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Abstract—In this article, we introduce a robust procedure for
the extraction of passive rational macromodels of low-loss electro-
magnetic structures with massive port counts. Such structures pose
inherent challenges that make standard macromodeling tools and
approaches inadequate, mainly due to complexity and sensitivity
at low frequency. The proposed approach involves a preprocessing
stage in which port response data from a full-wave electromagnetic
solver are regularized and extrapolated to dc using an asymptotic
modal representation. The resulting data samples are then pro-
cessed by a dedicated compression algorithm that represents the
full set of input–output responses in terms of a few basis functions,
which are constructed by enforcing an exact low-frequency modal
asymptotic behavior, possibly including higher order dc zeros.
These zeros are preserved in any stage of rational fitting and
passivity enforcement, resulting in dc and low-frequency compliant
compressed passive macromodels. Numerical results with up to 400
ports demonstrate the superior performance and accuracy of the
computed models with respect to state-of-the-art approaches. In
particular, the resulting models preserve their accuracy irrespec-
tive of the loading conditions, including the limit cases of short and
open terminations.

Index Terms—Data reduction, field circuit coupling, large-scale,
macromodeling, nonlinear circuits, low-frequency.

I. INTRODUCTION

SYSTEM-LEVEL simulation of interconnected electromag-
netic systems and components is often enabled by passive

macromodels constructed by rational fitting algorithms [1]–[4].
Such rational models are easily cast as equivalent circuits [5], [6]
and can be used as blocks in any circuit simulation environment.
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This approach is ubiquitous in several application fields [1], [7],
[8].

When low-loss electromagnetic structures with a large num-
ber of interface ports are considered, standard passive macro-
modeling algorithms may fail. Although advanced formula-
tions of rational fitting and passivity enforcement algorithms
exist [9]–[11], including parallelization for multicore [12] and
dedicated (GPU) hardware [13], several open issues remain in
the generation of robust macromodels. One main aspect is model
sensitivity to loading conditions.

A black-box macromodel is usually very accurate in the
input–output representation used for its training. For instance,
fitting scattering responses with port reference R0 usually result
in a model that is very accurate when loaded with resistances
close toR0. However, when the terminations differ significantly,
the model accuracy may deteriorate [14]. Consider as an ex-
ample the limit cases of short- and open-circuit terminations,
for which model behavior can be checked by computing its
admittance or impedance responses. Due to the nonlinear trans-
formation that converts scattering to impedance or admittance,
the inevitable approximation errors affecting the model may
be amplified, resulting in dramatically wrong and nonphysical
behavior [15], [16]. This phenomenon is particularly evident
when the system is low-loss, in which case the scattering
responses (eigenvalues) approach magnitude one at low fre-
quency. Increasing the number of ports further exacerbates this
sensitivity, in addition to posing additional challenges due to
computational requirements.

This article proposes a sequence of steps aimed at reducing
and possibly eliminating the above sensitivity problems, includ-
ing the case of missing samples at low frequency. This situa-
tion is common due to low-frequency limitations of full-wave
solvers, yet the low-frequency band is typically the range where
sensitivity induces its worse effects.

Both theory and numerical results are here illustrated on
a particular class of structures intended for energy-selective
shielding [17]. These structures are chosen not only for the
specific application interest but also because their electromag-
netic behavior includes all ingredients that induce a worst-case
sensitivity scenario: the combined presence of large-scale low-
loss multiport electromagnetic systems with massive nonlinear
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Fig. 1. Left: A box with P = 25 ports, arranged in p = 5 parallel branches,
each including p vertically aligned ports. Right: DC equivalent circuit; the return
path by the enclosure is represented by the short circuit on the right.

loading. In view of this application, motivation and objectives
of this work are now outlined with more details.

A. Motivation and Objectives

The left panel of Fig. 1 depicts a cubic box-shaped shielding
enclosure (each side 500 mm) with a square aperture (side of
250 mm). A regular grid of P = p× p lumped ports covers the
aperture, with p parallel segments, each including p ports con-
nected in series by metal strips (width 2 mm). The dc conducting
paths are illustrated in the right panel of Fig. 1, together with
the port numbering order. The shield material is assumed to be a
perfect electric conductor. This test case will be used as a running
example to illustrate all steps of the proposed approach. We
remark that the proposed approach can be trivially generalized
to apertures with arbitrary shapes and nonsquare grids.

It has been shown [18]–[21] that loading the ports by nonlinear
elements, e.g., back-to-back diode pairs, turns the structure into
an energy-selective shield. Penetration of an incident wave into
the box is permitted when the field amplitude is below the critical
threshold that triggers diode conduction. A higher energy field
switches diodes into conduction mode, thereby shorting the con-
ductive paths of the strips and increasing shielding effectiveness.
The result is an energy-selective shield, which can be used to
protect any enclosed equipment from high-amplitude incident
fields while allowing intended low-power communication.

The shielding enclosure with its P unloaded ports is a linear
electromagnetic structure, which can be characterized through
its frequency-domain responses within the desired frequency
band through a field solver. These responses can be used as
the training dataset for the extraction of a rational macromodel,
which, in turn, can be synthesized as an equivalent circuit,
terminated by the required nonlinear loads, and simulated in time
domain to verify the overall shielding performance. See [18] for
a complete description of this characterization and modeling
framework.

The top panel of Fig. 2 reports the impedance responses
obtained by a Method of Moments (MoM) solver [22]. Native
samples from field solvers {H(jωk), k = 1, . . . ,K} are typi-
cally available in scattering representation (H = S), conversion
to impedance Z or admittance Y is performed as postprocess-
ing. The data cover a frequency band ωk ∈ ΩD = ΩL ∪ ΩH ,

Fig. 2. Full set of responses of a 25-port shielding enclosure. Top: all
impedance matrix data from field solver. Bottom: field solver data after con-
version to the asymptotic modal domain via (6). See text for details.

where ΩL is the frequency band over which the structure can
be assumed to be electrically small, where the corresponding
impedance responses exhibit a clear asymptotic behavior, and
ΩH is the higher frequency band where box resonances start
to appear. Due to limitations in the adopted field solver, only
responses starting from a minimum frequencyfmin are available,
thus causing a gap in the frequency band ΩG = (0, fmin). Note
that such low-frequency limitations affect most full-wave field
solvers, and that the presence of a low-frequency gap ΩG is very
common.

