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Quasi-Fermi-Based Charge Transport Scheme
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Abstract— We present a novel approach to solving
the transport problem in semiconductors. We reformulate
the drift-diffusion (DD) equations in terms of the quasi-
Fermi-energies as solution variables; a drastic increase in
numerical stability is achieved,which permits the simulation
of devices at cryogenic temperatures as well as wide
bandgap devices using double precision arithmetic, instead
of extended precision arithmetic which would otherwise be
required to solve these applications using regular DD.

Index Terms— Cryogenic electronics, device simulation,
drift-diffusion (DD), GaN, SiC, technology computer aided
design (TCAD), wide bandgap semiconductors.

I. INTRODUCTION

QUANTUM periphery devices, i.e., classical devices in
circuits necessary to interface a qubit chip, and power-

efficient wide bandgap devices have two things in common:
their design is of high importance in their respective fields
and they are notoriously difficult to simulate in technology
computer aided design (TCAD).

Due to their vicinity to qubits on a Si-spin-based quantum
chip [1], quantum periphery devices need to operate classically
at very low temperatures, with the boiling point of helium at
4.2 K being commonly used as reference. The difficulties of
TCAD device simulations under these conditions are rarely
discussed in the literature but Dhillon et al. [2] provide
valuable insight into a typical setup for a commercial device
simulator. When presenting simulations of a 10 μm MOSFET
at 5 K, the authors report that they used “transient simulation
with extrapolation and Backward-Euler” to simulate transfer
characteristics, which otherwise would have convergence
difficulties in steady-state. They add, that they used 80-bit
extended precision and that they set “the minimum carrier
density [. . .] to 10−2000 cm−3 in the Newtonian iteration”
(cf., discussion in Section IV-B).
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For wide bandgap materials, TCAD vendors regularly
recommend using higher-than-double precision in their
application examples, especially when facing low currents.
Often seen as a technicality, this is again rarely discussed in the
literature, however, Lophitis et al. [3] state: “Due to the very
low intrinsic carrier concentration of WBG semiconductors,
the expected leakage current is very low (≈10−20 Acm−2),
which causes converge issues. To alleviate this, the numerical
precision should be significantly high. This is achieved with
the inclusion of certain keywords in the ‘device (and circuit)
simulation’ tool command file (e.g., ‘extended-precision’ for
SDevice tool of the Synopsys Sentaurus TCAD). Simulations
that use extended arithmetic precision are computationally
more intensive, therefore, the arithmetic precision should be
increased in a trade-off manner up to a level that is able to
provide a solution.”

In this work, we aim to shed light on the particular issues
plaguing these types of simulations and propose a solution
that provides a robust and stable platform for simulations of
devices at cryogenic temperatures and wide bandgap devices.
Both of these applications feature a rich set of physical
phenomena that each require careful modeling in TCAD. This
article is not about that; we shall focus solely on the numerical
issues found at the core of the transport scheme in device
TCAD and how to solve them.

II. NUMERICAL CANCELLATION IN THE DD EQUATION

It has been demonstrated in [4] that the drift-diffusion (DD)
equation

Jn

μ
= −n∇V − kBT∇n (1)

(V is the effective band edge) suffers from what the authors
describe as “catastrophic cancellation.” Such cancellation
appears whenever extremely small currents need to be
represented in devices. This commonly occurs in reverse-
biased diodes, or transistors in OFF-state. The phenomenon
is exaggerated by cryogenic temperatures and wide band gaps
since they tend to make tiny currents orders of magnitude
smaller due to the reduced intrinsic carrier concentration of
the semiconductor.
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Fig. 1. Schematic of a p/n-junction in slight reverse bias; both potential
and carrier gradients are substantial, yet the net current is tiny because
drift and diffusion almost perfectly compensate. The tiny mismatch
between drift and diffusion is what creates the net current.

Fig. 1 illustrates the circumstances in which catastrophic
cancellation occurs. The (slightly) reverse-biased junction has
a small leakage current flowing over it, however, inside the
space charge region both the drift term −n∇V and the
diffusion term −kBT ∇n are rather large. In fact, they are
almost the same in magnitude but have opposite signs. The
resulting sum is the small but nonzero current.

The IEEE 754 double precision format has an epsilon of
2−53 ≈ 10−16, which is the relative difference between two
adjacent numbers represented in the format. If the drift and
diffusion terms differ by less than that in the simulator, they
will become the same number and their difference will be zero.
However, zero current contradicts the physical reality that the
current is nonzero. This causes the discretization to fail by
producing a (near)-singular matrix and right-hand side.

This issue arises when the net current is 1016 times
smaller in magnitude than the contributing drift and diffusion
terms. While rare for silicon at room temperatures, this can
readily occur at cryogenic temperatures and in wide bandgap
semiconductors. The Scharfetter–Gummel (SG) discretization
scheme [5], the Newton-Raphson iteration, and subnormal
numbers in IEEE 754 complicate the picture somewhat but
the basic realization remains. As long as the solution variable
of the transport equation is the carrier concentration, the
cancellation can occur.

