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Abstract— The semiconductors industry benefits greatly
from the integration of machine learning (ML)-based tech-
niques in technology computer-aided design (TCAD) meth-
ods. The performance of ML models, however, relies heavily
on the quality and quantity of training datasets. They can
be particularly difficult to obtain in the semiconductor
industry due to the complexity and expense of the device
fabrication. In this article, we propose a self-augmentation
strategy for improving ML-based device modeling using
variational autoencoder (VAE)-based techniques. These
techniques require a small number of experimental data
points and do not rely on TCAD tools. To demonstrate
the effectiveness of our approach, we apply it to a deep
neural network (DNN)-based prediction task for the ohmic
resistance value in gallium nitride (GaN) devices. A 70%
reduction in mean absolute error (MAE) when predicting
experimental results is achieved. The inherent flexibility
of our approach allows easy adaptation to various tasks,
thus making it highly relevant to many applications of the
semiconductor industry.

Index Terms— Data augmentation, electronic design
automation (EDA), gallium nitride (GaN), machine learning
(ML), semiconductor devices.

I. INTRODUCTION

ELECTRONIC design automation (EDA) has been crucial
in advancing the semiconductors industry by simplifying
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design tasks and reducing their time consumption [1]. One
particular EDA technique, technology computer-aided design
(TCAD), has been especially useful in the area of semiconduc-
tor devices. TCAD solves basic physics equations using the
finite element method, such as the Poisson and Schrödinger
equations, which provides easy access to simulated results that
would be difficult to solve manually [2], [3], [4]. In addition,
TCAD has significantly reduced the cost of experiments during
device design by avoiding them altogether [5].

Nevertheless, simulating complex 3-D device structures
requires significant computational resources. While many
models and methods have been developed to reduce resource
consumption, exploring novel methodologies of TCAD
remains a pressing issue to balance the accuracy and time
consumption of sophisticated physics simulations. So far,
machine learning (ML)-based solutions have been success-
fully employed in many device modeling cases and offer
the advantage of low-resource consumption after model train-
ing [6], [7], [8], [9], [10]. However, with expanding size of
the ML models, there is an increasing need for input data to
fully complete model training [11].

TCAD-based data augmentation, a technique that has gar-
nered significant attention in the semiconductor industry since
2019 [9], [12], [13], [14], has been employed to generate artifi-
cial data that can be fed into deep neural network (DNN)-based
models. This approach could provide an expanded dataset
and then significant boost to DNN-based modeling within
the TCAD industry’s development. However, many problems
in the semiconductor industry cannot be directly solved by
TCAD tools, such as the simulation of the formation of ohmic
contacts in gallium nitride (GaN) devices, which imposes
a formidable challenge on the TCAD-based augmentation
technique.

Recently, a study by Sheelvardhan et al. [15] highlighted
the potential of knowledge-based ML algorithms in overcom-
ing the limitations of traditional ML-based approaches for
semiconductor device modeling. By leveraging prior knowl-
edge, these algorithms offer a promising solution to address
the complexities associated with establishing and training ML
models. This research represents a significant advancement
toward the development of next-generation ML-based TCAD
toolkits.

© 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
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https://orcid.org/0000-0002-6994-1234


264 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 71, NO. 1, JANUARY 2024

Fig. 1. Sketch of the whole procedure of augmentation-enhanced ML-based semiconductor device modeling–The data were extracted from
literature containing experimental data and then were augmented by the augmentation model (VAE). The original data and the artificially augmented
data were measured in a DNN-based prediction task. The data flows between each step are indicated by arrows. Note that the validation process
was carried out with the experimental data that were extracted from the recently reported literature.

This article proposes a novel data self-augmentation strategy
for expanding the size of semiconductor device datasets used
for DNN-based modeling tasks, without requiring calibration
of TCAD tools. Although several studies have made good
attempts in using autoencoders as an unsupervised ML strategy
to improve the classification tasks in the semiconductor indus-
try [16], [17], using variational autoencoder (VAE) in boosting
TCAD’s performance of semiconductor devices is still unclear
to the best of our knowledge. Our approach is based on
the use of VAE [18], a type of generative model that can
learn the underlying probability distribution of the dataset, and
then generate new, synthetic data samples that are statistically
similar to the original data. Specifically, we apply the data
from our proposed strategy to the DNN-based modeling task—
predicting the ohmic contacts of GaN devices, a challenging
problem that cannot be solved directly using TCAD.

To validate the effectiveness of our approach, we used
experimental data extracted from the literature to train the
VAE, which was then used to generate augmented data that
were combined with the experimental data for training the
DNN model (for dataset details, see our previous work [19]).
The results demonstrate that our data augmentation strategy
significantly reduces the mean absolute error (MAE) of the
prediction by up to 70% for AlGaN/GaN devices, when
compared with the model using experimental data only. This
finding highlights the potential of our approach for enhancing
the accuracy and robustness of device simulation tools in the
semiconductor industry.