The responses in Fig. 2 present the following challenges.
1) The dc (zero-frequency) point is missing. The behavior of

the structure under static conditions is, however, essential
for the correct setup of any circuit simulation in time
domain. Since the field solver is unable to provide the
dc responses accurately, a common practice is to evaluate
the dc point via a physics-based approach [23] or via a
numerical solution through a static solver. In fact, the right
panel of Fig. 1 provides the dc circuit, whose direct anal-
ysis shows that both impedance and admittance matrices
do not exist. This is due to the presence of a dominant
pole at dc, which is well visible from the asymptotic
behavior of the impedance samples in Fig. 2. The same
behavior can be observed in the admittance responses
(not shown). Allowing this dc pole in a macromodel
would result in time-domain simulation difficulties due
to the lack of asymptotic stability. Therefore, some sort
of regularization at dc is necessary in order to guarantee
success in subsequent transient circuit simulations.

2) Even if a physically consistent and regularized dc point is
provided, the presence of a wide low-frequency gap ΩG

prevents full control of the macromodel response in this
frequency range, which is, however, essential to control
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Fig. 3. Modeling a 25-port shielding enclosure with a standard passive macro-
modeling tool [24]. Scattering parameters were fitted by enforcing an exact
dc point (top panel). Low-frequency accuracy is not preserved after model
conversion to the impedance parameters.

the transient response. Even in the case of high-frequency
incident field excitation, the nonlinear terminations may
enhance the low-frequency portion of the port signal
spectra, which are, in turn, affected by the low-frequency
model response.
Fig. 3 reports the impedance model responses obtained
by a state-of-the-art passive macromodeling tool [24] by
fitting scattering responses with exact enforcement of a
physics-based dc point. We see that the impedance re-
sponses of the model in a broad low-frequency band are
completely wrong. We conclude that some sort of data
extrapolation is required to provide a smooth connection
between the field solver data and the dc point so that the
model can be properly trained. We will see that a direct
naive extrapolation of impedance (or admittance or scat-
tering) responses by extending the asymptotic behavior to
low frequencies is not sufficient, and a more sophisticated
regularized modal extrapolation is required.

3) The third macromodeling challenge relates to complexity,
especially in terms of the number of ports P . For practical
applications, this number can grow to several hundreds
or more due to the requirement of uniformly covering the
shielding aperture with nonlinear blocking devices. An
approach that has the potential to scale favorably with the
number of ports is, therefore, required.

These challenges will be addressed as follows. First, a com-
bined low-frequency regularization and extrapolation based on
asymptotic modes [25] is discussed in Section II, by extending
the preliminary results of [26]. We will see that this prepro-
cessing stage smoothly extends dc to the solver data while
at the same time avoiding the low-frequency degeneracy ob-
served in Fig. 2. Data and model complexities are addressed
through a compression algorithm based on the singular value

decomposition (SVD). We extend the approach of [27] by
proposing a block-diagonal SVD (BD-SVD) and a hierarchical
SVD (Hi-SVD). These alternative solutions compress the full set
of input–output responses into a small number of basis functions,
each with a well-defined low-frequency asymptotic behavior and
the number of expected dc zeros. The generation of regularized
and compressed macromodels is discussed in Section IV, where
an approach is presented for rational fitting the individual ba-
sis functions while preserving the number of dc zeros in the
model. A full set of numerical results presented in Section V
demonstrates the reduced sensitivity of the proposed models by
increasing the number of ports up to P = 400. Conclusions are
finally drawn in Section VI.

Before proceeding, we set some basic notation used through-
out this document. We denote scalars with normal fontx, vectors
with lower case bold fonts x, and matrices with upper case
bold fonts X, with In being the identity matrix of size n. The
transpose and Hermitian transpose of a matrix will be indicated
with XT and XH, respectively. The singular values of a matrix
X will be indicated as σ{X}, while Re{·} and Im{·} extract the
real and imaginary parts of their arguments, respectively.

II. REGULARIZATION AND LOW-FREQUENCY EXTRAPOLATION

Since a low-frequency gap ΩG prevents control of model
accuracy and sensitivity, we propose in this section a simple
and robust procedure to fill this gap with physically consistent
extrapolated samples such that the frequency responses are well
defined and nonsingular at any frequency (including dc) for any
input–output representation.

A. DC Regularization

Let us consider the dc circuit of a box structure with no
metal losses, as depicted in Fig. 1. As already mentioned, both
admittance and impedance matrices are ill-defined at DC.

1) Exciting all ports with independent current sources at-
tempting to evaluate impedance parameters leads to an
ill-defined dc circuit due to the presence of p(p− 1)
independent current source cutsets.

2) Exciting all ports with independent voltage sources at-
tempting to evaluate admittance parameters leads to an
ill-defined dc circuit due to the presence of p independent
voltage source loops.

Therefore, both admittance Y0 = Y(s = 0) and impedance
parameters Z0 = Z(s = 0) are ill-defined at dc since both Y(s)
and Z(s) have a pole at s = 0. This pole can be moved off the
imaginary axis by:

1) adding a shunt resistance R to each port, leading to regu-
larization of Z(s);

2) adding a series resistance r to each port, leading to regu-
larization of Y(s).

This procedure leads to the dc regularized topology of Fig. 4,
which is nonsingular for any cardinal representation. In fact, a
direct calculation leads to the following expressions for the dc
impedance, admittance, and scattering matrices:

Z0 = Ip ⊗ Z′0, Z′0 = r Ip +R (Ip − ϑuuT) (1)
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Fig. 4. Proposed regularized topology.

