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Stochastic Quenching Mechanisms and a
Scaling Law for Single Photon Avalanche Diodes

Akito Inoue

Abstract— A comprehensive scaling law for single
photon avalanche diodes (SPADs) is presented through
stochastic analyses of quenching mechanisms using a
Monte Carlo method. By simulating random impact ioniza-
tion events for individual carriers, two distinct quenching
mechanisms are identified: successful quenching (SQ) and
unsuccessful quenching (UQ). SQ occurs when quenching
is achieved after the initial pulse of avalanche multiplication
(AM), mainly attributed to the minimum average carrier
number within a multiplication region (MR). In contrast,
UQ involves prolonged and repetitive pulses, caused by
stochastic fluctuations around the equilibrium carrier num-
ber. This study has derived an analytical expression for
the probability of quenching failure (1–PQ) as functions
of the quenching resistance and the capacitance of the
MR. This analytical expression exhibits a good agreement
with the simulation results. Moreover, analytical formu-
las for the threshold quenching resistance and the dead
time have been derived as a function of the desired PQ
value. Notably, the tradeoff relationship between the dead
time and the standard deviation of the voltage swing is
elucidated, leading to the scaling limitation. Additionally,
avalanche triggering probability (ATP), breakdown voltage,
and the average voltage swing are revealed to be scale-
invariant. Based on these aforementioned observations, the
comprehensive scaling law is established.

Index Terms— Avalanche breakdown, avalanche photodi-
odes, CMOS image sensors (CISs), Monte Carlo simulation,
quenching, quenching probability, scaling law, single pho-
ton avalanche diodes (SPADs).

I. INTRODUCTION

IN RECENT years, significant progress has been made
in the development of single photon avalanche diode

(SPAD)-based CMOS image sensors (CISs) [1], [2], [3]. These
sensors have been extensively utilized in various applications,
such as time-of-flight ranging sensors for autonomous driving
[4] and mobile phones [5], wide dynamic range imagers for
surveillance cameras [6], and high sensitivity imagers [7].
The driving force behind these advancements is the minia-
turization of pixels, leading to pixel sizes below 10 µm and
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resolutions reaching to several megapixels [6], [8], [9]. One
crucial challenge in pixel miniaturization is quenching, which
is the mechanism that stops avalanche multiplication (AM)
immediately after its occurrence. Through the appropriate
design of the external quenching resistance, large voltage
swing, low power consumption, and short dead time can be
achieved [1], [10].

To date, the two types of quenching models based on the
carrier dynamics inside the multiplication region (MR) have
been reported: 1) the deterministic models that numerically
calculate the average behavior of voltage, current, and carrier
number based on the carrier continuity equations [11], [12],
[13] and 2) the stochastic models that simulate the coordinates
of individual carriers as outcomes of successive random impact
ionization events [14], [15], [16]. Despite these individual
efforts, a unified explanation is still lacking. Additionally,
the previous study on SPAD scaling mainly focuses on the
size of the MR to enhance photon detection probability and
reduce dark count rate [17], without considering stochastic
carrier dynamics during quenching. Therefore, it is important
for successful design of SPAD-CISs with sub-10-µm pixels
to understand the interplay among stochastic carrier dynamics,
quenching, and SPAD scaling. This understanding enables low
quenching errors and short dead time within the limited pixel
area.

This article employs Monte Carlo simulations to expand
the deterministic analyses conducted in our previous studies
[12], [13] into the stochastic framework. By investigating the
time evolutions of voltage across the MR and the carrier
number within it, two distinct quenching mechanisms have
been identified: one attributed to the minimum average carrier
number and the other arising from the fluctuations around
the equilibrium carrier number within the MR. Probabilities
associated with the occurrence of these two mechanisms are
analyzed in detail as functions of the MR capacitance and the
quenching resistance. This analysis results in the derivation of
analytical formulas for the probability of quenching failure,
the threshold value of quenching resistance, and the dead time.
The dead time is subject to the tradeoff relationship with the
standard deviation of the voltage swing, which imposes the
scaling limitation. Avalanche triggering probability (ATP),
breakdown voltage (VBD), and average voltage swing are
shown to be scale-invariant. These findings are summarized
to propose the comprehensive scaling law for SPADs.
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Fig. 1. (a) Circuit diagram of a SPAD. (b) Equivalent band diagram
of a SPAD MR with associated circuit elements. During the simulation,
the positions of all electrons [ze(t)] and holes [zh(t)] are computed at
each time step. The impact ionizations are simulated by comparing the
probabilities of impact ionization events with RN.