II. METHODS FOR DATA AUGMENTATION AND
VERIFICATION

In this article, we propose a data self-augmentation strategy
based on a VAE to improve the performance of ML-based
modeling. Generally, ML-based device modeling aims to link
device features, such as gate length, drain voltage, and anneal-
ing temperature, to performance, such as surface potential,
saturation current, and ON/OFF ratio [20], [21], [22]. Our
proposed data augmentation framework is divided into three
main parts: a feature preprocessing module (sectors I and II),
a data augmentation module (sector III), and an ML-based
modeling module (sector IV), as shown in Fig. 1. The first step

of modeling is to extract parameter data, i.e., device features,
from experimental results, as illustrated in sector I. The
extracted data are then transformed into vectors by the feature
preprocessing module, as shown in sector II. The experimental
data are split into a training set (67% of the data) and a test
set (33% of the data) before establishing the VAE model.
Each dataset’s data points were chosen randomly. The training
set is used to build the generative models for augmentation,
as depicted in sector III. The generated artificial data are
combined with the training set and fed into the DNN-based
model for semiconductor device performance modeling (sector
IV). The test set (only contains experimental data) is used
to evaluate the generalization ability of the DNN and the
augmentation model.

It is noteworthy that we adopted a linear unit structure
of VAE with minimal parameters in this study. By doing
so, only the crucial parameters of the real distribution are
learned through backpropagation, akin to principal component
analysis. This approach allows us to partially relax the size
requirements of the training dataset, but meanwhile, it may
introduce inaccuracy, which requires further study and is not
the scope of this study.

The steps of the proposed data augmentation strategy and
verification are described as follows, with technical details
provided in the subsequent subsections.

1) Extract feature data from experiments and split the data
into a test set and a training set.

2) Train the VAE-based model using the training set.
3) Generate artificial data and combine it with the training

set.
4) Train the corresponding DNN models using the com-

bined dataset.
5) Test the DNN model using the test set and calculate the

MAE.
6) Repeat steps 2)–5) five times and calculate the average

MAE for further discussion.

A. Feature Preprocessing
To minimize the influence of missing data points, all

experimental data were filtered by a “data cleaning” process,
this deletes whole vectors if any vacancy exists. Then, the
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Fig. 2. Schematic procedure of artificial data generation. The typical VAE model was adopted for generating the features, while for generating
the corresponding labels, the nearest neighbor algorithm was used. The green frames indicate the process of data transformation in latent spaces,
while the frames with gray backgrounds show the structure of the augmentation model.

experimental data were divided into two parts for the next step:
the numerical part and the text-based part. These two parts are
handled by different processes: for the text-based input, such
as the name of material layers, the data were then transformed
into a numerical vector using one-hot encoding [19], [23].
For the numerical input, the item x of the data was directly
standardized by z-score to ensure that the numerical input was
centered to 0 with a standard deviation of 1, following the
equation given next:

z =
x − µx

σx
(1)

where µx is the mean of x and σx is the standard deviation of
x . Note that, for simplicity, the ohmic value data described in
the following sections are all standardized values, not original
values.

B. Generative Model
The primary goal of a generative model is to learn the joint

probability distribution of a given dataset through unsuper-
vised learning. This enables successful data augmentation from
experimental data by interpolating variations into the trained
generative model (shown in panels I and II of Fig. 2). In this
study, we used a two-component generator consisting of an
artificial feature generator and an artificial label generator.
To overcome the challenge of insufficient training data in
the augmentation task for the artificial feature generator,
we utilized the VAE, which is a simple yet powerful deep
generative model. In addition, we applied the K th near-
est neighbor (KNN) regressor to generate the corresponding
labels. This approach offers an effective solution to the prob-
lem of insufficient training data in data augmentation and

represents a significant contribution to the field of generative
modeling.

1) Artificial Feature Generator: The artificial feature genera-
tor is realized by the VAE. This is a variant of the automatic
encoder combining variational inference with a conventional
autoencoder framework. Thus, the VAE consists of two parts:
an encoder and a decoder. The encoding–decoding process
efficiently realizes dimensionality reduction, which empha-
sizes the preferred features of the input and suppresses the
less-important features to minimize interference [24], [25].
The encoder encodes, denoted as Enc(x), input x into a latent
representation z with a parameter θ , which is denoted by
qθ (z | x). The decoder reconstructs, denoted as Dec(z), the data
distribution x̃ from the given z, which is depicted as follows:

z = Enc(x) ∼ qθ (z | x) (2)

x̃ = Dec(z) ∼ p(x | z). (3)

Given a dataset x = {x1, . . . , xN }, where N is the number
of samples, the target of the generative model is to maximize
the probability p(X)

p(X) =

N∑
i=1

p(xi | z)p(z) (4)

in which p(z) is the probability distribution of the encoded
latent representations, which is unknown. The purpose of
the VAE is to infer p(z) from the ideal posterior prob-
ability p(z | x). It could be replaced by a simpler normal
distribution qθ (z | x). Then, the problem is converted into
minimizing the difference between those two distributions
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using Kullback–Leibler (KL) divergence [26]