Fig. 5. Selected responses of regularized impedance parameters of a 5× 5
box (P = 25) via Algorithm 1 (R = 100 MΩ, r = 0.1 Ω). Black dotted lines
represent the dc values from (1); the inset provides detail on high frequency.

Y0 = Ip ⊗Y′0, Y′0 =
(p rIp +RuuT)

p(Rr + r2)
(2)

S0 = Ip ⊗ S′0, S′0 =
Φ′ − 1

Φ′ + 1
Ip − 2ϑΦuuT

(Φ′ + 1)(ϕ+ 1)
(3)

where p is the number of vertically aligned ports,ϑ = 1/p,uT =
[1, . . . , 1], u ∈ Rp, Φ = R/R0, ϕ = r/R0, Φ′ = Φ+ ϕ, with
R0 denoting the scattering port reference impedance.

B. Regularization of MoM Data

Redefinition of the dc behavior according to Fig. 4 makes the
frequency samples obtained from the field solver not compatible
with the extrapolated dc responses. Therefore, a full-bandwidth
regularization process must be applied so that all frequency
samples in ΩD are compatible with the above-computed dc val-
ues. This regularization is accomplished by Algorithm 1, which
evaluates a set of modified responses obtained by connecting a
shunt resistance R at each port and, in a second step, a series
resistance r at each port. Note that all steps are well defined since
the dc point is assumed to be missing from the data so that all
matrices are invertible at any available (finite) frequency point.
The results of this process are depicted in Fig. 5.

Fig. 5 shows that the perturbation of the available frequency
samples from the MoM solver is negligible, considering the
values used for series (r = 0.1 Ω) and parallel (R = 100 MΩ)
regularization. As a general guideline, the values of r and R
should be very small and very large, respectively, in order to
preserve all features in the original responses. Fig. 5 also shows

Algorithm 1: Data Regularization.

Require: Frequency data {H(jωk), ωk ∈ ΩD}, R, r
1: H(jωk)← 0.5(H(jωk) +H(jωk)

T)
2: Convert H(jωk) to admittance Y(jωk)
3: Regularize admittance as Y(jωk)← Y(jωk) +

1
RIP

4: Convert to impedance Z(jωk) = [Y(jωk)]
−1

5: Regularize impedance as Z(jωk)← Z(jωk) + rIP
6: Add dc point Z0 from (1) as Z(jω)|ω=0 = Z0

7: return Z(jωk): regularized data including dc point

that the regularized dc values do not connect smoothly to the
frequency responses starting from the first frequency sample at
fmin. The gap in the responses due to the low-frequency limit of
the field solver is still too large and must be filled with suitably
extrapolated response samples.

C. Low-Frequency Extrapolation

An extrapolation of the frequency responses below the first
available frequency point is not trivial since both admittance and
impedance responses Y(jω)→∞ and Z(jω)→∞ for ω → 0.
The structure is characterized by the presence of both inductive
and capacitive modes at low frequency, which are responsible
for the singularity of both admittance and impedance. A di-
rect extrapolation of admittance (impedance) matrix elements
would lead to a good approximation of the inductive (capacitive)
modes, respectively, leaving the other modes very inaccurate.

This problem can be effectively solved by conversion to
a modal domain, where inductive and capacitive modes are
well separated and can be extrapolated concurrently [26]. This
operation is best performed on the raw data (lossless) from the
field solver before applying Algorithm 1. Differently from [28],
in order to improve numerical robustness and provide an extrap-
olation scheme that is immune from the field solver inaccuracies
that can be expected at low frequencies, we base the definition
of the modal basis on the regularized dc admittance Y0 derived
analytically in (2). This choice leads to the additional benefit
of a purely real and orthogonal modal transformation, which
is required for preserving causality [29], [30] in all subsequent
macromodeling steps.

We compute the following eigendecomposition:

Y0 = QΛ0Q
T, Λ0 = QTY0Q =

[
1
R′ Ic 0

0 1
r I�

]
(4)

where R′ = R+ r. We note that the eigenvalue 1/R′ has multi-
plicity c = p(p− 1), while the eigenvalue 1/r has multiplicity
� = p. We will see shortly that c and � correspond to the number
of capacitive and inductive modes of the structure. Since Y0 is

symmetric, the modal matrix Q =
[
Qp Qs

]
is orthogonal so

that QT
sQs = I�, QT

pQp = Ic, and QT
pQs = 0. Consequently

Y0 =
1

R′
QpQ

T
p +

1

r
QsQ

T
s . (5)
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For any frequency ωk ∈ ΩD, the data from the field solver are
converted to the dc asymptotic modal domain via

Ym(jωk) = QTY(jωk)Q , ωk ∈ ΩD. (6)

The same transformation can be applied in scattering or
impedance representation. The bottom panel of Fig. 2 depicts
the obtained modal impedance responses, where the±20 dB/dec
slope associated with purely inductive/capacitive modes is ev-
ident for frequencies in the subband ΩL. Note that the modes
that converge to zero in the impedance representation are those
modes that explode to∞ in the admittance representation and
vice versa.

With reference to Fig. 2, we now restrict our analysis to the
subband ΩL where the projected solver data can be assumed to
behave asymptotically. We can assume the following frequency
dependence:

Ym(jω) ≈ 1

jω
Γm + jωCm =

[
jωC̃ jωX̃

jωX̃T 1
jω Γ̃

]
, ω ∈ ΩL (7)

where Γm and Cm are constant matrices such that (Γm)ij 
=
0⇒ (Cm)ij = 0 for any i, j and vice versa. The structure of the
dominant terms is also detailed in (7) in terms of the constant
matrix blocks C̃, Γ̃, and the off-diagonal blocks X̃. These
constant matrices are determined via a two-step elementwise
regression.