II. FORMULATION OF A MONTE CARLO
QUENCHING MODEL

A 1-D SPAD with the p-i-n structure is considered, where
the i-region is the MR. In the simulations, electric field within
the MR is uniform and the width of the MR is constant. The
circuit model is depicted in Fig. 1(a), where the quenching
resistor, R, is connected to the cathode of the SPAD. The total
capacitance, including the capacitance of the MR and stray
capacitances of the cathode node, is illustrated by the parallel
capacitor C . If the parasitic capacitances are negligible, C is
proportional to the MR’s area S as

C = ε
S
W

(1)

where ε represents the dielectric constant of the SPAD. The
bias voltage V0 = VBD + Vex is a variable above the breakdown
voltage (VBD). The excess voltage (Vex) is much smaller than
VBD (Vex ≪ VBD). The anode of the SPAD is connected to
the ground. In Fig. 1(b), the band diagram of the MR with
the circuit elements is depicted. The carriers transport with
their saturation velocities and the positions of all carriers are
tracked for each time step 1t . Within 1t , impact ionizations
are simulated by comparing random numbers (RN) with the
probabilities of impact ionization events: αve1t for electrons
and βvh1t for holes. Once the electrons drift out of the MR,
they are accumulated at the cathode node of the SPAD. The
number of stored electrons, denoted as Ne(t), increases as the
number of electrons drifting out of the MR within 1t [1ne(t)].
Simultaneously, it diminishes as electrons discharge toward the
voltage source through R. Consequently, Ne(t) is calculated
by the following recurrence equation:

Ne(t + 1t) = Ne(t) + 1ne(t) − Ne(t)1t/RC. (2)

The voltage across the SPAD [V (t)] is reduced by Ne(t) as

V (t) = V0 −
q
C

Ne(t). (3)

The electric field is then calculated as E(t) = V (t)/W . It is
noted that (3) ignores the space charge effect, since the primary
focus of this study is to elucidate a scaling law for SPADs.

TABLE I
DEFINITIONS AND VALUES OF THE PHYSICAL QUANTITIES

This iterative process continues until all electrons and holes
disappear from the MR.

III. RESULTS OF MONTE CARLO SIMULATIONS
A. Stochastic Quenching Mechanisms

Time evolutions of voltage across the MR [V (t)] and the
number of electrons within the MR [ne(t)] are presented in
Fig. 2(a)–(c) and (d)–(f), respectively. The initial condition is
set as the scenario, in which an electron–hole pair is generated
at the anode edge of the MR assuming single photon detection.
The parameters employed for this analysis pertain to a silicon
SPAD and are summarized in Table I. Through simulations
utilizing these parameters, VBD is determined to be 29.55 V.
The initial voltage V0 is set to 30 V (Vex = 0.45 V) and
the capacitance values are C = 30 fF [see Fig. 2(a) and (d)],
6 fF [see Fig. 2(b) and (e)], and 0.1 fF [see Fig. 2(c) and (f)].
It should be noted that the typical capacitance values for
the SPAD-CISs fall within the range of tens of fF when
employing a pixel pitch of 10 µm, while they diminish to
less than 1 fF with a 1 µm pitch. At their lower extreme,
the capacitance value reaches approximately 0.1 fF. To align
with (8) in Section IV-A, the values of R are determined as
a function of C . The simulations are conducted for 20 000
steps, each with a time increment 1t of 0.2 ps. Results are
classified based on whether AM is triggered or not, and within
the AM-triggered cases, whether quenching is successful or
unsuccessful. In Fig. 2, the blue curves represent successful
quenching (SQ) cases, while the red and green curves depict
unsuccessful quenching (UQ) cases. Here, “unsuccessful”
implies a longer quenching duration compared with that of SQ.

