
IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 70, NO. 12, DECEMBER 2023 6279

Exploiting the State Dependency
of Conductance Variations in

Memristive Devices for Accurate
In-Memory Computing

Athanasios Vasilopoulos , Graduate Student Member, IEEE, Julian Büchel , Member, IEEE,
Benedikt Kersting , Corey Lammie , Member, IEEE, Kevin Brew , Samuel Choi,

Timothy Philip , Member, IEEE, Nicole Saulnier , Vijay Narayanan , Senior Member, IEEE,
Manuel Le Gallo , Member, IEEE, and Abu Sebastian , Fellow, IEEE

Abstract— Analog in-memory computing (AIMC) using
memristive devices is considered a promising Non-von
Neumann approach for deep learning (DL) inference tasks.
However, inaccuracies in the programming of devices, that
are attributed to conductance variations, pose a key chal-
lenge toward achieving sufficient compute precision for DL
inference. Fortunately, conduction variations in memristive
devices, such as phase-change memory (PCM) devices,
exhibit a strong state dependence. This state dependence
can be exploited in synaptic unit cells that comprise more
than one memristive device, to encode positive or negative
weights. In such multi-memristive unit cells, we propose
a method that optimally maps the weights to the device
conductance values, by maximizing the number of devices
at the stable SET and RESET states. We demonstrate that
this method reduces the matrix-vector multiplication (MVM)
error and is more resilient to non-ideal device retention
characteristics. With this approach, we increase the mean
experimental inference accuracy of a network trained for
MNIST classification by 0.71% on two PCM-based AIMC
cores, and the hardware-realistic simulated top-1 accu-
racy of a network trained for ImageNet classification by
0.28%, while significantly reducing variability across mul-
tiple experiment instances.

Manuscript received 9 September 2023; accepted 27 September
2023. Date of publication 11 October 2023; date of current version
28 November 2023. This work was supported in part by the IBM
Research AI Hardware Center; in part by the European Union’s Horizon
Europe Research and Innovation Program under Grant 101046878 and
Grant 101070634; and in part by the Swiss State Secretariat for Educa-
tion, Research and Innovation (SERI) under Grant 22.00029 and Grant
23.00205. The review of this article was arranged by Editor J. Tang.
(Corresponding author: Athanasios Vasilopoulos.)

Athanasios Vasilopoulos, Julian Büchel, Benedikt Kersting, Corey
Lammie, Manuel Le Gallo, and Abu Sebastian are with IBM Research-
Europe, 8803 Rüschlikon, Switzerland (e-mail: atv@zurich.ibm.com;
anu@zurich.ibm.com).

Kevin Brew, Samuel Choi, Timothy Philip, and Nicole Saulnier are with
IBM Research-Albany, Albany, NY 12203 USA.

Vijay Narayanan is with IBM T. J. Watson Research Center, IBM
Research–Yorktown Heights, Yorktown Heights, NY 10598 USA.

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TED.2023.3321014.

Digital Object Identifier 10.1109/TED.2023.3321014

Index Terms— Analog in-memory computing (AIMC),
deep learning (DL) inference, device programming, phase-
change memory (PCM).

I. INTRODUCTION

ANALOG in-memory computing (AIMC) has been iden-
tified as a viable alternative to the conventional von

Neumann computing paradigm for a wide range of applica-
tions [1], [2], [3]. The use of synaptic unit-cells comprising
memristive devices, organized in a crossbar topology, can be
used to perform matrix-vector multiply (MVM) operations in
O(1) time complexity. This is done by encoding weight matrix
elements as device conductance values and vector elements as
amplitudes or duration of voltage pulses. However, memristive
devices typically exhibit significant conductance variations
which affect the effective precision of the encoded weights.
We use the term conductance variations to capture both the
imprecision associated with achieving a target analog conduc-
tance value, as well as the subsequent temporal variations of
the conductance values. These conductance variations have a
detrimental effect on the accuracy of MVM and downstream
tasks, such as deep learning (DL) inference.