KL(qθ (z | x)||p(z | x))

= E
[
log qθ (z | x) − log p(x | z) − log p(z)

]
. (5)

By applying the following function named evidence lower
bound (ELBO) [27]

ELBO(θ) = −E
[
log p(x | z) + log p(z) − log qθ (z | x)

]
= E

[
log p(x | z)

]
− KL(qθ (z | x)||p(z)). (6)

Equation (4) can be rewritten as a log-likelihood function

log p(x) = KL(qθ (z | x)||p(z | x)) + ELBO(θ). (7)

Note that x is known, log p(x) is constant. Besides, the KL
divergence is always greater than or equal to zero according
to Jensen’s inequality [28]. Therefore, minimizing the KL
divergence is equivalent to maximizing ELBO(θ). Since no
datapoint shares its latent z with another datapoint in VAE,
we can write this function for a single datapoint as follows:

ELBO(θ)i = E
[
log p(xi | zi )

]
− KL(qθ (zi | xi )||p(zi )). (8)

Thus, the training target of the VAE is actually approaching
the maximum of the ELBO function shown next, which is also
labeled in Fig. 2 between panels I and III

arg max
θ

ELBO(θ) =

∑
i

ELBO(θ)i . (9)

According to [25], p(zi) = N(0, I ) is assumed as a standard
normal distribution, while qθ (zi | xi) = N(µ(xi), 6(xi)), where
N represents a normal distribution, I is an identity matrix,
and µ and 6 are arbitrary deterministic functions that can be
learned from data. Thus, this can be explicitly expressed by
µ and 6 as follows:∑

i,k

[(
xk

i − x̃k
i

)2
+

1
2

(
6(xi )k + µ2(xi )k − 1 − log 6(xi )k

)]
(10)

where x̃k
i is the kth element of reconstructed data vectors x̃i

and µ(xi )k and 6(xi )k denote the kth element of vectors µ(xi )

and 6(xi ), respectively. Considering the encoder and decoder
processes, this x̃i can be formulated as the following form:

x̃i = Dec(Enc(xi)). (11)

In this proposed strategy, we used a linear neural network to
construct the encoder of the VAE model by which the input xi

is encoded into the latent representation zi. Thereafter, another
linear neural network can be constructed for decoding zi into
x̃i.

Mathematically, for Enc(xi), we have

Enc(xi) = qθ (zi | xi) ∼ N
(
µ̃(xi), 6̃(xi)

)
. (12)

According to (2) and (3), µ̃(xi) and 6̃(xi) should therefore
be encoded through the following forms by the linear neural
network {

µ̃(xi) = w2σ(xiw1)

6̃(xi) = w3σ(xiw1)
(13)

where w1 is the weight of the first layer in the encoder neural
network, w2 and w3 are the weight of the second layer in
the encoder neural network, and σ is the nonlinear activation
function. The latent representation zi can then be expressed as
follows:

zi = µ̃(xi) + 6̃(xi). (14)

Similarly, for Dec(zi ), we have

Dec(zi ) = p(xi | zi ) ∼ N(µ(xi ), 6(xi )). (15)

According to (2) and (13), µ(xi) and 6(xi) should be decoded
as the following form by the neural network:

µ(xi ) = w5σ(zi w4)

= w5σ((w2σ(xi w1) + w3σ(xi w1))w4) (16)
6(xi ) = w6σ(zi w4)

= w6σ((w2σ(xi w1) + w3σ(xi w1))w4) (17)

where w4 is the weight of the first layer in the decoder neural
network, w5 and w6 are the weight of second layer in the
decoder neural network, and the activation function σ here
is the same activation function as that of the encoder neural
network.

The training target function arg maxθ ELBO(θ) for our
model was obtained by combining (10), (11), (16), and (17)

∑
i,k



(
xk

i − Dec
(
Enc

(
xk

i

)))2

+
1
2



(
w6σ

((
w2σ(xi w1)

+w3σ(xi w1)

)
w4

))
k

+

((
w5σ

((
w2σ(xi w1)

+w3σ(xi w1)

)
w4

))
k

)2

− 1

− log
(

w6σ

((
w2σ(xi w1)

+w3σ(xi w1)

)
w4

))
k




.

(18)

The VAE is a neural network used for generating artificial
data that have a similar distribution to a given dataset. The
training process involves iterating the maximization of ELBO:
arg maxθ ELBO(θ) [as expressed in (18)] until the network
produces appropriate weights wi for the training dataset. Dur-
ing this process, the weights record information about the data
distribution. This allows the VAE to generate artificial data
(represented by z̃i) with a distribution similar to the original
dataset x [as shown in (16) and (17)]. This process ensures that
the VAE can successfully generate artificial data that closely
match the original dataset. Once trained, the artificial feature
generator can create artificial device features, and the artificial
label generator can generate artificial device performance. For
a better understanding of the training process and usage of the
VAE model, refer to Fig. 2.