In the case of SQ, a sharp voltage drop followed by a
recharge is observed in Fig. 2(a)–(c). The voltage swing,
1VQ = V0− min [V (t)], is approximately 2Vex. Concurrently,
the number of electrons exponentially increases and then expo-
nentially decreases, as shown in Fig. 2(d)–(f). With the aid of
carrier number fluctuations, the electron number eventually
reaches 0 (highlighted by the blue hatches). As indicated
by vertical dashed lines, the electron number reaches its
maximum at tBD, coinciding with V (tBD) = VBD. These obser-
vations align with the findings of the deterministic models
[11], [12], [13]. Thus, the randomness has an insignificant
impact on the time waveforms in the case of SQ.

In the case of UQ, the time evolutions of the voltage
and the electron number exhibit the similar pattern to SQ
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Fig. 2. Time evolutions of (a)–(c) voltage across the MR and (d)–(f) number of electrons inside the MR. The MR capacitance and quenching
resistance values are (a) and (d) C = 30 fF and R = 12 kΩ (RC = 0.36 ns), (b) and (e) C = 6 fF and R = 50 kΩ (RC = 0.30 ns), and
(c) and (f) C = 0.1 fF and R = 500 kΩ (RC = 0.05 ns). The blue curves represent the results for SQ, while the red and green curves illustrate the
results for UQ. The arrow in (a) indicates the voltage swing ∆VQ. The horizontal dashed lines in (a)–(c) and (d)–(f) correspond to VBD and neq,
respectively. The vertical dashed lines indicate tBD. The blue and red hatches present the time intervals, where SQ and UQ occur. Note that the
horizontal axes in (c) and (f) are limited up to 1 ns.

until the middle of the recharging phase. However, subse-
quent oscillations or fluctuations emerge. In the case where
C = 30 fF and R = 12 k� (RC = 0.36 ns), as shown
in Fig. 2(a) and (d), V (t) and ne(t) oscillate around VBD =

29.55 V and the equilibrium carrier number neq, respectively,
with decreasing envelopes. These oscillations correspond to
the results of the deterministic model shown in [12, Fig. 3].
When C = 6 fF and R = 50 k� (RC = 0.30 ns), as depicted
in Fig. 2(b) and (e), neq decreases and both V (t) and ne(t)
exhibit irregular fluctuations. Once ne(t) reaches 0 because
of these fluctuations, no impact ionizations occur afterward,
resulting in quenching (highlighted by the red hatches). This
type of quenching is UQ, characterized by a longer duration
than SQ. In this manner, SQ and UQ are characterized by dif-
ferent quenching times as discussed in detail in Sections III-B
and IV-A. For C = 0.1 fF and R = 500 k� (RC = 0.05 ns),
as illustrated in Fig. 2(c) and (f), neq becomes even smaller,
and the amplitudes of the initial AM pulse and the subsequent
fluctuations become comparable, and, as a result, UQ occurs
earlier than the C = 6 fF case. In this manner, the fluctua-
tions due to the randomness give rise to UQ, leading to the
differences in time waveforms when compared to the results
of the deterministic models [11], [12], [13]. The fluctuations
are enhanced as C decreases or as the SPAD area diminishes.
Even in the presence of large fluctuations, V (t) drops below
VBD, indicating that VBD still acts as an equilibrium point.

B. Probability Distributions of Quenching Time
Fig. 3 illustrates the cumulative probability distributions of

Tquench, denoted as P(T < Tquench). Tquench represents the
quenching time at which both electrons and holes vanish from
the MR. It should be noted that the horizontal axes of Fig. 3
are inverted, with the right end of the figures at 0 ns and the
left end at 2 ns.