First, we assign each matrix element (i, j) to the capaci-
tive or inductive subset by determining the dominant slope of
the modal admittance magnitude. For ωk ∈ ΩL, we compute
ξk = log10 ωk, yij;k = log10 |Ym;ij(jωk)| and we perform a
least squares fit to determine the coefficient μij such that

yij;k ≈ μij ξk + νij , ∀ωk ∈ ΩL. (8)

Acceptable values for this coefficient are μij = +1, in which
case element (i, j) is assigned to the capacitive terms Cm, and
μij = −1, corresponding to the inductive termsΓm. Coefficient
νij is disregarded.

As a second step, we identify the actual elements of con-
stant matrices Cm and Γm. This is achieved by a second least
squares fit based on the imaginary part ηij;k = Im{Ym;ij(jωk)}
performed differently for capacitive and inductive terms as

μij = +1 : ωkCm;ij ≈ ηij;k ∀ωk ∈ ΩL

μij = −1 : −ω−1k Γm;ij ≈ ηij;k ∀ωk ∈ ΩL. (9)

Using the coefficients from (9), we generate the desired num-
ber KGL of new samples according to the asymptotic modal
expansion

Υm(jωk) =
1

jωk
Γm + jωkCm, ωk ∈ ΩG ∪ ΩL. (10)

Note that in addition to new samples in the low-frequency
gap ΩG, we also evaluate the asymptotic model in its training
band ΩL, expecting a minimum deviation with respect to the
projected solver data. These are used to assemble all native and

Fig. 6. Comparison of the original MoM data with the full-bandwidth
impedance parameters of the 25-port shielding enclosure, obtained after the
proposed regularization/extrapolation procedure.

extrapolated samples as

Ym(jωk)←

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Λ0 ωk = 0

Υm(jωk) ∀ωk ∈ ΩG

αkYm(jωk) + βkΥm(jωk) ∀ωk ∈ ΩL

Ym(jωk) ∀ωk ∈ ΩH

(11)
where αk and βk are frequency-dependent coefficients such that
αk + βk = 1 that are respectively (linearly or logarithmically)
increasing and decreasing from 0 to 1 inΩL, providing a smooth
transition between the synthetically-generated asymptotic sam-
ples Υm(jωk) and the field solver data Ym(jωk).

D. Regularization in the Modal Domain

The last step in the proposed data conditioning process is reg-
ularization, which is performed directly in the modal domain by
processing the extrapolated data (11). The main advantage of this
approach is that only the individual modes that are responsible
for the singularity of a given (modal) matrix representation are
regularized, leaving the other modes unperturbed.

Starting from Ym(jωk) defined in (11), for any frequency
ωk 
= 0, we perform the following steps.

1) Regularize the capacitive block to prevent the degeneracy
of Ym(jω) for ω → 0

Ŷm(jωk) = Ym(jωk) +

[
1
R′ Ic 0

0 0

]
, ωk ∈ ΩG ∪ ΩD.

(12)
The resulting matrix is invertible at any frequency.

2) Convert to impedance and regularize the inductive block
to prevent its degeneracy for ω → 0

Z̆m(jωk) = Ŷm(jωk)
−1 +

[
0 0

0 rI�

]
, ωk ∈ ΩG ∪ ΩD.

(13)
3) Return to the physical domain through inverse modal

transformation

Z̆(jωk) = QZ̆m(jωk)Q
T, ωk ∈ ΩG ∪ ΩD. (14)

Fig. 6 depicts the impedance responses after the complete
extrapolation and regularization, compared to the native field
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solver samples. This plot confirms that in-band samples are prac-
tically left unchanged, and that data are smoothly extrapolated
throughout both the transition band ΩL and the low-frequency
gap ΩG.

It can be easily shown that the resulting data samples in
the low-frequency gap ΩG, obtained as a regularization of the
lossless extrapolation (10), have the modal structure

Z̆m(jω) =

[
R′Ic + �1 �2

�2 rI� + �1

]
, ω ∈ ΩG (15)

where the symbol �ν denotes a frequency-dependent matrix with
leading order (jω)ν forω → 0. This structure is fully compatible
with the direct (physical-domain) regularization of Algorithm 1
and with the dc physics-based circuit shown in Fig. 4. The modal
impedance matrix, thus, exploits elements that converge to a
constant (the diagonal entries), elements with a first-order zero,
and off-diagonal blocks with a second-order zero. This structure
also applies to the scattering responses in ΩG, as confirmed later
by Fig. 9(d). Classification of these matrix elements is important
for data compression, as discussed next.

E. Extensions

The extension of the proposed procedure to a general mul-
tiport structures with possibly different asymptotic behavior
at dc is straightforward once a proper regularization circuit is
defined (e.g., Fig. 4). Indeed, the general procedure can be easily
modified to deal with purely inductive or capacitive modes,
corresponding to admittance or impedance matrices being ill-
defined at dc.

We also remark that the proposed regularization procedure
was conceived to handle the case of a completely missing dc
characterization, with the objective of providing a synthetic
dc point that will not create problems in later modeling and
simulation steps. In other situations, a dc characterization may
be available, either from direct measurement or from a separate
dc or quasi-static solver. If available, such dc characterization
can be used directly within the proposed framework by replacing
the expressions (1)–(3). The eigendecomposition and modal
regularization then apply without significant modifications.

III. DATA REDUCTION AND STRUCTURED MACROMODELS

In this section, we address the scalability of macromodel
extraction with the number of interface ports. For the considered
energy-selective shielding application, we expect grids with
hundreds of ports P . For such a large number of ports, the
complexity of both model generation and model exploitation in
successive transient simulations may become impractical due to
the requirements of concurrently fitting P 2 responses. Although
the Fast VF algorithm [9] and its parallel implementations [12],
[13] somewhat improve the model fitting phase by compressing
the least squares system returning the model coefficients at each
VF iteration, there is still a significant margin for improvement.
In fact, the set of frequency responses usually exhibits a high
degree of redundancy, which can be removed by a suitable
data compression strategy. The structure of the model can,

thus, be improved to take advantage of such redundancy rather
than adopting a standard rational expansion of each individual
response with common poles and independent P × P residue
matrices.

