFER PROFILES USED FOR SIMULATION

Case-1 Case-2 Case-3
(wafer A) | (wafer B) | (wafer B)
7x10'3 at 2DEG increasing

Fe acceptor (Ec-0.7¢V)

(cm) exponentially with depth to 3x10'8 at
1.1um
Cn acceptor (Ev+0.9¢V) 2x107 1.5x101° 1.5x10'¢
(em™)
Caa and intrinsic donors 1x10"7 0.5x10'6 2.5x10'¢

(Ec-0.03eV) (cm™)

wide range of compensation ratio and donor densities [22].
Three illustrative GaN buffer doping combinations are shown
in Table II, and the resulting band diagrams and doping profiles
are shown in Fig. 3. Case 1 corresponds to wafer A with
3% 107 ecm™3 carbon, where the compensation ratio of carbon
on the Ga (donor) and N (acceptor) sites, Cga/Cn, has been set
at 0.5 consistent with what is inferred for power devices and
making the layer p-type [9], [23]. Cases 2 and 3 correspond
to the carbon profile of wafer B with 1.5 x 10! em™3 Cy
and two assumptions for the unknown intrinsic donor density.
Case 2 corresponds to a low donor density of 5 x 101> cm™3
and hence the layer is dominated by the Cy and is also p-type,
whereas Case 3 has a higher donor density of 2.5 x 10'¢ cm—3
which exceeds the Cn density and hence is n-type. In all cases,
the 0.2-um-thick channel region was fully depleted and doped
with 3 x 10'°Cy and 2 x 10'® cm™3 Cg, making it semi-
insulating (lightly p-type). No doping was incorporated in the
5 nm below the 2DEG to improve the simulator convergence.
The capture cross section for Fe was set to 10713 cm?, a high
value since Fe can capture via its excited states [17], [24], and
Cy to 10713 cm?.

A key issue in the simulation of these devices is the
requirement to include leakage paths through the reverse-
biased depletion regions below the 2DEG. It is known from
GaN LEDs and vertical p-i-n diodes that the reverse bias leak-
age occurs by a trap-assisted band-to-band hopping process
associated with threading dislocations [25]-[27], which occurs
at a low field far below that which is required for impact
ionization. In GaN-on-Si devices [21], it has been shown
by substrate ramps that there is a leakage through the UID
GaN layer from the 2DEG to the p-type GaN:C buffer for
the field polarity corresponding to positive drain bias [28].
Sufficient leakage to positively charge the buffer occurred in
a few seconds for a field as low as 2 x 10° V/cm at RT.
Hence it is reasonable to expect a hole current to flow into
the buffer as soon as the field in the channel exceeds a few
times 103 V/cm. Fig. 4 shows the simulated vertical electrical
field at Vps = 10 V. Case 3, which is n-type, shows low
field since there is no significant voltage drop between the
2DEG and the buffer. However, cases 1 and 2, where the
buffer is p-type, show a field of as much as 4 x 103 V/cm
over the entire gate to drain gap suggesting that this does
indeed provide a plausible explanation for hole leakage into
the buffer at a bias consistent with the bias where a kink is
observed. There is no built-in model for leakage in a reverse-
biased GaN p-n junction in the simulator, and hence a simple
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Fig. 3. (a) Simulated unbiased band profiles in this paper for a vertical

cutline through the gate. (b) Doping density profiles as in Table Il
Overlaid are measured SIMS profiles of Fe and C for similar wafers to
A and B (shown in black dotted line).
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Fig. 4. Vertical electrical field component for the buffers of Table Il at
Vps =10 V and Vgg = 0 V. Cases 1 and 2, where the buffer is p-type,
show a field of as much as 4 x 10° V/cm over the entire gate to drain
gap, while for the n-type buffer of case 3, low field is predicted except at
the gate edge.

approximation which has been used successfully to simulate
current-collapse in GaN power devices was employed [9]. This
uses a p++ shorting region located under the source and drain
contacts, which provides a path for holes to flow into the semi-
insulating buffer. It is well established that such leakage paths
are often present under ohmic contacts [29]. This simulation
approach requires holes to flow from the p++ region at the
drain to gate region in order to impact the threshold voltage
and thus results in unrealistically long time constants at RT.
Nevertheless, it does allow the buffer potential to be sensitive
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to the drain bias, gives an indication of how buffer potential
can affect the channel current by a back-gating mechanism,
and seems to capture the behavior for T > 100 °C, as discussed
later.