For C = 30 fF [see Fig. 3(a)], P(T < Tquench) exhibits dis-
tinct slopes for UQ (the red hatches) and SQ (the blue hatches),
indicating different quenching mechanisms. The plateau-like
UQ slopes indicate that the time required for UQ is longer
than 2000 ps because of the weak fluctuations compared with
large neq. As R increases, the probability of UQ decreases,
while the total of the probabilities of UQ and SQ, i.e., ATP
remains constant. In the case of infinite R (the purple line), all
trial results are classified as SQ. Nonavalanche (NA) (green
hatch) slopes appearing near T = 0 is clearly separated
from the SQ slopes by the plateau regimes. In the case of
C = 6 fF [see Fig. 3(b)], the NA, SQ, and UQ slopes are
still distinguishable, but the UQ slopes become nonnegligible.
As R increases, the UQ slopes become steeper, indicating
that the time required for UQ occurrence is reduced. When
C = 1 fF [see Fig. 3(c)], the UQ slopes get even steeper
and the inflection points between the SQ and UQ slopes
become unclear. For C = 0.1 fF [see Fig. 3(d)], these slopes
cannot be distinguished. This can be attributed to the fact that
the magnitude of fluctuations is comparable to that of AM,
as observed in Fig. 2(f). It is noteworthy that the distributions
of NA remain almost unchanged regardless of R and C . As the
influence of R and C comes through the voltage across the
MR, the carrier behaviors are not affected by the voltage
change until AM is triggered.

The quenching probability is defined as the ratio of the
probability of SQ (PSQ) to ATP as

PQ =
PSQ

ATP
=

PSQ

PSQ + PUQ
. (4)

In Fig. 4(a), the failure probability of quenching (1 − PQ) is
plotted as a function of RC. The results for C = 1, 6, and 30 fF
are plotted by red, green, and blue dots with corresponding
lines, respectively. It can be observed that (1 − PQ) decreases
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Fig. 3. Cumulative probability distributions P(T < Tquench) for (a) C =

30 fF, (b) C = 6 fF, (c) C = 1 fF, and (d) C = 0.1 fF. The red, blue, and
green hatches represent the slopes for UQ, SQ, and NA components,
respectively. The arrows indicate the inflection points between the SQ
and UQ slopes except for (d) where the SQ and UQ slopes cannot be
distinguished.

exponentially with RC, and for the same RC value, (1 − PQ)

is reduced further by decreasing C . Notably, as depicted in
Fig. 4(b), all data points of (1 − PQ)/C align on the same
fitting line calculated by (6) (explained in Section IV-A in
detail). It is important to note that [14] and [20] contain the
experimental results regarding the time waveforms of SQ and
UQ, as well as the probability functions for quenching time.
This study distinguishes itself from [14] and [20] by focusing

Fig. 4. (a) 1 − PQ and (b) (1 − PQ)/C as a function of RC. Red, green,
and blue dots with corresponding lines represent the results for C = 1,
6, and 30 fF, respectively. The dashed line in (b) indicates the fitting line
obtained by (6). The all data points align along this line.

on elucidating the distinct mechanisms for SQ and UQ and
introducing the scaling law for SPADs.

C. Probability Distributions of Voltage Swings
Fig. 5 represents the probability distributions of 1VQ, for

initial voltages of Vex = 0.45, 0.95, and 1.45 V (V0 = 30.0,
30.5, and 31.0 V). When a voltage above VBD is applied,
the distributions of 1VQ are binarized into two components:
one near 1VQ = 0 (the NA component) and the other
centered around 1VQ = 2Vex (the AM-triggered component).
The peak positions of the AM-triggered component remain
constant regardless of C . In contrast, the distribution width
of 1VQ increases as C decreases. For C = 30 and 6 fF [see
Fig. 5(a) and (b)], the two distributions are clearly separated
for all Vex values. However, the overlaps between the NA and
AM-triggered components are observed up to Vex = 0.45 V
for C = 1 fF and Vex = 0.95 V for C = 0.1 fF, as shown in
Fig. 5(c) and (d), respectively.