In this direction, a data compression technique based on a
standard SVD was originally presented in [27]. This method
allows to obtain a compressed-macromodel via VF taking advan-
tage of the spatial correlation between ports and describing the
overall system with a limited number of basis functions. In [27],
these functions are the singular vectors of a truncated SVD.
Here, we generalize and customize this approach to the particular
modal structure of the frequency responses of shielding enclo-
sures, in particular, to reproduce accurately the number of modal
dc zeros. We first recall some background notation and material
in Section III-A. Our proposed extended and generalized version
of this algorithm is presented in Section III-B.

A. SVD Data Compression: Background

The data compression approach of [27] starts with a set of
frequency (typically scattering) responses H(jωk) = Hk of a
P -port linear time-invariant system, sampled at suitable fre-
quency points ωk, with k = 1, . . . ,K. The first step of the
procedure stacks the columns of Hk ∈ CP×P at each frequency
ωk in a row vector defined as

xk = vec(Hk)
T (16)

wherexk ∈ CP 2
. The equivalent mapping (xk)� = (Hk)i,j can

be defined as

� = i+ (j − 1)P,

{
i = 1 +mod(�− 1, P )

j = 
�/P � (17)

where 
·� rounds toward infinity and mod is the remainder of
integer division. All these row vectors are collected in a matrix
X ∈ CP 2

as

X =

⎡⎢⎢⎣
←− x1 −→

...
...

...

←− xK −→

⎤⎥⎥⎦ =

⎡⎢⎣ ↑ · · · ↑
m1 · · · mP 2

↓ · · · ↓

⎤⎥⎦ . (18)

Following [27], real and imaginary parts of X are stacked in
a real matrix, which is subjected to a truncated SVD[

Re {X}
Im {X}

]
≈ ŪΣ̄V̄T (19)

where the ρ leading singular values are collected in Σ̄ ∈ Rρ×ρ,
while the left and right singular vectors correspond to the
columns of Ū ∈ R2K×ρ and V̄ ∈ RP 2×ρ, respectively. We re-
call that ŪTŪ = Iρ and V̄TV̄ = Iρ, while V̄V̄T 
= IP 2 due to
SVD truncation. Next, we define the following matrix:

W̄ =
[
IK jIK

]
ŪΣ̄ (20)

which recombines real and imaginary parts of scaled singular
vectors, allowing to approximate the system responses in (18)
as

X ≈ X̄ = W̄V̄T . (21)
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Fig. 7. Standard SVD compression [27] applied to a 25-port shielding enclo-
sure. Top panel: representative responses with dc zeros of different orders, not
recovered after the data compression. Bottom: subset of the resulting ρ = 73
basis functions (threshold σρ+1 = 10−6). All basis functions are nonvanishing
at dc.

In particular, the �th column of X can be reconstructed using

m� ≈
ρ∑

q=1

v�,qw̄q (22)

where w̄q denotes the qth column of W̄. The set of w̄q is here
denoted as basis functions. From (21) or (22), we see that each
frequency response out of a set of P 2 can be approximated with
only ρ basis functions through a simple SVD data preprocessing.
Therefore, a VF macromodel of the P × P system can be built
by constructing rational approximations of the basis functions
{w̄q, q = 1, . . . , ρ}, which is a very efficient operation when
ρ� P 2. Moreover, as indicated in [27], the error introduced by
(21) is bounded by

E =
∥∥X− X̄

∥∥
2
≤
√
2σρ+1 (23)

where σρ+1 is the first neglected singular value. Note that (23)
sets the limit of accuracy of the overall macromodeling proce-
dure: any error introduced at this step will not be recovered
in later steps so that the number of retained singular values
should be such that σρ+1 is sufficiently small for the considered
application.

If we apply the above framework to scattering responses
of shielding enclosures, the structure of the responses is not
preserved by the truncated approximation (21). Fig. 7 confirms
that even if the threshold used for SVD truncation is very
aggressive, the presence of single or double zeros at dc for
some responses is not preserved. The data before compression
for this example were obtained following the regularization and
extrapolation discussed in Section II-C, using series and parallel
resistances r = 0.1Ω and R = 100MΩ. The resulting number
of frequency samples is K = 8904 in the range [0, 1]GHz,
including 904 low-frequency extrapolated samples and the

dc point. The SVD data compression was applied using a trunca-
tion thresholdσ < 10−6, resulting in ρ = 73 basis functions (see
bottom panel of Fig. 7). All these basis functions are nonzero
at dc so that the presence of a dc zero in any of the system
responses would be enforced through a linear combination (22)
of nonvanishing basis functions, relying on numerical cancela-
tion. Machine precision and SVD truncation thresholds prevent
this cancelation so that a low-frequency saturation appears and
destroys any dc zero (see top panel of Fig. 7). This saturation can
be interpreted as an artificial additional loss at low frequency,
which may compromise the overall reliability and accuracy of
the model, especially in transient simulations with nonlinear
terminations. The presence of dc zeros must be preserved at
all steps of the modeling process, including data compression.
Therefore, we need to extend the basic SVD compression of [27]
in order to guarantee a proper structure preservation.

B. Structured SVD Compression

The main idea that motivates the following data reduction
procedure is to obtain a specific set of basis functions that reflect
structural properties in the original response data. This is applied
here to preserve dc zeros of a given multiplicity (up to two in the
following), although the procedure is general and can be applied
to preserve any other feature of interest.