It is well known that certain conductance states of memris-
tive devices exhibit less variations than others. For example,
the SET state of phase-change memory (PCM) devices has
substantially less variations than an intermediate state [4]. This
is mostly attributed to the presence of crystalline percolation
pathways and random telegraph noise in the intermediate
states [5], [6]. In resistive random access memory (RRAM),
SET states have reduced conductance variations due to the
higher number of defects present in the conductive filament,
making the path for current conduction well-defined compared
with intermediate states [7].

In this article, we propose a device programming approach
that exploits the state dependence of conductance variations
in scenarios where a synaptic unit-cell comprises of multiple

© 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0009-0001-9081-6139
https://orcid.org/0000-0001-9495-7150
https://orcid.org/0000-0002-6943-0370
https://orcid.org/0000-0001-5564-1356
https://orcid.org/0000-0002-2515-2882
https://orcid.org/0000-0001-6522-0563
https://orcid.org/0000-0002-6886-5946
https://orcid.org/0009-0008-8433-963X
https://orcid.org/0000-0003-1600-6151
https://orcid.org/0000-0001-5603-5243


6280 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 70, NO. 12, DECEMBER 2023

memristive devices. In such cases, it is possible to optimally
encode the synaptic weights in such a way that the conduc-
tance states that exhibit minimal conductance variations are
maximally used. This simple approach is remarkably effective
in improving the MVM accuracy and DL inference accuracy.
The rest of the article is structured as follows. In Section II,
we present some background material. In Section III, we intro-
duce our proposed programming method, entitled Max SET
Fill (MSF), and motivate its conception using experimental
data. In Section IV, we provide a comprehensive analysis
of the improvement in MVM accuracy achieved via MSF,
and in Section V, we present DL inference demonstrations
where the synaptic weights are programed using MSF. Finally,
in Section VI, the article is concluded.

II. BACKGROUND AND RELATED WORK

A. Conductance Variations and Mitigation Strategies
In PCM devices, the conductance variations are mostly

attributed to the 1/f noise and the intrinsic structural relaxation
of the amorphous phase [8]. Much of the recent research
efforts on tackling these conductance variations have focused
on device-level innovations, such as projected PCM. Such a
device comprises a non-insulating material segment parallel to
the phase change material segment [9]. However, the advan-
tages of projected PCM are less pronounced in conventional
device geometries such as the mushroom-type devices [10].

B. Multi-Memristive Unit-Cells
As conductance values cannot be negative, most unit-cells

comprise at least two memristive devices in a differential
configuration, where positive and negative weight components
are encoded using different devices on separate bitlines (BLs).
However, it has been shown that it is advantageous to use
multiple devices to encode even the positive or negative weight
components [11], [12], [13]. This has led to the adoption of
Diff-N unit-cells, which use N devices per weight polarity,
comprising a total of 2N devices. Furthermore, prior stud-
ies suggest that varying the significance of the N devices
could lead to improvements in accuracy, by extending the
conductance range of the unit-cell, while still allowing precise
fine-tuning of its conductance [14]. Although Diff-N unit-cells
increase the crossbar area, the impact on energy consumption
can be limited if device power consumption is much lower than
that of peripheral circuits, which is typically the case in current
AIMC chips [15], [16], [17]. However, such unit-cells designs
introduce complexity in the programming process, during
which synaptic weights are encoded onto the unit-cells. Hence,
modifications to well-established programming methods are
required to achieve maximum precision.

C. Programming Methods
Programming methods can be usually split into two phases,

the first assigning conductance values to devices, referred to as
weight mapping, and the second, modulating the conductance
state of each device to their assigned target conductance
value, referred to as weight programming. Weight program-
ming is usually performed using an iterative read-write verify

Fig. 1. Low-angle annular darkfield (LAADF) scanning transmission
electron microscope (STEM) images of PCM devices in different states.
The image of the RESET PCM device shows a large amorphous
region, that gets reduced as the device is programed to intermediate,
more conductive states. A device in SET state has no distinguishable
amorphous region.