Fig. 6(a)–(c) presents ATP, the average of 1VQ (E[1VQ]),
and the standard deviation of 1VQ (σ [1VQ]), respec-
tively. To distinguish between the NA component and the
AM-triggered component, the threshold voltage swing is set
to 1VQ,th = 0.5 V, which is close to the minimum for
P(1VQ) with Vex = 0.45 V. Both ATP and E[1VQ] are
independent of the MR capacitance. Moreover, E[1VQ] is
almost 2Vex for all Vex and C values, consistent with [12],
[13], and [21]. As V0 = VBD + Vex, both VBD and Vex are
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Fig. 5. Probability distributions of ∆VQ for (a) C = 30 fF and R =

24 kΩ, (b) C = 6 fF and R = 100 kΩ, (c) C = 1 fF and R = 400 kΩ,
and (d) C = 0.1 fF and R = 2.8 MΩ. To minimize the influence of UQ,
sufficiently large resistance values are chosen. The initial voltages are
Vex = 0.45 V (red), 0.95 V (green), and 1.45 V (blue).

also independent of C . In contrast, as indicated by the dashed
line in Fig. 6(c), σ [1VQ] decreases proportional to 1/

√
C , due

to the fluctuations enhanced with decreasing C . In addition,
the decrease in σ [1VQ] with increasing Vex aligns with the
experimental results demonstrated in [21, Fig. 7].

IV. DISCUSSION

A. Quenching Conditions for SQ and UQ
In both the cases of SQ and UQ, the following two condi-

tions must be achieved for quenching: 1) the “average” carrier
number in the MR, as determined by the deterministic model,
becomes insufficient and 2) carriers within the MR vanish
(ne(t) = 0) due to stochastic fluctuations. As the amplitude of
the fluctuations is determined by the impact ionization rates
and the average carrier number within the MR, the variation in
the average carrier numbers between SQ and UQ gives rise to

Fig. 6. (a) ATP, (b) average voltage swing E [∆VQ], and (c) standard
deviation of the voltage swing σ[∆VQ] as a function of C. Red, green,
and blue dots with corresponding lines are results for Vex = 0.45, 0.95,
and 1.45 V, respectively. The dashed line in (c) represents a slope
proportional to 1/

√
C, indicating the observed trend.

the difference in the probability distributions of the quenching
time. To fulfill the condition 1), the upper thresholds for the
average carrier numbers must be defined for both UQ (nth,UQ)

and SQ (nth,SQ).
For the UQ case, the corresponding average carrier number

is neq, which can be calculated using the following equation:

neq =
Vex

q R
·

W
ηve

(5)

where η represents a parameter that characterizes the bias
in electron generation locations within the MR toward the
cathode side. By fitting neq to the time waveforms shown in
Fig. 2(d)–(f), η = 3 is obtained. Equation (5) indicates that
the probability of UQ is solely dependent on R. To enhance
the probability of UQ events, R should exceed 50 k�, as illus-
trated in Fig. 3, where nonzero slopes become noticeable.
By using this resistance value, the threshold is calculated as
nth,UQ = 300 below which UQ can occur.

On the other hand, SQ occurs immediately after the first AM
pulse, when the average electron number reaches its minimum
value (min[ne(t)]), according to [12, eq. (32)]. The quenching
condition is met when min[ne(t)] falls below nth,SQ, and the
failure probability of SQ is reduced as min(ne(t)) decreases.
Assuming that (1 − PQ) can be expressed as the ratio of
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Fig. 7. Relationship between the MR capacitance and two key
parameters: tdead represented by the red dots on the left axis, and
ER represented by the blue dots on the right axis. The data indicate
a tradeoff correlation between these parameters.

min(ne(t)) to nth,SQ, it can be formulated as

1 − PQ =
min(ne(t))

nth,SQ
∼

1
nth,SQ

CVex

qτQ

W
ηve

exp
(

−
ln(2)

2τQ
RC

)
(6)

where τQ is the time constant of the voltage swing, defined
by [12, eq. (13)] as

τQ =
(
α′(EBD) + β ′(EBD)

)
· ve Vex/W (7)

where α′(EBD) = dα(EBD)/d E and β ′(EBD) = dβ(EBD)/d E .
Equation (6) reproduces the results shown in Fig. 4(b) well.
This supports the validity of the aforementioned assumption
regarding to (6). In addition, nth,SQ equals to 170, which
is close proximity to, and slightly smaller than nth,UQ. This
discrepancy arises from the shorter time allowance for SQ
compared to UQ. SQ is required to take place immediately
after the initial AM pulse; otherwise, the carrier number
increases again.