The starting point is (18), which collects all P × P system
responses as columns of matrix X, ordered according to the
column stacking operator (16). As a first step, we reorder the
columns of X through a suitable permutation matrix P such
that PPT = I as

X = MP =
[
M1 M2 M3

]
P (24)

where the first blockM1 ∈ CK×P1 stores the responses ofH(s)
that saturate to a nonvanishing dc value, while the second and
third blocks M2 and M3 collect all responses with a zero at dc
of order 1 or 2, respectively. In the following, we indicate with
Pν the number of columns of each group of responses Mν , with
ν = {1, 2, 3} and

∑
ν Pν = P 2. An example of these three sets

is reported in the top panel of Fig. 8 [see also Fig. 9(d)].
Applying a standard (unstructured) SVD compression to the

reordered matrix M and highlighting the 3× 3 block structure
leads to

M =
[
M1 M2 M3

]
=

[
W1 W2 W3

]
VT

=
[
W1 W2 W3

]⎡⎢⎣V11 V12 V13

V21 V22 V23

V31 V32 V33

⎤⎥⎦ (25)

where matrices Wν collect groups of basis functions to be
associated with the three groups of responses Mν , with ν =
{1, 2, 3}. Expanding (25) provides

M1 = W1V11 +W2V21 +W3V31

M2 = W1V12 +W2V22 +W3V32

M3 = W1V13 +W2V23 +W3V33 (26)
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Fig. 8. Grouping responses of a 25-port box according to the order of dc zeros.
Top: magnitude of the modal responses. Bottom: examples of responses with dc
zeros that are recovered after proposed data compression approaches.

Fig. 9. Data compression applied to a 25-port shielding enclosure. Accuracy
on all trasfer function elements after compression via (a) Standard SVD, (b)
the proposed BD-SVD and (c) the proposed Hi-SVD. Panel (d) highllights the
groups of responses according to the order of the dc zeros. (a) SVD: RMS errors
on S(jω). (b) BD-SVD: RMS errors on S(jω). (c) Hi-SVD: RMS errors on S(jω).
(d) Sm(·) entries.

which shows that each group of responses depends on all basis
functions in all groups ν = {1, 2, 3}. Let us assume now that
basis functions W3 are constructed only using the responses
in M3. Since all these responses have a double zero at dc,
then each basis function in W3 will retain a double zero at
dc. In order for the reconstructed M3 in (26) to preserve this
double zero, the terms V13 and V23 must vanish identically.
Similarly, assuming that the basis functions W2 are constructed

only based on the subset M2, single dc zero preservation in (26)
is guaranteed if V12 = 0. In other words, enforcing VT to be
block-lower-triangular guarantees the preservation of dc zeros
in the data compression, provided that individual basis functions
in the three groups Wν are constructed using only the proper
subsets of responses. We can realize this condition using two
different strategies.

1) Block-Diagonal SVD: The block-diagonal approach con-
siders each subset of responses Mν for ν = {1, 2, 3} as inde-
pendent, by applying individual SVD compression. Therefore,
we compute

M̃ν =

[
Re {Mν}
Im {Mν}

]
≈ ŪνΣ̄νV̄

T
ν , ν = 1, 2, 3 (27)

where Σ̄ν collects the leading ρν singular values in descending
order, and where Ūν ∈ R2K×ρν , V̄ν ∈ RPν×ρν , with ŪT

νŪν =
I and V̄T

νV̄ν = I. We then define

W̄ν =
[
IK jIK

]
ŪνΣ̄ν , V̄′ν = V̄T

ν , ν = 1, 2, 3 (28)

and rewrite (27) as

Mν ≈ M̄ν = W̄νV̄
′
ν , ν = 1, 2, 3. (29)

Collecting all groups leads to the BD-SVD approximation

M ≈ M̄ =
[
M̄1 M̄2 M̄3

]

=
[
W̄1 W̄2 W̄3

]⎡⎢⎣V̄
′
1 0 0

0 V̄′2 0

0 0 V̄′3

⎤⎥⎦ . (30)

The advantages of the BD-SVD compression are as follows:
1) the guarantee that particular features in different groups

of responses are preserved in the compressed dataset,
including dc zeros;

2) the ability to tune the accuracy on each set of responses
Mν individually, which allows to control the dc error when
working in the modal reference systems. Indeed, in the
latter case, the diagonal terms of the transfer function are
the only ones responsible for the accuracy at s = 0;

3) the high level of sparsity in the transformation matrix V̄,
hence in the compressed model.

These advantages are counterbalanced by a potentially larger
number of total basis functions ρ =

∑
ν ρν with respect to a

global unstructured SVD.
2) Hierarchical SVD: The Hi-SVD does not consider each

subset of responses Mν for ν = {1, 2, 3} as independent, but
it applies a hierarchical strategy to iteratively remove the con-
tribution of a given set from the others by projection. The final
result is represented by a block-triangular structure

M ≈ M̄ =
[
M̄1 M̄2 M̄3

]
(31)

=
[
W̄1 W̄2 W̄3

]⎡⎢⎣ V̄′1 0 0

V̄′2,1 V̄′2 0

V̄′3,1 V̄′3,2 V̄′3

⎤⎥⎦ . (32)
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Fig. 10. Top panel: subset of basis functions obtained with the proposed BD-
SVD; bottom panel: the same rescaled basis functions via (43).

where individual matrix blocks are iteratively defined for � =
{3, 2, 1} through a truncated SVD

M̃� −
3∑

j=�+1

ŪjV̄
′
j,� ≈ Ū�Σ̄�V̄

T
� = Ū�V̄

′
� (33)

with V̄′� = Σ̄�V̄
T
� and V̄′j,� = ŪT

jM̃�.
This representation preserves the same advantages of the BD-

SVD compression, but it generally requires a smaller number of
basis functions ρ =

∑
ν ρν to obtain the same level of accuracy.