2) Artificial Label Generator: The artificial label generator is
a critical component of the data generation process, respon-
sible for assigning device performances to the data generated
by the artificial feature generator. Since the artificial and real
features occupy the same space, the artificial performance
data can be assumed to be in the same neighborhood as the
real performance data. To generate performance values for
artificial features, the nearest neighbor algorithm is employed
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to analyze the real performance data. This algorithm compares
the artificial features with the real feature dataset to find the
most similar real features and then assigns the corresponding
performance value to the artificial features. In this way, the
artificial label generator ensures that the generated artificial
device performance closely matches the performance values
of real devices. The detailed procedure for using the nearest
neighbor algorithm to assign performance values to artificial
features is explained as follows.

First, we calculate all the distances between artificial fea-
tures and real features by an Euclidean metric [29]

d
(
x̀i , x j

)
=

M∑
k=1

(x̀ik − x jk)
2

(19)

where d(x̀i , x j ) denotes the distance between the i th artificial
feature x̀i and the j th real feature x j and M is the dimension
of x j .

Then, we introduce this distance into the performance data
space. The nearest neighbor algorithm is applied to calculate
the outputs of artificial features using the distance of features
as follows:

ỳi =

∑S
r=1

1
d(x̀i ,xr)

yr∑S
r=1

1
d(x̀i ,xr)

(20)

where ỳi is the generated output of the i th artificial feature
x̀i , S denotes the top S nearest neighbors to x̀i , and yr is the
real output value of the r th nearest real feature. The artificial
label generator first calculates the distance between an artificial
vector and its nearest real data vectors.

Then, the generator creates the corresponding artificial label
by evaluating the real labels of its nearest neighbors (regarding
the calculated distances) as expressed in (20). Note that the
VAE models for AlGaN/GaN, n-GaN, and p-GaN data were
trained separately in this article, considering the intrinsic
differences in the materials.

C. Methods for Verification

A DNN-based regression model is adopted in this article
to verify the artificial augmented data (Fig. 1, sector IV). The
model can be described in the following form:{

y = σ(Hwh + bh)

H = σ(Xwi + bi)
(21)

where y ∈ Rm are the measured values, wh ∈ Rn are the
weight of the hidden layer, bh ∈ Rn is the bias of hidden
layer, wi ∈ Rt are the weight of input layers, bi ∈ Rt is the
bias of input layer, X ∈ Rm×n is the data matrix combined with
the real samples and artificial samples, and σ is the nonlinear
activation function.

This model contains four layers, including an input layer
for inputting the real features or artificial features, two hidden
layers, and an output layer. The input layer has the same
number of neurons as the length of those device features.
The output layer contains only one neuron for predicting the
device’s electric performance. The two hidden layers that have

Fig. 3. Typical ohmic contact structure of GaN device and the simplified
fabrication process flow.

more than 50 units are designed to fit the complex relationships
between device features and their performance.

We used an experimental dataset of metal–semiconductor
ohmic contact resistance, extracted from fabricated
n-type GaN, p-type GaN, and AlGaN/GaN heterojunction
devices (the dataset details can be found in our previous
work [19]). The device structure and the process are
represented in Fig. 3. The dataset includes resistance values
and their corresponding fabrication recipes, such as metal
layers, annealing temperature, annealing time, and annealing
gas. This dataset is ideal for verifying our proposed self-
augmentation model. This is because the dataset has few data
points, a complicated fabrication process (also consuming
significant foundry time), and low fabrication recipe variation
and is difficult to simulate in TCAD.

Before training the DNN for the prediction task, we gen-
erated ten different scales of augmentations individually.
These ranged from the same number of data points as
the training dataset to ten times more. We then trained a
DNN-based network for ohmic resistance prediction using
a batch of random combinations of experimental and arti-
ficial data. We then tested its performance against the test
data, which exclusively consisted of experimental data. Each
DNN model was trained using augmented data at differ-
ent scales, and we performed this process five times to
ensure the accuracy. For comparison, we used Gaussian noise
augmentation as a control group. These noise-based data
are generated by adding noise from the standard Gaussian
distribution to the experimental data. Note that the DNN
models for AlGaN/GaN, n-GaN, and p-GaN data were trained
separately.

To evaluate the performance of the augmented dataset and
the model, we measured the MAE of the prediction using
a well-trained DNN-based ML model. The test set is from
experimental data only, so we believe that benchmarking the
final MAE provides a reasonable strategy for assessing the
VAE model’s performance. Validation of results could be
improved by comparison to new experimental data, which
will be the focus of future work. To avoid bias toward the
augmented data, we only used real experimental data for
testing. There is, however, no standard index or figure of
merit to evaluate the artificially generated data. Therefore,
we used three steps to evaluate our augmentation strategy as
follows.