A simulation of the slow sweep leading to hysteresis is
shown in Fig. 5, where a static IV characteristic is compared
with two types of 10-V/s sweep. The assumption here is that
leakage into the buffer will occur at Vps > 10 V allowing
the buffer to come into quasi-equilibrium with the drain bias
during a slow sweep at all biases above 10 V. Hence a sweep
at 10 V/s from the static case at Vps = 10 V down to
0 V corresponds to the backward-sweep shown in Fig. 1.
The forward-sweep of Fig. 1 is simulated by starting with
a static simulation at Vpg = 20 V followed by a step to 0 V
in 10 ns, followed by a slow sweep at 10 V/s up to 20 V.
The simulation captures the hysteresis in Ip below the kink
associated with charge stored at high drain bias. However,
it will not capture the kink itself which would be caused
by the onset of leakage between the 2DEG and the buffer,
effectively pinning its potential to that in the 2DEG. For the
n-type buffer (Case 3), no deviation from the static sweep is
observed for the 10-V/s sweeps, whereas for the p-type buffers
of Cases 1 and 2 there is a significant hysteresis (reduction)
in current apparent in the knee region for the forward-sweep
compared with the backward sweep case. For Case 1, the static
sweep exceeds both forward- and backward-sweeps. These
simulations clearly show how a kink could arise if a nonohmic
leakage path was present. Charge distributions stored in the
buffer cannot change easily at low bias if the buffer is floating
but will be able to come into equilibrium at a few volts above
the knee once hole charge can flow into the buffer.

To understand more clearly the origin of the complex
transient behavior seen in Fig. 2, drain current transients in the
kink region have been simulated for a bias step from 0 to 4 V
(corresponding to initial sweep) and from 20 to 4 V
(subsequent sweep), as shown in Fig. 6. For the three cases
considered here, on step-down [Fig. 6(a)] there is a recovery
apparent at ~10 ms corresponding to the neutralization of
charge stored in ionized Fe acceptors under the gate, a time
scale too short to be observed in the slow sweep simulations
of Fig. 5. This Fe-related response arises even for the p-type
Cases 1 and 2 since the Fermi energy must always cross the Fe

Drain Current (A)

e —

8
Drain Voltage (V)

12 16 20 0

4 8 12 16
Drain Voltage (V)

Overlaid simulated output characteristics for the buffers of Table Il with Vgg = 0 to —2 V in 0.5-V steps. Black line: static (equilibrium)
sweep. Blue line: static bias of Vpg = 20 V, immediately followed by 10 V/s up-sweep from 0 to 20 V. Red line: static bias of 10 V followed by a
10 V/s down-sweep to O V.
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Fig. 6. Normalized drain current transients for the buffers of
Table Il (a) following step-down from Vpg = 20 to 4 V and (b) step-up
from Vpg =010 4V, with Vgg = —1.5 Vin all cases.

trap level within the channel depletion layer. This is followed
by the negative and positive magnitude long time constant
processes for Cases 1 and 2, as can also be observed for
>100 °C in the current transient measurement for wafer A
[see Fig. 2(a)]. A conventional interpretation of such negative
and positive drain current transients would ascribe them to
donor and acceptor traps, respectively, [14]. However, this
cannot be the case in the simulation since the donors are
always ionized and only changes in occupation of the Cy
acceptor occurs. For Case 3, there is no barrier preventing
electrons from flowing into the n-type buffer and hence no
additional transients are observed on step-down.

Net ionized charge density for Case 1 with and without
drain bias is shown in Fig. 7 to help to explain the mechanism
of positive and negative magnitude contributions seen in
Figs. 2(a) and 6(a). Fig. 7(a) for Vps = 0 V shows that the
depletion charge of ionized Cy is constant from source to
drain except in the vicinity of the p++ shorting regions at the
outer edges of the contacts. However, for positive drain bias,
a small hole current starts to flowthrough the highly resistive
buffer, forward biasing the depletion region in the source—gate
gap and reverse biasing the depletion region in the gate—drain
gap as can be seen for Fig. 7(b). This reduces the negative
charge below the channel near the source and increases it
near the drain, so Rg is reduced, and Rp increased. This is
exactly what was measured for Wafer A, as shown in Table I.
The reduction in Rg is excellent supporting evidence for the
attribution of wafer A as p-type with a high Cy density. The
absence of any change in Rg in Wafer B is consistent with
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Fig. 7. Net ionized charge densities for Case 1 with a different bias.
(a) VGS =0Vand VDS =0V.(b) VGS =0Vand VDS =20V.

its low Cy density. There is insufficient depletion charge to
cause a significant change in Rg.