In practice, i.e., in commercial and some non-commercial
device simulators, this problem is addressed in software
and hardware. Solvers are either statically compiled or
can dynamically switch to use higher-precision floating-
point formats, such as the 80-bit extended precision of the
x86 architecture [2] or the 128-bit IEEE 754 quadruple
precision format. This approach has several severe drawbacks.

1) Closed source solver libraries, such as parallel direct
sparse solver (PARDISO), do not support number
formats other than single and double precision [6]. Open
source solver libraries, such as SuperLU, do not support
higher precision formats either [7], but could in principle
be refactored and recompiled to use extended or

quadruple precision. Iterative solvers such as BiCGStab
are simple enough to be easily refactored for higher
precision but require preconditioners, which again are
typically sourced from libraries.

2) The lack of readily available direct sparse solvers
relegates the user to using iterative linear solvers for
an already poorly conditioned problem.

3) Running the entire computation with higher precision
incurs a significant runtime penalty. While not so
severe for the 80-bit extended format, which has
some hardware support in x86, quadruple precision’s
arithmetic is done in software resulting in huge
slowdowns. The unavailability of high-performance
solvers and preconditioners for the required precision
exacerbates the slowdown, as does the generally slower
convergence of cryogenic and wide bandgap device
simulations.

III. QUASI-FERMI TRANSPORT (QFT)

We address the presented issue by reformulating (1).
We change the equation variable from the carrier concentration
to the quasi-Fermi energy EFn quasi-Fermi level (QFL) or
chemical potential η associated with the carrier type

Jn

μ
= −n∇EFn (2)

where the concentration itself is dependent on potential and
quasi-Fermi energy

n = NcF

(
EFn − V

kBT

)
(3)

where F can be an exponential for Maxwell–Boltzmann
distribution, a Fermi-integral for Fermi-Dirac distribution, or a
numerical energy quadrature combining a distribution function
and a density-of-states function [8]. In any case, while (1)
is linear for a fixed potential, (2) is nonlinear on its own.
However, current in (2) is proportional to carrier concentration
and driving force and no cancellation can occur. We shall call
this mode Quasi-Fermi Transport or QFT.

The resulting law of current conservation

∇ · Jn = −∇ · (μn∇η) = q0

(
∂n

∂ t
+ R

)
(4)

is structurally similar to the Poisson equation, from which it
inherits some useful properties.

1) In absence of recombination, the stationary equation’s
solutions is monotonous and is always bounded by the
minimum and maximum of the contact Fermi energies.

2) The Laplace-like operator is positive semi-definite.
This general approach is not new and has been reported

by multiple groups [4], [9], [10]. All these works use finite
elements for discretization (FE/QFT), leveraging the similarity
of (4) to the Poisson equation, for which finite element
discretization is straightforward. However, the change of
discretization results in deviations of the solution from the
more established finite volume discretization, albeit small
ones.

In this work, we present a finite-volume (FVM) dis-
cretization scheme for (2) which is fully consistent with
FVM/SG/DD results of (1), while suffering none of its issues.



710 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 70, NO. 2, FEBRUARY 2023

Fig. 2. Mobility and driving force inside a MOSFET channel in saturation,
FVM/AM/QFT versus FVM/SG/QFT; the Caughey-Thomas-type velocity
saturation model couples mobility to the driving force, while driving force
depends on mobility through (2); the discretization error of the AM causes
wiggles in both quantities, which are not present in FVM/SG/QFT or
FVM/SG/DD.

A. Finite-Volume QFT

In FVM, we assume that the potential V and the QFL are
piecewise linear functions supported on the points of a mesh.
Consequently, the carrier concentration shares that property.
We need to approximate (2) along each edge {i, j} of the
mesh

Ji j

μ
= −ni j

η j − ηi

|r j − r i | (5)

requiring the carrier concentration ni j at the center of the
edge. The simplest approximations are the arithmetic mean
(AM, (ni + n j )/2) giving FVM/AM/QFT, which is consistent
with first-order finite elements, and the geometric mean (GM,
(ni n j )

1/2) giving FVM/GM/QFT, which implies a piecewise
linear QFL between the points i and j (for Boltzmann
statistics). Both choices are numerically stable, unlike (1)
when it is discretized in the same fashion as FVM/AM/QFT,
i.e., by taking (ni + n j)/2 at the center of the edge.
Neither FVM/AM/QFT nor FVM/GM/QFT are however fully
consistent with the FVM/SG/DD version of (1).

Moreover, when using the velocity-saturation model, which
results in a field-dependent mobility μ, the driving force in
FVM/AM/QFT, becomes ragged, as shown in Fig. 2, and the
scheme shows degraded convergence compared to DD.