The same 25-port example of Section III-A is used here to
demonstrate the effectiveness of the proposed strategies. Modal
scattering responses were subjected to the BD-SVD and the
Hi-SVD using truncation thresholds {10−8, 10−6, 10−6} for
M1, M2, and M3, respectively. The value for M1 was chosen
to preserve an accurate dc reconstruction for the nonvanish-
ing responses at dc [the diagonal entries of Sm(jω)]. Fig. 8
confirms the preservation of dc zeros for all modal responses.
All compression techniques provide similar accuracy for all
reconstructed scattering elements (see Fig. 9). The top panel
of Fig. 10 depicts the selected basis functions for each block
with dc zeros of different orders.

IV. STRUCTURED COMPRESSED MACROMODELING

The compressed data representation (21) obtained either with
the standard [27] or the proposed dc-preserving structured com-
pression methods of Section III can be used as a starting point to
construct a low-complexity structured macromodel. We review
the general framework [27] in Section IV-A, and we present the
proposed dc-preserving generalization in Section IV-B.

A. Compressed Macromodeling: Background

For each individual basis function w̄q available as a column
of matrix W̄ ∈ CK×ρ, we construct a rational macromodel in

form

wq(s) = rq∞ +

Nw∑
n=1

rqn
s− pn

(34)

where pn are the system poles (common to all basis functions),
rqn are the model residues, and rq∞ is the direct coupling term.
The model is computed by processing all basis functions at
once through the Fast VF algorithm [9] by enforcing the fitting
condition

wq(jωk) ≈ (w̄q)k, q = 1, . . . , ρ, k = 1, . . . ,K (35)

considering that the kth component (w̄q)k of each basis vector
w̄q corresponds by definition to the frequency ωk.

All basis function models (34) are collected in a row vector
denoted as compressed macromodel

w(s) =
[
w1(s) w2(s) · · · wρ(s)

]
(36)

that can further be cast in a state-space form as

w(s)T = Cw(sI−Aw)
−1bw + dw (37)

with Aw ∈ RNw×Nw storing the poles pn in its main diagonal,
bw = 1Nw

column vector of ones, Cw ∈ Rρ×Nw collecting
the residues rqn, and dw ∈ Rρ collecting the direct coupling
constants rq∞. Standard modifications apply [1] in the case of
complex conjugate model poles.

The main advantage of this approach is the computational cost
reduction in building the macromodel. Indeed, instead of fitting
P 2 responses (or P (P + 1)/2 in case of reciprocal structures),
the compressed-macromodel requires only ρ elements (the set
of basis functions) to be fitted. This corresponds to a major
reduction in terms of model coefficients, i.e., a smaller amount
of decision variables both for the fitting and the subsequent
passivity enforcement.

B. Structure-Preserving Compressed Macromodeling

One of the main contributions of this work is in the definition
of a compressed structured macromodel

ŵ(s) =
[
ŵ1(s) ŵ2(s) · · · ŵρ(s)

]
(38)

where the rational model ŵq(s) for each basis function inherits
the features of the corresponding column w̄q of W̄, in particular
in the presence of dc zeros of a given order. For the particular
application to shielding enclosures, where we need to model
three blocks ν = 1, 2, 3 with ρν basis functions each and a dc
zero of order 0,1,2 respectively, this is achieved by defining

ŵ(s)T = Γ(s) ·w(s)T (39)

where

Γ(s) =

⎡⎢⎣m1(s) · Iρ1
0 0

0 m2(s) · Iρ2
0

0 0 m3(s) · Iρ3

⎤⎥⎦ (40)

with frequency-dependent rational weighting factors

m2(s) =
s

s− p∞2
, m3(s) =

s

s− p∞2
· s

s− p∞3
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and m1(s) = 1. Assuming the components of w(s) in rational
form (34), these high-pass filters enforce dc zeros of appropri-
ate multiplicity while remaining compatible with the require-
ment that scattering responses must be unitary bounded since
|mν(jω)| ≤ 1 for ν = 1, 2, 3 and ∀ω ∈ R. The poles p∞2,3 are
selected to be outside the modeling band to minimize their
effects in the modeling bandwidth

ωmax <
∣∣p∞2,3∣∣ (41)

where ωmax is the maximum frequency used to fit the model.
Since

lim
s→∞Γ(s) = Iρ (42)

the asymptotic behavior of ŵ(s) and w(s) is identical so that
the model response of ŵ(s) at s =∞ is controlled by the direct
coupling terms rq∞ of (36).

1) Model Fitting: Here, we show how the filtering term Γ(s)
defining the compressed structured macromodel (39) can be ac-
counted for without any modification of a standard VF or FastVF
engine [9]. Direct enforcement of model structure (39) would in
fact require a modification of the VF basis functions in order to
account for the presence of the two additional high-frequency
poles p∞2,3. Instead, we rescale the basis vectors by the inverse
of the weighting matrix Γ−1k = Γ(jωk)

−1, and we enforce a
standard VF fit with a compressed model in form (34). The
resulting fitting condition for each rescaled basis vector reads

wq(jωk) ≈ (w̃q)k = (Γk)
−1
qq (w̄q)k,

q = 1, . . . , ρ, k = 1, . . . ,K. (43)

The right-hand side in (43) takes a nonzero finite value at dc due
to the inverse rescaling factor that cancels the corresponding dc
zeros. Therefore, a standard rational model with structure (34)
can be used to perform the rational approximation (43). The final
structured model with dc zeros is obtained through multiplica-
tion by the filtering terms through (39).

Fig. 10 reports the set of basis functions before and after
rescaling by (43). In order to improve numerical conditioning
and accuracy, each qth basis vector can further be normalized
by its 2-norm or RMS value, embedded as an additional weight
in the corresponding diagonal element Γqq(s) of the filtering
matrix in (39) and (43).

In addition to the slope, a correct dc level of the model is
obtained by enforcing the additional equality constraint

(w̃q)1 = rq∞ +

Nw∑
n=1

rqn
−pn q = 1, . . . , ρ (44)

while solving (43) in least squares sense using VF or FastVF,
where it is assumed that the dc value is available as the first
frequency sample k = 1 as s1 = jω1 = 0.