(RW-verify) process [18], [19], [20], [21], as single-shot
programming cannot be utilized to reliably reach a target
conductance value. However, it is possible to use single-shot
programming to place a device in either its highest, that is,
SET, or lowest, that is, RESET, conductance state. Despite the
prominence of the RW-verify paradigm, optimization-based
weight programming methods have recently demonstrated
increased MVM and downstream DL inference accuracy [22].

The methods associated with the weight mapping phase
can be characterized as either static or dynamic, based on
whether they use read-out device conductance information
from hardware to determine the mapping. Most methods in the
literature use static weight mapping methods, in which weight
values are scaled to a representative conductance range of the
devices [19], [20]. In [11], two such methods are introduced
for Diff-N unit-cells, equal-fill (EQF) and max-fill (MF). The
former assigns the same conductance to all N devices, whereas
the latter starts filling each device up to a maximum reliably
programmable conductance value, Gmax, before moving on to
the next. Gmax has to be selected such that, for most devices
in the array, Gmax ≤ GSET, else it would not be possible to
achieve Gmax in a significant number of devices. However,
this means that most of the devices when programed to Gmax
will not be in their respective SET states. This drawback asso-
ciated with static weight mapping methods can be addressed
by dynamic mapping methods such as the method reported
in [23], entitled weight mapping algorithm + (WMA+). Here,
the devices are sequentially initialized with single-shot pulses
of varying amplitudes, based on the measured conductance of
the already initialized devices. Then, the RW-verify scheme
is employed to program one device to adjust the unit-cell
conductance to reach a target conductance value. Even though
this method considers the read-out device conductance during
mapping, it uses a characterized mean programming curve to
generate the single-shot pulses, making initialization unpre-
dictable and the method susceptible to convergence failure.

III. MAX SET FILL

In this section, we will describe the proposed MSF program-
ming method, and motivate the need for it using experimental
data from PCM devices, as the representative memristive tech-
nology. For the experiments, we employed two PCM -based
AIMC cores, each comprising a 256 × 256 crossbar with Diff-



VASILOPOULOS et al.: EXPLOITING THE STATE DEPENDENCY OF CONDUCTANCE VARIATIONS IN MEMRISTIVE DEVICES FOR AIMC 6281

Fig. 2. (a) SET and RESET distributions of a crossbar array with 262k PCM devices. Since the SET state distribution has a large variance, Gmax
must be selected as a low percentile of the distribution, here fifth, to ensure that most devices can reach it through RW-verify. (b) Temporal evolution
of conductance of one sample PCM device, for different initial phase configurations. SET and RESET states are less variable than intermediate
states, including the state corresponding to Gmax. (c) Drift coefficient characterization for 10k devices, as a function of the conductance. High
conductance states, and particularly SET states, have less drift variability and drift at a lower rate. (d) Short-term conductance fluctuation, referred
to as read noise, characterization for 10k devices as a function of the conductance. SET states exhibit the lowest read noise. Note: One ADC unit
corresponds to approximately 0.115 µS.

Fig. 3. (a) Flowchart of MSF’s weight mapping algorithm. MSF dynamically maps each weight to a unit cell by using the read-out SET conductance
of the devices. (b) RW-verify variant used by MSF to program the conductance of the devices. At most one device per unit-cell is being programed
to converge to Gtar.

2 equal significance unit-cells [17]. The PCM devices are
of mushroom-type and have doped Ge2Sb2Te5 as the phase-
change material.

The conductance of PCM devices can be varied by chang-
ing the relative volume of the material in crystalline and
amorphous phases, which exhibit high and low conductance,
respectively (Fig. 1). PCM devices exhibit temporal conduc-
tance drift, in addition to device-to-device and cycle-to-cycle
variability [24]. In Fig. 2(a), we show experimentally mea-
sured distributions of PCM SET and RESET states across all
the PCM devices in one of the AIMC cores. We also show the
temporal evolution of conductance of one representative device
for different initial conductance in Fig. 2(b). By characterizing
the evolution of conductance for 10k devices at different
initial phase configurations, we calculated the drift coefficient,
which corresponds to the drift rate of a device [Fig. 2(c)], and
the read noise, which corresponds to short-term conductance
fluctuations [Fig. 2(d)], as functions of the conductance. The
SET and RESET states have substantially less read noise,
and the SET states less drift, than the intermediate states.
Furthermore recent works have shown that SET and RESET
states demonstrate preferential behavior in further non-ideal
phenomena, like the bipolar current voltage asymmetry [25].
Hence, it would be highly beneficial to maximize their use
when encoding the synaptic weights. However, it can be