In light of (6), two essential parameters can be derived:
the threshold quenching resistance and the dead time. These
parameters are interconnected with the desired quenching
probability, PQ,des, as follows:

RQ =
2τQ

C ln(2)
ln

(
CVex

qτQ

W
ηve

1
nth
(
1 − PQ,des

)) (8)

tdead = RQC =
2τQ

ln(2)
ln

(
CVex

qτQ

W
ηve

1
nth
(
1 − PQ,des

)). (9)

Equations (6), (8), and (9) extend the previously derived
formulas presented in [12].

B. A Scaling Law for SPADs

A scaling law for SPADs can be established through the
aforementioned equations and discussions. Table II presents
the scaling law based on the aforementioned stochastic anal-
yses. The capacitance scales proportional to the pixel area
according to (1), indicating that when S is multiplied by a
factor of k, C is also multiplied by k. VBD, E[1VQ], and

TABLE II
SCALING LAW FOR SPADS

ATP remain unchanged under scaling, with E[1VQ] approx-
imately equal to 2Vex. σ [1VQ] and tdead are proportional to
1/

√
k and ln(k), respectively, exhibiting a tradeoff relationship.

σ [1VQ] is associated with the detection error rate (ER). Fig. 7
illustrates tdead and ER as a function of C , highlighting the
above tradeoff. In the calculation of tdead, a threshold value of
(1 − PQ,des) = 0.01 is used. By referring (9), tdead changes
logarithmically with C and k as ln(kγ )/ln(γ ), where γ =

(CVexW )/(qτQηventh(1 − PQ,des)). The capacitance value must
be within a few tens of femtofarads to achieve tdead with
a few nanoseconds. The ER is obtained by calculating the
probability that 1VQ becomes less than 1VQ,th even when the
AM is triggered. It is obtained by fitting the AM-triggered
components depicted in Fig. 5 using the Gaussian distribution
with the mean E[1VQ] and the standard deviation σ [1VQ] as
follows:

ER =
1

√
2πσ

[
1VQ

] ∫ 1VQ,th

−∞

exp

(
−

(
1VQ − E

[
1VQ

])2

2σ
[
1VQ

]2

)
d1VQ. (10)

The ER is highly sensitive to C , varying by orders of
magnitude. When considering the application to SPAD-CISs,
the allowable ER is at most 1%, corresponding to a lower
threshold of 1 fF. These results give the scaling limitation of
the pixel area, as calculated by (1), to be within the range of
10–100 µm2 for an about 1 µm width of MR.

V. CONCLUSION

The stochastic carrier dynamics in SPADs have been
investigated using Monte Carlo simulations. Time evolutions
of voltage and carrier number have revealed two distinct
quenching mechanisms: SQ and UQ (see Fig. 2). SQ is
attributed to the minimum value of the average carrier num-
ber within the MR after the initial AM pulse, while UQ
arises from fluctuations around the equilibrium carrier number
(see Section IV-A). The cumulative probability distributions
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of Tquench further confirm the different mechanisms of SQ
and UQ, as indicated by their different slopes (see Fig. 3).
The magnitude of fluctuations is enhanced by increasing the
quenching resistance and decreasing the MR capacitance,
making the distinctions of SQ and UQ unclear. The quenching
failure probability, (1 − PQ), exhibits a good agreement
between the analytical expression and the simulation results
[see (6) and Fig. 4]. This analytical expression leads to the
derivations of fundamental formulas for a threshold quenching
resistance (8) and a dead time (9). The analysis of voltage
swing has identified scale-invariant parameters, including ATP,
VBD, and the average of 1VQ (see Figs. 5 and 6). The
scaling limitation is derived from the tradeoff relationship
between the dead time and the standard deviation of 1VQ (see
Fig. 7). Based on these findings, the comprehensive scaling
law for SPADs has been established (see Table II), provid-
ing valuable design guidelines to optimize pixel capacitance
and pixel area. This study significantly contributes to the
advancement of high-resolution SPAD-CISs with fine pix-
els, expanding the possibilities for implementing cutting-edge
imaging applications.
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