B. SG for QFT

We have reformulated the SG discretization for the QFL,
resulting in the following expression for the edge current
(FVM/SG/QFT):

Ji, j

μ
= √

ni n j
�/2

sinh(�/2)

2kBT sinh(�F/2)

|r j − r i | (6)

with

� = Vi − Vj

kBT
, �F = ηi − η j

kBT
. (7)

Since this is the same formula as SG for DD but with a
change of variables, it will yield exactly the same results

Fig. 3. Comparison of MOSFET transfer characteristics at VDS = 1 V of
FVM/SG/QFT, FVM/AM/QFT, and FVM/GM/QFT against FVM/SG/DD;
both SG-discretized schemes produce identical results down to the
Newton solver tolerance; FVM/AM/QFT and FVM/GM/QFT deviate
substantially more but still less than 1%.

as FVM/SG/DD, down to the error tolerance of the Newton
algorithm, as can be seen in Fig. 3.

C. Fermi-Dirac Statistics

Fermi-Dirac statistics are crucial to cryogenic simulation,
not only for accuracy but out of necessity, since the
Maxwell–Boltzmann distribution becomes unbounded for
T → 0 K [11]. As mentioned in Section III, one additional
benefit of QFT is that non-Boltzmann statistics can be applied
in the evaluation of n, which is not as straightforward for the
original formulation of DD in (1). Combining this with SG,
turns (5) into an implicit integral equation of the current Ji j∫ ξi

ξ j

(
Ji j |r j − r i |

μkBT NcF(ξ)
+ �

)−1

dη = 1, ξ := V − η

kBT
(8)

which has been discussed in [12] along with practical
approximations for its solution. One of these approximations
takes the shape of the Boltzmann-statistics-based SG formula
(6) prefixed with a correction factor called the inverse activity
coefficient [13], [14], [15]

β =
√

F(ξi)F(ξ j )

exp(ξi) exp(ξ j )
. (9)

It has been shown in [12] and [15], that for a sufficiently
fine grid, this approximates the solution of (8) very well. The
choice of β is also quite convenient for us because it allows
us to upgrade (6) to Fermi-Dirac statistics without changing it
at all and simply using the Fermi-integral to calculate ni , n j .

IV. DISCUSSION

The FVM/SG/QFT and FVM/AM/QFT schemes have been
implemented in the commercial simulator Minimos-NT [16],
part of GTS Framework, alongside the existing FVM/SG/DD
implementation. The implementation takes advantage of
automatic differentiation, so the choice of discretization and
thus the change of solution variables is transparent to other
models, such as Schockley-Read-Hall.
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Fig. 4. Planar n-type MOSFET used in the benchmark; the printed gate
length is 0.25 µm, gate oxide thickness is 5 nm, S/D doping is 1020 cm−3,
channel doping is 1019 cm−3.

A. Simulation at Cryogenic Temperatures

To benchmark the FVM/SG/QFT at cryogenic temperatures,
we use a L = 0.25 μm, W = 1 μm n-type bulk MOSFET,
shown in Fig. 4. Transfer characteristics for the MOSFET
are simulated with FVM/SG/DD and FVM/SG/QFT. The
effects of cryogenic temperatures on device physics including
mobility, velocity saturation, incomplete dopant ionization,
quantum correction, and so on have been discussed at length
elsewhere [17]. We will not cover these here but instead
focus on transport only. Tail states [18] are purposefully
omitted here in order to see how far the numerical stability of
the scheme can be pushed. Our setup includes the Poisson
equation and the QFT or DD equations for electrons and
holes with the Minimos mobility model [19]. The mobility is
hardly adequate for cryogenic temperatures but provides a non-
constant, temperature, dopant, and field-dependent mobility for
our benchmark.

Fig. 5 shows the transfer characteristics of the MOSFET,
simulated with FVM/SG/QFT from 300 K down to 4 K. The
characteristics were obtained using steady-state simulations.
In contrast, no drain currents below 10−25 A could be obtained
from FVM/SG/DD simulations.

To address the inherent instabilities at low-temperature [17],
the following bias-ramping scheme was used for the transfer
characteristics.

1) At VDS = 0 V, the initial gate voltage VG is applied,
and the solution is obtained without QFT, but instead
simply using (3) with EFn = 0 eV to obtain carrier
concentrations self-consistently since the device is in
equilibrium.

2) QFT is enabled and VDS is ramped to its target value.
The step size is chosen to be a multiple of kBT .

3) VG is stepped across the desired range. Here, the step
size is also chosen to be a multiple of kBT .