seen that when using static weight mapping methods, Gmax
ends up being an intermediate state conductance for >95%
of devices in the array [see Fig. 2(a)], preventing higher
utilization of the more stable SET states. MSF is able to
solve this problem using an effective dynamic weight map-
ping algorithm, that maximizes the use of SET and RESET
states.

A flowchart of MSF’s weight mapping algorithm is pre-
sented in Fig. 3(a). Initially, we use the maximum unit-cell
conductance (Smax), usually dependent on the weight distribu-
tion and the saturation current of the analog to digital converter
(ADC), to transform the normalized weight values to the target
unit-cell conductance (G tar). Note that Smax is used for the
conversion of the weight value to total unit-cell conductance,
and not to SD conductance, as the static weight mapping
methods do using Gmax. Next, the N devices corresponding to
each weight’s polarity are programed to their respective SET
states, and their conductance is measured. Then, we define
the set {S} that contains all devices that will be placed in a
non-RESET state. We construct {S} by sequentially appending
to it the device with the highest SET conductance, until the
summed conductance of the devices in {S} exceeds G tar or
all devices are placed in {S}. Devices not in {S} are RESET,
and the least conductive device of {S} is marked for further
programming such that the unit-cell conductance is reduced



6282 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 70, NO. 12, DECEMBER 2023

TABLE I
WEIGHT MAPPING COMPARISON OF A UNIT WEIGHT WITH A VALUE OF

WNORM = 0.8 IN A DIFF-2 UNIT CELL. THE SET CONDUCTANCE OF

THE DEVICES ARE G1
SET = 85,G2

SET = 110. WE CONSIDER

GMAX = 90, SMAX = 180 FOR THE GTAR CONVERSION

Fig. 4. Visual depiction of the weight mapping example of Table I. MSF
attempts to maximize the number of devices in the SET and RESET
states, with at most one device in an intermediate state. Static weight
mapping methods that map weight magnitudes from 0 to Gmax, including
MF, result in placing multiple devices in noisy intermediate states.

to the target value. In our experiments, we use the RW-verify
method for the programming of the marked device [Fig. 3(b)],
but any weight programming method can be employed. During
the RW-verify procedure, all devices of the unit-cell are read
to calculate the conductance update, as an elementary drift
compensation mechanism, since the short-term drift of the
SET devices will be compensated by increasing the target
conductance of the device being programed. If following the
SET initialization, the summed conductance of all N devices
is smaller than the target conductance value, the unit-cell
cannot accommodate the assigned weight. Hence, it is left
in the full SET state to minimize the conductance error. In
Table I, we overview how methods from the literature would
map an indicative weight, compared to MSF. As Fig. 4 shows,
MSF is the only method that benefits from the stability of the
SET state, which results in the unit-cell being less affected by
conductance variations than for methods using static weight
mapping, such as MF.

The key advantage of MSF is that it optimally maps a
weight to each unit-cell, by selecting the smallest number
of devices needed to accommodate it, through the use of
true SET states. This guarantees that at most one device per
unit-cell will be at an intermediate state, thus reducing the
overall conductance variability of the unit-cell. Furthermore,
since single-shot pulses can be used for SET and RESET
programming, only one device needs to be programed with
a more time consuming iterative RW-verify scheme, hence
reducing the total programming cost compared with other
methods. Overall, the time overhead and memory requirements
of MSF are bound by the selected weight programming
scheme, as MSF’s overhead in the weight mapping phase is not
substantial.