1) We mapped the augmented data into a lower dimension
with experimental data for intuitive visualization.
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Fig. 4. Visualization of experimental data and augmented data, projected to a 2-D plane through a UMAP algorithm, for the resistance value of
ohmic contacts on (a) AlGaN/GaN heterojunction, (b) n-type GaN, and (c) p-type GaN substrates. All data for training the VAE were extracted from
experiments (for dataset details see our previous work [19]).

Fig. 5. Pearson r of the predicted and experimental ohmic resistance values of (a) AlGaN/GaN, (b) n-type GaN, and (c) p-type GaN substrates. The
augmented data are ten times larger than the experimental data. Note: fitting lines are from individual prediction process, which is not averaged.
For the details of the mean values, kindly refer to Fig. 6.

2) We analyzed the Pearson r to evaluate the similarity
between the prediction results from the augmented data
and the experimental data.

3) We evaluated the MAE of the prediction task using
augmented data.

III. RESULTS AND DISCUSSION

A. Augmented Data Visualization
Fig. 4 shows the kernel density plots that organize the dis-

tributions of the generated data with the real data. The uniform
manifold approximation and projection (UMAP) algorithm
was used to project the data from a high-dimensional parame-
ter space into a 2-D plane [30]. The artificially generated data
are shown as a density color map, and the real data are shown
as circles. It is observed that the artificially generated data
are located in proximity to the real data. This indicates that it
carries realistic information similar to the real data. In addition,
in Fig. 4, the high-concentration positions of the real data
do not largely overlap the augmented data. This implies that
the augmented data do not repeat the real data’s pattern but

(to some extent) compensates for the insufficient real data.
The augmented data therefore can extend the occupied area
in the data space, with a deliberate pattern, providing more
comprehensive sampling points for ML-based tasks.

Furthermore, it can be observed that the kernel density of
the augmented data is not condensed altogether in a small
range but is dispersed over a large region. This observation
suggests that the established augmentation model has suc-
cessfully extracted the realistic patterns from the experimental
data. It also suggests that it has reasonably generated a more
comprehensive artificial pattern containing sufficient additional
realistic information.

B. Pearson r of Augmented Data
To investigate and evaluate the proposed augmentation

model, we plotted the ohmic resistance values obtained from
predictions and experiments in Fig. 5. These predicted values
were generated by the DNN-based prediction model. We dis-
cuss the evaluation of this model and its training process in
the next section. Note that in Fig. 5, both the VAE-augmented
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Fig. 6. Mean values of Pearson r (reflecting the correlation between the real data and the predicted data) using VAE-based model, noise-based
model, and duplicating the experimental data (the test set) with different augmentation scales for (a) AlGaN/GaN heterojunction, (b) n-type GaN,
and (c) p-type GaN substrates. Note: each data point is averaged from fivefold cross validation.

Fig. 7. MAE of the prediction after five times testing, using pure experimental data, and different sizes of VAE- and noise-based data on
(a) AlGaN/GaN, (b) n-type GaN, and (c) p-type GaN substrates. Each bar represents five repeated testing processes.

and Gaussian noise augmented datasets have ten times more
data points than the training data.

In Fig. 5, we observe that for all three types of sub-
strates, the Pearson correlation coefficient of the model using
VAE-augmented data is higher than that using Gaussian noise
augmented data. The Gaussian noise can even result in a
negative slope of the correlation sometimes (see n-GaN data).
This is because augmenting the data with Gaussian noise may
introduce patterns that are opposite to the actual data, and these
patterns are subsequently learned by the ANN. Moreover, the
Pearson correlation coefficient of the augmented data in all
three groups is similar to real experiment data, indicating that
the generated augmentation data provide sufficient information
similar to the real data.

The Pearson correlation coefficient of VAE-based data and
noise-based data versus the augmentation scales (in multi-
ples) is shown in Fig. 6 (mean values), where all but one
point in the p-GaN group have higher r -index values for
VAE-based data than for noise-based data. We observe a trend
in Fig. 6(b) and (c), where the Pearson correlation coefficient
decreases with an increase in noise-based data points. This
indicates that more noise-based data points lead to lower
relativity, as the noise dilutes the data pool and fades the

realistic information. This trend is not apparent in Fig. 6(a),
possibly due to the relatively sophisticated experimental data
pool of the AlGaN/GaN group, where the augmented noise
cannot significantly alter the data pattern. On the contrary
to the noise-based data, the Pearson correlation coefficient of
VAE-based data remains stable during ten times of multipli-
cation, indicating that the proposed augmentation model does
not inject any negative influence on the data pattern during
augmentation. Thus, the data pool is not observed to be diluted.