Note that all simulations were performed with IEEE
754 double precision arithmetic and used PARDISO [6]
as the linear solver backend. At approximately 20 K, the
carrier concentration underflows the double precision format,
i.e., it becomes lower than the smallest positive number

Fig. 5. MOSFET transfer characteristics from 300 K down to 4 K
simulated using FVM/SG/QFT at VDS = 0.8 V; despite only relying
on double precision arithmetic, FVM/SG/QFT is capable of calculating
contact currents down to 10310 A.

representable in double precision (≈10−310) and thus is
represented by an exact zero. This will zero-out (2) and (5)
resulting in a singular matrix. We apply a row-rescaling to
shift the equation back into the appropriate range for double
precision. The same issue also arises for the contact current,
which drops below 10−310 A near 10 K. This however, cannot
be remedied as Minimos-NT uses double precision for all its
I/O routines and file formats. It is however remarkable, that
the simulations still converge in this regime, even though the
contact current cannot be evaluated.

The mesh density in the device is critical at these
low temperatures. This can be understood from the Fermi-
Dirac distribution, which becomes more and more step-
like at low temperatures. Consequently, the QFL inside the
device becomes more and more step-like too, necessitating
finer mesh resolutions to ensure convergence at the lowest
temperatures.

B. Wide bandgap Devices

High-voltage devices are an application where the SG-
extension of QFT to FVM/SG/QFT is essential. At high
fields and driving forces, SG continuously transfers weight
to the coefficient belonging to the “upstream” end of an
edge {i, j}, thus smoothly transitions between central and
one-sided differencing. This is equally true for FVM/SG/DD
and FVM/SG/QFT in (5). The FVM/AM/QFT approach
weights both sides equally resulting in central differencing
under all conditions. Thus FVM/AM/QFT exhibits less stable
convergence for high-voltage applications.

We use a simple planar p/n-diode shown in Fig. 6 (top)
to benchmark the high-voltage capabilities of FVM/SG/QFT.
We first simulate the diode with Si as the semiconductor mate-
rial to establish a baseline comparison between FVM/SG/QFT
and FVM/SG/DD. The diode characteristics shown in Fig. 7
coincide for both methods, which is to be expected. However,
the FVM/SG/DD electron current density at reverse bias in
Fig. 6 (bottom) exhibits spurious behavior near the cathode,
which can be observed in detail in Fig. 8 and is a telltale sign
of the cancellation effect discussed in Section II. A similar
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Fig. 6. Top: diode structure; cathode doping is 1020 cm−3, cathode width
is 90 nm; middle: electron current density at V = −5 V simulated with
FVM/SG/QFT; bottom: same with FVM/SG/DD; the dashed line indicates
cut position for Fig. 8.

Fig. 7. Characteristic of the Si-diode simulated with FVM/SG/QFT and
FVM/SG/DD; there is no appreciable difference between the two results.

discrepancy of internal and contact current stability was also
reported in [4].

To test the limits of both FVM/SG/QFT and FVM/SG/DD,
we replace the semiconductor material of the diode with SiC,
and increase the voltage range to span from −50 to 5 V.
As was the case for the MOSFET, we have purposefully
omitted generation models such as impact ionization in order
to get an extremely low reverse-bias current for this test.

Fig. 9 clearly shows the breakdown of the FVM/SG/DD
scheme, which is unable to reproduce currents below 1 V
forward bias. It’s important to remark here that both
simulations converged on all bias points. Minimos-NT and

Fig. 8. Electron current density from FVM/SG/QFT and FVM/SG/DD at
V = −5 V along the cut indicated in Fig. 6.

Fig. 9. Characteristic of the SiC-diode simulated with FVM/SG/QFT and
FVM/SG/DD; DD is entirely incapable of simulating the device in reverse
bias. Reducing the minimum carrier concentration in DD by 10−6 does
not yield any improvements, hinting that the issue is fundamental to the
DD scheme itself.

other commercial simulators [2] employ a lower carrier
concentration bound, such that the concentration, should
it drop below that value, is automatically corrected. The
correction is done after each Netwon iteration and prevents
carrier concentrations from becoming zero or negative, which
would immediately cause the following iteration to fail during
assembly. We reduced this bound from its default value
of 10−9 to −10−15 cm−3 to ensure that it is not that which
is limiting the simulations with FVM/SG/DD scheme. As can
be seen in Fig. 9, this is not the case. It is noteworthy, that
QFT does not require such bounds, as the carrier concentration
is positive by construction – save for the discussed case where
it drops below 10−310 cm−3.

V. CONCLUSION

We have presented an FVM quasi-Fermi-energy-based
formulation of the DD model with an adapted SG
discretization scheme (FVM/SG/QFT) that is fully consistent
with the FVM/SG/DD formulation from the literature. The
implementation of the FVM/SG/QFT approach exhibits vastly
superior numerical stability and accuracy, allowing steady-
state simulation of devices at temperatures as low as 4 K as
well as of wide bandgap devices at high voltages.
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