IV. MATRIX VECTOR MULTIPLICATION PRECISION

In this section, we will compare the aforementioned pro-
gramming approaches in terms of the MVM precision. First,
for each method, we program the same weight array W, and
perform numerous MVM operations with the same batch of
input vectors, xi for i from 1 to B. The weights and inputs
are drawn from a sparse uniform distribution. Then, for each
MVM, we compute the error ϵMVM as follows:

ϵMVM =
∥yi − ỹi∥2

∥yi∥2
(1)

where yi = Wxi is the floating-point result of the operation
and ỹi denotes the measured ON-chip result. The MVM
error results are shown in Fig. 5(a). It is observed that any
multi-device programming method is more accurate than SD
programming, demonstrating that multi-memristive unit-cells
increase accuracy. Using two devices, even at the same target
state (EQF ), improves performance due to an averaging effect
of the device noise, also observed in [11] and [12]. The
results also indicate that accuracy can be further increased if
one takes in consideration the device characteristics. WMA+,
which dynamically maps the weight based on device reads,
performs better than EQF, while MF enhances accuracy further
by giving higher conductance states priority. MSF outperforms
all these methods noticeably, due to its use of stable SET and
RESET states. All methods achieve better MVM accuracy
compared to a digital system performing the MVM with 8-
bit input-output and 3-bit weights. MSF improves the MVM
accuracy such that it is closer to 4-bit weights.

Further insights can be gained if we examine how accu-
rately each approach programs the target weight array on
the crossbar. An estimate of the programed weights, Ŵ , can
be inferred through MVM operations [26] by solving the
following equation:

Ŵ = arg min
Ŵ

B∑
i=1

∥Ŵ xi − ỹi∥2. (2)

Fig. 5(b) depicts the weight error, defined as the standard
deviation of W − Ŵ , as a function of the weight values. SD
and EQF’s weight error characteristics have an identical shape,
because they map the devices to the same conductance states,
with their magnitude differing roughly by a factor of 1/

√
2,

further indicating that adding devices to a unit-cell averages
the device noise. WMA+’s accuracy in the higher weight
range degrades, due to the method’s tendency to undershoot
high weight values [23]. MF begins outperforming EQF just
before the weight range’s midpoint, which corresponds to
Gmax, that is, the method’s “fill” limit. This demonstrates
that programming one device to a stable state is preferable
to distributing the weight between two devices in noisier
states [Fig. 2(d)]. The methods converge at the limit of the
weight range, where both methods map weights in a similar
fashion. MSF ’s weight error is smaller than MF’s when the
corresponding normalized weight magnitude is larger than 0.5.
Additionally, a noticeable drop and overall lower error is
observed in the high weight range (≫0.5). MSF is the only
method that does not demonstrate a monotonic increase of



VASILOPOULOS et al.: EXPLOITING THE STATE DEPENDENCY OF CONDUCTANCE VARIATIONS IN MEMRISTIVE DEVICES FOR AIMC 6283

Fig. 5. (a) MVM error (ϵMVM) comparison of all methods, as determined by (1). MSF outperforms the rest of the methods, due to its use of true
SET states. All methods achieve accuracy between that of digital systems performing MVM with 3 and 4 bit weights. (b) Measured weight error after
programming as a function of the normalized weight values. (c) Depiction of the weight error of MSF overlaid with the SET distribution normalized
to the corresponding weight range. The peak of the SET distribution aligns with the dip of the weight error in the high weight range, showing that
the use of SET states indeed lowers the weight error.

Fig. 6. (a) Evolution of the weight error at three distinct points of time
during a 24-h period. MSF’s weight error evolves at a slower rate as SET
states drift at a slower rate than intermediate states. (b) Mean MVM
error increase through the 24-h period. MSF exhibits better accuracy
retention.

weight error in the intermediate weight range and it is the
result of exploiting the stable SET states. Overlaying the SET
distribution of the devices with MSF’s weight error [Fig. 5(c)]
shows that the point at which the weight error starts reducing
coincides with the start of the SET distribution, and the local
minimum matches the distribution’s peak.

As PCM exhibits conductance drift, examining whether
MSF’s superior accuracy is retained over time is crucial for
downstream tasks. We only compare MF and MSF, as the
previous results suggest that they perform the best. We perform
MVM throughout a 24-h period and record the evolution
of weight and MVM error (Fig. 6). MSF exhibits greater
accuracy retention over that time, as SET states drift less than
intermediate states [Fig. 2(c)].