C. MAE of Prediction Task
Fig. 7 shows the MAE of the VAE- and noise-based

augmented data. The VAE-based model outperforms the
noise-based model in all three device groups. For n-type GaN
and p-type GaN, the MAE of the VAE-based model decreases
initially and then flattens as the size of the augmented data
increases. The MAE level of the noise-based model remains
the same as the pure experimental data (without any augmenta-
tion, gray dashed lines) except for showing small fluctuations.
This difference in behavior is attributed to the different levels
of contribution of additional realistic information provided by
VAE- and noise-based data. The VAE-based data successfully
exhibit the realistic data pattern, leading to a decrease in
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Fig. 8. MAE improvement in test process of different augmentation
scales.

MAE. This pattern does, however, feature an accuracy limit (or
systematic error), which eventually flattens the MAE at large
augmentation scales. Increasing the amount of experimental
data used to train the VAE would reduce this error further.
Comparatively, the noise-based model can only contribute a
random pattern to the DNN model, resulting in a shift in
MAE. Notably, the error bar of the MAE of the noise-based
data spans a huge range, whereas the VAE-based data provide
a more confined MAE distribution in each multiple. This
suggests that the augmented data from the VAE-based model
are more patterned and less random than the noise-based data.

Interestingly, in Fig. 7(a), the MAE of the VAE-based data
does not show the same trend as its counterparts in Fig. 7(b)
and (c). Instead, it exhibits similar features to the noise-based
data, although the mean MAE remains lower than the noise
group. The reason for this could be that the size of the exper-
imental data in this group is larger than in the other groups,
and the augmentation model is not robust enough to extract
sufficient patterns from such a large dataset. Alternatively,
the augmentation model may only be able to extract partial
information from the training data. This could especially be
the case when the experimental data of this group are following
several different patterns, as can be seen in Fig. 4(a) where the
circles are more dispersed than in the other two groups.

Fig. 8 provides more intuitive results of the MAE improve-
ment provided by the augmentation. The augmented data
significantly improve the prediction performance in the n-GaN
and p-GaN groups, with an improvement of over 70%.

Although the proposed augmentation significantly improves
the MAE of the modeling, the factors that contribute most to
the enhancement are still not clear and require further explo-
ration. It is understood that the size of the experimental data
will strongly influence the modeling results. Also, this study
suggests that the nature of the distribution of the experimental
data may play a key role in this regard. Moreover, the source
of the performance difference between AlGaN/GaN-type and

other types of data could also be attributed to the features of
the experimental data distribution, and this warrants further
investigation.

Furthermore, exploring the in-depth mechanisms behind
the superior performance of the VAE is indeed an impor-
tant aspect. However, this study’s aim is to showcase the
advantages of generating more data at a lower cost, as it
reduces the reliance on the limited old dataset. In this context,
achieving higher accuracy using lower cost data already fulfills
the expectations of this study.

IV. CONCLUSION

We have proposed and tested a VAE-based data self-
augmentation strategy to relieve the contradiction between
the accuracy and the insufficient training data in ML-based
semiconductor device modeling. In this strategy, no additional
TCAD simulation is required and only a few experimental
data points are needed for functionality. The testing suggests
that the established augmentation model could successfully
extract realistic patterns from the experimental data, leading
to a set of high-quality augmented data that were able to
be seamlessly fed into the DNN model used. As a result,
this strategy could significantly improve the performance of
the DNN model, where a maximum of more than a 70%
drop of MAE was obtained. We therefore believe that this
strategy could benefit the next-generation EDA simulations
and modeling in the semiconductor industry.

ACKNOWLEDGMENT

Zeheng Wang would like to thank the support for the
preliminary results of this work from Prof. Arne Laucht and
the University of New South Wales.

REFERENCES

[1] D. Macmillen, R. Camposano, D. Hill, and T. W. Williams, “An indus-
trial view of electronic design automation,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 19, no. 12, pp. 1428–1448, Dec. 2000,
doi: 10.1109/43.898825.

[2] T. Ma, V. Moroz, R. Borges, and L. Smith, “TCAD: Present state
and future challenges,” in IEDM Tech. Dig., San Francisco, CA, USA,
Dec. 2010, pp. 15.3.1–15.3.4, doi: 10.1109/IEDM.2010.5703367.

[3] S. Selberherr, Analysis and Simulation of Semiconductor
Devices. Vienna, Austria: Springer, 1984. [Online]. Available:
https://www.google.com.au/books/edition/Analysis_and_Simulation_of_
Semiconductor/EE4HlRZTYi4C?hl=en

[4] Y.-C. Wu and Y.-R. Jhan, “Introduction of synopsys sentaurus TCAD
simulation,” in 3D TCAD Simulation for CMOS Nanoeletronic Devices.
Singapore: Springer, 2018, pp. 1–17, doi: 10.1007/978-981-10-3066-
6_1.

[5] K. Mehta, S. S. Raju, M. Xiao, B. Wang, Y. Zhang, and
H. Y. Wong, “Improvement of TCAD augmented machine learn-
ing using autoencoder for semiconductor variation identification and
inverse design,” IEEE Access, vol. 8, pp. 143519–143529, 2020, doi:
10.1109/ACCESS.2020.3014470.