This all suggests that the positive and negative magnitude
buffer time constants seen in Fig. 2(a) and simulated in
Fig. 6(a) are all due to the same Cy acceptors but located
in different parts of the device. The positive going transient
is associated with the relaxation of negatively charged Cy
acceptors located under the gate, whereas the negative com-
ponent is due to ionization of neutral Cy acceptors in the
source—gate depletion region. (There will also be relaxation
of charged acceptors in the gate—drain gap, however, this will
have a little impact on Ip above the knee since the device
is saturated at Vps = 4 V). Clearly the real situation for
Wafer A in Fig. 2(a) is more complex, however, above 100 °C
it is consistent with the simulation, with GaN transport
dominated by bulk resistive conduction via holes thermally
activated to the VB, thus explaining the observed 0.9-eV
activation energy. We note that two time constants (and
hence apparent capture cross sections) from the same trap
has previously been observed in related measurements and
simulations for a p-type floating buffer [30], although in that
case both contributions had the same sign. Below 100 °C,
the GaN buffer is more resistive and the behavior would be
consistent with the hopping transport between the 2DEG and
acceptors dominating, perhaps explaining the widely observed
0.5-0.6-eV activation energy [12], [14], [31].

There have been conflicting reports on the occurrence of the
kink on the initial forward-sweep [6], [8]. Fig. 6(b) shows how
this can arise depending on the background carbon concentra-
tion. It shows the change in current as Vpg is stepped from 0 V
to Vps = 4 V and corresponds to the first sweep from unbiased
equilibrium to a bias below the kink but above the knee and
hence in saturation. The high Cy density Case 1 shows a
normalized increase in current of 6% mostly associated with
a reduction in Rg. This compares with a 17% increase in
current when stepping from 20 to 4 V [Fig. 6(a)] where
the reduction in resistance under the gate exceeds the effect
of the increase in Rg. By contrast, the low carbon density
Case 2 shows minimal change for initial step-up [Fig. 6(b)].
This is because there is a correspondingly lower source region
depletion charge and so there is an insignificant effect on
Rs and hence would show no kink. Wafer A, which has the
high carbon density, shows a small kink on the initial sweep
in Fig. 1(a), consistent with this prediction. Wafer B shows

minimal kink and is consistent with an n-type buffer meaning
that there is a background concentration of donors greater than
2 x 10'® cm~3 whose origin is not known.

IV. CONCLUSION

Kink effect in Fe-doped devices, a hysteresis in drain
current in the knee region of GaN HEMTs, is explained
using a floating buffer model. To observe kink and hysteresis,
two effects must be present: the presence of a background
substitutional carbon impurity which makes the bulk of the
GaN buffer p-type, and band-to-band trap-assisted leakage of
holes from the 2DEG into the buffer at moderate electric fields.
Both these requirements are likely to be met in Fe-doped
MOCVD epitaxy explaining its relatively frequent observation.
We note that kink is also often observed in carbon-doped
power devices as a result of essentially the same mechanism.
The magnitude of the kink and its precise time dependence is
strongly dependent on the carbon concentration and its degree
of self-compensation, the density of background donors, and
the exact band-to-band leakage path, helping to explain why
even apparently identically grown epitaxy can result in a
different kink behavior. Depending on the carbon density,
a kink can be either present or suppressed during the initial
sweep providing an explanation for the reported difference
in behavior in the literature [6], [8]. Suppression of the kink
effect would require a detailed control of native defects and
unintentional dopants as well as parasitic leakage paths and
will constitute a challenge for the community.

We show that floating p-type buffers can result in transient
behavior which is dependent on the transport path to the
trap state rather than just the trap properties themselves. This
results in positive and negative sign transients from the same
trap, having the same activation energy but located in different
parts of the device. Conventionally this would be interpreted
as a “donor” and an “acceptor” trap having a different cap-
ture cross section. This calls into question some simplistic
interpretations of drain current transient spectroscopy based
on classical DLTS, which assume the availability of a bath of
majority carriers.
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