After establishing the accuracy of our method for a Diff-
2 equal significance unit-cell, we investigate its performance
in larger and varying significance unit-cells. To facilitate
these experiments with our hardware, we emulate varying
significance Diff-N unit-cells, by grouping N unit-cells of
neighboring BLs. Furthermore, by assigning a significance
factor α to each BL, we are able to select a significance
factor for each device independently [Fig. 7(a)]. For these
experiments, we calculate the conductance update during the

iterative RW-verify procedure of MSF by reading only the
device being programed instead of the whole unit-cell as done
previously. With the latter approach, we found that devices
of large significance drifting at a rapid rate often cause the
device of lower significance being iteratively programed to
not converge, making it unsuitable for this use-case. We first
examine the accuracy of the methods for a Diff-2 unit-cell
with equal (α0 = α1 = 1) and 2-exponent (α0 = 1,

α1 = 2) significance. In Fig. 7(b), we measure that the equal
significance configuration outperforms the 2-exponent. Fur-
thermore, MSF outperforms MF in both cases. The precision
of the 2-exponent configuration is reduced, as the MVM error
is dominated by the conductance fluctuations of the most
significant device. The assignment of different significance to
the devices seems to hinder precision, as it counteracts the
averaging effect observed in the previous experiments.

Expanding the unit-cells to Diff-4, we get the chance to
explore more combinations of significance factors. In addition
to equal and 2-exponent (αi = 2i ) significance, we explore
three more configurations with a number of devices acting as
the MSB (α = 2) and LSB (α = 1). Amongst all compared
configurations, equal significance was found again to be the
best approach [Fig. 7(c)]. The 3MSB 1LSB configuration
performs the best from the varying significance configurations.
Finally, MSF outperforms MF in all configurations explored
here.

V. DL INFERENCE
In this section, we examine the impact of MSF in DL

inference tasks. First, we compare the classification accu-
racy of a network with the LeNet-5 architecture [Fig. 8(a)]
using the MNIST dataset [27]. All MVM were performed
ON-chip [17] [Fig. 8(b)], using Diff-2 unit-cells, while the rest
of the operations were performed in software at floating-point
precision. Fig. 8(c) indicates that MSF lowers the MVM error
on every layer, which leads to 0.71% improvement in the mean
inference accuracy. It can also be seen that the variance across
multiple inference runs is also significantly reduced over MF
[Fig. 8(d)].

To determine the efficacy of our method for larger networks,
we evaluate the top-1 classification accuracy on ImageNet



6284 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 70, NO. 12, DECEMBER 2023

Fig. 7. (a) Emulation of a Diff-N varying significance unit-cell (UC) using N neighboring BLs of [17]. The significance factors are applied external
to the crossbar. (b) MVM accuracy of a Diff-2 UC of equal and 2-exponent significance. MSF with an equal significance cell is the best performing
combination. Note that the resulting MVM error is lower than for the experiments shown in Fig. 5 due to using two ADCs instead of one to measure
the same effective current. (c) MVM accuracy of a Diff-4 UC with different significance configurations. MSF with equal significance UC is the best
performing combination, and the most accurate varying significance configuration is the 3MSB and 1LSB UC.

Fig. 8. (a) LeNet-5 architecture for image classification using the MNIST dataset. (b) LeNet-5 layers mapped onto two AIMC cores of the
experimental platform [17]. (c) Per-layer MVM error when performing inference on the MNIST dataset, for SD, MF, and MSF. MSF lowers the MVM
error on all layers. (d) MSF’s lower MVM error leads to higher mean inference accuracy and reduced variance (ten inference runs). (e) Hardware-
realistic simulation results of the classification accuracy on the ImageNet dataset (ten inference runs). MSF is able to improve accuracy and reduce
variance in large networks as well.

using the ResNet-34 architecture [28]. As this network is
too large to fit on our current hardware, we perform sim-
ulations using statistical models extracted from the chip
measurements presented above. Our simulations account for
the crossbar input–output quantization of our hardware and
the weight noise of each method, as shown in Fig. 5(b). The
hardware-realistic simulation results in Fig. 8(e) show that
MSF outperforms MF by 0.28%, and reduces the variance,
despite the fact that larger networks are more resilient to device
noise [29].