[6] H. Carrillo-Nuñez, N. Dimitrova, A. Asenov, and V. Georgiev, “Machine
learning approach for predicting the effect of statistical variability in Si
junctionless nanowire transistors,” IEEE Electron Device Lett., vol. 40,
no. 9, pp. 1366–1369, Sep. 2019, doi: 10.1109/LED.2019.2931839.

[7] N. Hari, M. Ahsan, S. Ramasamy, P. Sanjeevikumar, A. Albarbar, and
F. Blaabjerg, “Gallium nitride power electronic devices modeling using
machine learning,” IEEE Access, vol. 8, pp. 119654–119667, 2020, doi:
10.1109/ACCESS.2020.3005457.

http://dx.doi.org/10.1109/43.898825
http://dx.doi.org/10.1109/IEDM.2010.5703367
http://dx.doi.org/10.1007/978-981-10-3066-6_1
http://dx.doi.org/10.1007/978-981-10-3066-6_1
http://dx.doi.org/10.1007/978-981-10-3066-6_1
http://dx.doi.org/10.1109/ACCESS.2020.3014470
http://dx.doi.org/10.1109/LED.2019.2931839
http://dx.doi.org/10.1109/ACCESS.2020.3005457


WANG et al.: IMPROVING SEMICONDUCTOR DEVICE MODELING FOR EDA BY ML TECHNIQUES 271

[8] A.-D. Huang, Z. Zhong, W. Wu, and Y.-X. Guo, “An artifi-
cial neural network-based electrothermal model for GaN HEMTs
with dynamic trapping effects consideration,” IEEE Trans. Microw.
Theory Techn., vol. 64, no. 8, pp. 2519–2528, Aug. 2016, doi:
10.1109/TMTT.2016.2586055.

[9] M. Usman, Y. Z. Wong, C. D. Hill, and L. C. L. Hollenberg, “Frame-
work for atomic-level characterisation of quantum computer arrays by
machine learning,” npj Comput. Mater., vol. 6, no. 1, p. 19, Mar. 2020,
doi: 10.1038/s41524-020-0282-0.

[10] K. Mehta and H.-Y. Wong, “Prediction of FinFET current-voltage and
capacitance-voltage curves using machine learning with autoencoder,”
IEEE Electron Device Lett., vol. 42, no. 2, pp. 136–139, Feb. 2021, doi:
10.1109/LED.2020.3045064.

[11] L. Zhang and M. Chan, “Artificial neural network design for compact
modeling of generic transistors,” J. Comput. Electron., vol. 16, no. 3,
pp. 825–832, Sep. 2017, doi: 10.1007/s10825-017-0984-9.

[12] Y. S. Bankapalli and H. Y. Wong, “TCAD augmented machine learning
for semiconductor device failure troubleshooting and reverse engineer-
ing,” in Proc. Int. Conf. Simulation Semiconductor Processes Devices
(SISPAD), Sep. 2019, pp. 1–4, doi: 10.1109/SISPAD.2019.8870467.

[13] S. S. Raju, B. Wang, K. Mehta, M. Xiao, Y. Zhang, and H.-Y. Wong,
“Application of noise to avoid overfitting in TCAD augmented
machine learning,” in Proc. Int. Conf. Simul. Semiconductor Pro-
cesses Devices (SISPAD), Sep. 2020, pp. 351–354, doi: 10.23919/SIS-
PAD49475.2020.9241654.

[14] H. Dhillon, K. Mehta, M. Xiao, B. Wang, Y. Zhang, and H. Y. Wong,
“TCAD-augmented machine learning with and without domain exper-
tise,” IEEE Trans. Electron Devices, vol. 68, no. 11, pp. 5498–5503,
Nov. 2021, doi: 10.1109/TED.2021.3073378.

[15] K. Sheelvardhan, S. Guglani, M. Ehteshamuddin, S. Roy, and
A. Dasgupta, “Machine learning augmented compact modeling for
simultaneous improvement in computational speed and accuracy,”
IEEE Trans. Electron Devices, early access, Mar. 9, 2023, doi:
10.1109/TED.2023.3251296.

[16] S.-K.-S. Fan, C.-Y. Hsu, C.-H. Jen, K.-L. Chen, and L.-T. Juan, “Defec-
tive wafer detection using a denoising autoencoder for semiconductor
manufacturing processes,” Adv. Eng. Informat., vol. 46, Oct. 2020,
Art. no. 101166, doi: 10.1016/j.aei.2020.101166.

[17] D.-Y. Liao, C.-Y. Chen, W.-P. Tsai, H.-T. Chen, Y.-T. Wu, and
S.-C. Chang, “Anomaly detection for semiconductor tools using
stacked autoencoder learning,” in Proc. Int. Symp. Semiconductor
Manuf. (ISSM), Dec. 2018, pp. 1–4, doi: 10.1109/ISSM.2018.865
1179.