VI. CONCLUSION

Mitigating the effect of conductance variations is important
to achieve sufficient compute precision using AIMC hardware.
In this article, we presented a novel programming method
for AIMC cores with multi-memristive unit-cells that exploit
the state dependency of conductance variations to improve

computational precision. This is achieved by maximizing the
number of devices in SET and RESET states when pro-
gramming the unit-cells. Using PCM -based AIMC cores,
we experimentally demonstrated that MSF achieves lower
MVM error and better retention over time, reducing the
accuracy gap to 4-bit compute precision, when two devices
are used to encode each weight. Furthermore, we showed that
our approach can be expanded to N -device unit-cells, while
retaining its accuracy advantage. Finally, we demonstrated
significant improvements in neural network inference accuracy
for downstream MNIST and ImageNet classification tasks. It is
noted that MSF can be improved with the use of programming
methods that outperform the iterative RW-verify [22] scheme.
Even though we used PCM device technology to demonstrate
the efficacy of MSF, this approach is equally applicable to
other memristive devices exhibiting similar state-dependent
conductance variations [7]. Moreover, MSF could initiate



VASILOPOULOS et al.: EXPLOITING THE STATE DEPENDENCY OF CONDUCTANCE VARIATIONS IN MEMRISTIVE DEVICES FOR AIMC 6285

new research directions that aim at improving the stability
of specific conductance states as opposed to tackling the
more challenging task of reducing the overall conductance
variations.

REFERENCES

[1] A. Sebastian, M. L. Gallo, R. Khaddam-Aljameh, and E. Eleftheriou,
“Memory devices and applications for in-memory computing,” Nature
Nanotechnol., vol. 15, no. 7, pp. 529–544, Jul. 2020.

[2] M. Lanza et al., “Memristive technologies for data storage, computation,
encryption, and radio-frequency communication,” Science, vol. 376,
no. 6597, Jun. 2022, Art. no. eabj9979.

[3] S. Yu, H. Jiang, S. Huang, X. Peng, and A. Lu, “Compute-in-memory
chips for deep learning: Recent trends and prospects,” IEEE Circuits
Syst. Mag., vol. 21, no. 3, pp. 31–56, 3rd Quart., 2021.

[4] S. R. Nandakumar et al., “Precision of synaptic weights programmed
in phase-change memory devices for deep learning inference,” in IEDM
Tech. Dig., Dec. 2020, pp. 29.4.1–29.4.4.

[5] J. Liu, “Microscopic origin of electron transport properties and ultrascal-
ability of amorphous phase change material germanium telluride,” IEEE
Trans. Electron Devices, vol. 64, no. 5, pp. 2207–2215, May 2017.

[6] D. Fugazza, D. Ielmini, S. Lavizzari, and A. L. Lacaita, “Distributed-
Poole–Frenkel modeling of anomalous resistance scaling and fluctua-
tions in phase-change memory (PCM) devices,” in IEDM Tech. Dig.,
Dec. 2009, pp. 1–4.

[7] A. Prakash and H. Hwang, “Multilevel cell storage and resistance
variability in resistive random access memory,” Phys. Sci. Rev., vol. 1,
no. 6, Jun. 2016, Art. no. 20160010.

[8] M. Le Gallo and A. Sebastian, “An overview of phase-change memory
device physics,” J. Phys. D, Appl. Phys., vol. 53, no. 21, Mar. 2020,
Art. no. 213002.

[9] W. W. Koelmans, A. Sebastian, V. P. Jonnalagadda, D. Krebs,
L. Dellmann, and E. Eleftheriou, “Projected phase-change memory
devices,” Nature Commun., vol. 6, no. 1, p. 8181, Sep. 2015.

[10] S. Ghazi Sarwat et al., “Projected mushroom type phase-change mem-
ory,” Adv. Funct. Mater., vol. 31, no. 49, Sep. 2021, Art. no. 2106547.

[11] M. Le Gallo et al., “Precision of bit slicing with in-memory comput-
ing based on analog phase-change memory crossbars,” Neuromorphic
Comput. Eng., vol. 2, no. 1, Feb. 2022, Art. no. 014009.

[12] G. Pedretti, E. Ambrosi, and D. Ielmini, “Conductance variations and
their impact on the precision of in-memory computing with resistive
switching memory (RRAM),” in Proc. IEEE Int. Rel. Phys. Symp.
(IRPS), Mar. 2021, pp. 1–8.

[13] I. Boybat et al., “Neuromorphic computing with multi-memristive
synapses,” Nature Commun., vol. 9, no. 1, p. 2514, Jun. 2018.

[14] C. Mackin et al., “Optimised weight programming for analogue memory-
based deep neural networks,” Nature Commun., vol. 13, no. 1, p. 3765,
Jun. 2022.

[15] W. Wan et al., “A compute-in-memory chip based on resistive
random-access memory,” Nature, vol. 608, no. 7923, pp. 504–512,
Aug. 2022.

[16] S. Yin, X. Sun, S. Yu, and J.-S. Seo, “High-throughput in-memory com-
puting for binary deep neural networks with monolithically integrated
RRAM and 90-nm CMOS,” IEEE Trans. Electron Devices, vol. 67,
no. 10, pp. 4185–4192, Oct. 2020.

[17] R. Khaddam-Aljameh et al., “HERMES-core—A 1.59-TOPS/mm2 PCM
on 14-nm CMOS in-memory compute core using 300-ps/LSB lin-
earized CCO-based ADCs,” IEEE J. Solid-State Circuits, vol. 57, no. 4,
pp. 1027–1038, Apr. 2022.

[18] N. Papandreou et al., “Programming algorithms for multilevel phase-
change memory,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS),
May 2011, pp. 329–332.

[19] Y. Luo, X. Han, Z. Ye, H. Barnaby, J.-S. Seo, and S. Yu, “Array-level
programming of 3-bit per cell resistive memory and its application for
deep neural network inference,” IEEE Trans. Electron Devices, vol. 67,
no. 11, pp. 4621–4625, Nov. 2020.

[20] V. Milo et al., “Accurate program/verify schemes of resistive
switching memory (RRAM) for in-memory neural network cir-
cuits,” IEEE Trans. Electron Devices, vol. 68, no. 8, pp. 3832–3837,
Aug. 2021.

[21] B. Q. Le et al., “RADAR: A fast and energy-efficient programming
technique for multiple bits-per-cell RRAM arrays,” IEEE Trans. Electron
Devices, vol. 68, no. 9, pp. 4397–4403, Sep. 2021.

[22] J. Büchel et al., “Gradient descent-based programming of ana-
log in-memory computing cores,” in IEDM Tech. Dig., Dec. 2022,
pp. 33.1.1–33.1.4.

[23] M. Martemucci et al., “Accurate weight mapping in a multi-memristive
synaptic unit,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS),
May 2021, pp. 1–5.

[24] A. Pirovano et al., “Reliability study of phase-change nonvolatile mem-
ories,” IEEE Trans. Device Mater. Rel., vol. 4, no. 3, pp. 422–427,
Sep. 2004.

[25] S. G. Sarwat et al., “Mechanism and impact of bipolar current volt-
age asymmetry in computational phase-change memory,” Adv. Mater.,
vol. 35, no. 37, May 2022, Art. no. 2201238.

[26] M. L. Gallo et al., “A 64-core mixed-signal in-memory compute chip
based on phase-change memory for deep neural network inference,”
Nature Electron., vol. 6, no. 9, pp. 680–693, Aug. 2023.

[27] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learn-
ing applied to document recognition,” Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Dec. 1998.

[28] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 770–778.

[29] M. J. Rasch et al., “Hardware-aware training for large-scale and
diverse deep learning inference workloads using in-memory computing-
based accelerators,” Nature Commun., vol. 14, no. 1, p. 5282,
Aug. 2023.