[18] D. P. Kingma and M. Welling, “An introduction to variational autoen-
coders,” Found. Trends Mach. Learn., vol. 12, no. 4, pp. 307–392, 2019,
doi: 10.1561/2200000056.

[19] Z. Wang, L. Li, and Y. Yao, “A machine learning-assisted model for
GaN ohmic contacts regarding the fabrication processes,” IEEE Trans.
Electron Devices, vol. 68, no. 5, pp. 2212–2219, May 2021, doi:
10.1109/TED.2021.3063213.

[20] J. Xu et al., “A review on AI for smart manufacturing: Deep learning
challenges and solutions,” Appl. Sci., vol. 12, no. 16, p. 8239, Aug. 2022,
doi: 10.3390/app12168239.

[21] E. Afacan, N. Lourenço, R. Martins, and G. Dündar, “Review: Machine
learning techniques in analog/RF integrated circuit design, synthesis,
layout, and test,” Integration, vol. 77, pp. 113–130, Mar. 2021, doi:
10.1016/j.vlsi.2020.11.006.

[22] T.-L. Wu and S. B. Kutub, “Machine learning-based statistical approach
to analyze process dependencies on threshold voltage in recessed gate
AlGaN/GaN MIS-HEMTs,” IEEE Trans. Electron Devices, vol. 67,
no. 12, pp. 5448–5453, Dec. 2020, doi: 10.1109/TED.2020.3032634.

[23] A. V. Uriarte-Arcia, I. López-Yáñez, and C. Yáñez-Márquez, “One-hot
vector hybrid associative classifier for medical data classification,” PLoS
ONE, vol. 9, no. 4, Apr. 2014, Art. no. e95715.

[24] Y. Wang, H. Yao, and S. Zhao, “Auto-encoder based dimensionality
reduction,” Neurocomputing, vol. 184, pp. 232–242, Apr. 2016, doi:
10.1016/j.neucom.2015.08.104.

[25] D. P. Kingma and M. Welling, “Auto-encoding variational Bayes,” 2013,
arXiv:1312.6114.

[26] F. Perez-Cruz, “Kullback–Leibler divergence estimation of continu-
ous distributions,” in Proc. IEEE Int. Symp. Inf. Theory, Jul. 2008,
pp. 1666–1670, doi: 10.1109/ISIT.2008.4595271.

[27] M. D. Hoffman and M. J. Johnson, “ELBO surgery: Yet another way
to carve up the variational evidence lower bound,” in Proc. Workshop
Adv. Approx. Bayesian Inference, NIPS, 2016, p. 2.

[28] J. J. Ruel and M. P. Ayres, “Jensen’s inequality predicts effects of
environmental variation,” Trends Ecol. Evol., vol. 14, no. 9, pp. 361–366,
1999, doi: 10.1016/S0169-5347(99)01664-X.

[29] L. Wang, Y. Zhang, and J. Feng, “On the Euclidean distance of images,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 8, pp. 1334–1339,
Aug. 2005, doi: 10.1109/TPAMI.2005.165.

[30] R. M. Parra-Hernández, J. I. Posada-Quintero, O. Acevedo-Charry, and
H. F. Posada-Quintero, “Uniform manifold approximation and projection
for clustering taxa through vocalizations in a neotropical passerine
(rough-legged tyrannulet, Phyllomyias burmeisteri),” Animals, vol. 10,
no. 8, p. 1406, Aug. 2020, doi: 10.3390/ani10081406.

http://dx.doi.org/10.1109/TMTT.2016.2586055
http://dx.doi.org/10.1038/s41524-020-0282-0
http://dx.doi.org/10.1109/LED.2020.3045064
http://dx.doi.org/10.1007/s10825-017-0984-9
http://dx.doi.org/10.1109/SISPAD.2019.8870467
http://dx.doi.org/10.23919/SISPAD49475.2020.9241654
http://dx.doi.org/10.23919/SISPAD49475.2020.9241654
http://dx.doi.org/10.23919/SISPAD49475.2020.9241654
http://dx.doi.org/10.1109/TED.2021.3073378
http://dx.doi.org/10.1109/TED.2023.3251296
http://dx.doi.org/10.1016/j.aei.2020.101166
http://dx.doi.org/10.1109/ISSM.2018.8651179
http://dx.doi.org/10.1109/ISSM.2018.8651179
http://dx.doi.org/10.1109/ISSM.2018.8651179
http://dx.doi.org/10.1561/2200000056
http://dx.doi.org/10.1109/TED.2021.3063213
http://dx.doi.org/10.3390/app12168239
http://dx.doi.org/10.1016/j.vlsi.2020.11.006
http://dx.doi.org/10.1109/TED.2020.3032634
http://dx.doi.org/10.1016/j.neucom.2015.08.104
http://dx.doi.org/10.1109/ISIT.2008.4595271
http://dx.doi.org/10.1016/S0169-5347(99)01664-X
http://dx.doi.org/10.1109/TPAMI.2005.165
http://dx.doi.org/10.3390/ani10081406