The compressed structured macromodel (38) can be mapped
to the original multiport scattering representation H(s) through
a constant algebraic transformation

H(s) = mat(V̄ŵ(s)T) (45)

where the mat operator reshapes a vector of P 2 elements into a
P × P matrix.

2) Enforcing Model Passivity: We now address the passivity
enforcement of the structured compressed (scattering) macro-
model defined in (45), assumed to be asymptotically stable
by construction as obtained by VF. We recall that a scattering
macromodel is passive if its transfer function is bounded real,
which is implied under the working stability assumptions by
condition

σmax{H(jω)} ≤ 1 ∀ω ∈ R (46)

where σmax is the largest singular value of its matrix argument.
The scheme that we adopt is the method of choice in most

state-of-the-art tools based on iterative local perturbation singu-
lar values that violate (46). Let us consider a single frequency
ωk at which this passivity condition is violated, and compute the
SVD

Hk = H(jωk) = UkΣkV
H
k (47)

where Uk,Vk are unitary, and Σk stores in its diagonal the
singular values of Hk. We define σk > 1 as the largest singular
value, with uk and vk the corresponding left and right singular
vectors. Following standard results [1], [10], we write a first-
order singular value perturbation

σ̂k ≈ σk +Δσk = σk + Re
{
uH
kΔHkvk

}
(48)

whereΔHk is the corresponding model perturbation. Requiring
σ̂k to be less than one leads to the following first-order condition
for local passivity at ωk

Re
{
uH
kΔHkvk

} ≤ 1− σk. (49)

Rather than following a two-step process as in [27] by
enforcing asymptotic passivity first, followed by an iterative
enforcement loop at all finite frequencies, we follow here a
direct approach to perturb concurrently all model coefficients
while enforcing (49) at all (finite and infinite) frequencies. First,
we define the model perturbation in terms of its coefficients by
introducing the vectorized variable

xw = vec(ΔRw) (50)

where ΔRw is a perturbation to be determined for all model
parameters rqn, rq∞ collected in matrix Rw ∈ R(Nw+1)×ρ,
including also the direct coupling constants that are responsible
for the asymptotic behavior of the model. A straightforward
algebraic calculation allows to write

Re
{
uH
kΔHkvk

}
= Re

{
(vT

k ⊗ uH
k )vec(ΔHk)

}
= Re

{
(vT

k ⊗ uH
k )V̄ Γk(Iρ ⊗ϕT

k)
}︸ ︷︷ ︸

pT
k

xw

(51)

where ϕk = ϕ(jωk) ∈ CNw+1 stacks the partial fraction basis
functionsϕ0(sk) = 1,ϕn(jωk) = (jωk − pn)

−1. Therefore, the
local passivity constraint (49) can be written in a compact form
as

pT
kxw ≤ 1− σk. (52)
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A standard adaptive sampling-based passivity characterization
such as [31] is used to detect the frequencies ωk where pas-
sivity violations are located, leading to multiple concurrent
constraints (52).

Model accuracy during passivity enforcement is preserved by
minimizing the following cost function:

E2 =

ρ∑
q=1

E2q =

ρ∑
q=1

K∑
k=1

|Δw̃q(jωk)|2 (53)

which is a quadratic form of the decision variables xw. Pas-
sivity enforcement is applied in a standard way by minimiz-
ing (53) subject to inequality constraints (52) and possibly
equality constraints (44) for dc point preservation within an
iterative loop.

We remark that the number of decision variables in xw

is only ρ · (Nw + 1) since the compressed macromodel form
is perturbed, although the passivity of the large-sized P × P
macromodel is being enforced. Therefore, the complexity of the
quadratic optimization problem that is solved at each passivity
enforcement iteration is not affected by the number of I/O ports
of the structure under modeling but only by the number of basis
functions. Note also that the filtering matrix Γ(s) that defines
the proposed compressed structured macromodel with dc zeros
is applied as a weight since its poles p∞2,3 are fixed so that no
additional unknowns are introduced.

V. NUMERICAL RESULTS

In this section, we report several results that confirm the effec-
tiveness of the proposed macromodeling strategy. All numerical
results have been obtained using a prototypal MATLAB code on
a Workstation based on Core i9-7900X CPU running at 3.3 GHz
with 64 GB of RAM.

A. 25-Port Box Example

We report the final result for the 25-port box that was used
as a running example to demonstrate all intermediate steps
of the proposed macromodeling flow. Here, two compressed
macromodels are constructed and compared. The first is built
following [27] using the set of unstructured basis functions
reported in Fig. 7. The second is built on the basis set of Fig. 10
following the proposed approach of Section IV, in particular by
enforcing in the model structure in the presence of dc zeros of
order 1 and 2 wherever appropriate. Both models are trained
in the scattering domain with a fixed number of poles n̄ = 89.
A comparison of these models is presented in Fig. 11, where
the main systems representations (scattering, admittance, and
impedance) are plotted, and the latter two are obtained by
postprocessing.

The proposed structured model has been processed through
a passivity enforcement scheme, as described in Section IV-B2,
that resulted in a passive model in 53 iterations and an overall
elapsed time of ≈ 290 s. The maximum singular values before
and after the proposed passivity enforcement are reported in
Fig. 11(a). Fig. 11(b)–(d) confirms that the proposed structured

Fig. 11. Modeling a 25-port shielding enclosure. (a) Envelop of the maximum
singular values of scattering model responses before and after passivity enforce-
ment (PE). (b)–(d) Validation of standard and proposed macromodel responses
in scattering, admittance, and impedance representation.

approach outperforms the reference in terms of full-band accu-
racy in all three representations. As an additional reference for
comparison, the model obtained by a standard approach [24],
without any preprocessing except addition of the physics-based
dc point, is completely wrong in the low-frequency gap (see
Fig. 3).

To further emphasize the importance of model behavior in the
low-frequency gap ΩG, Fig. 12 compares the transient simula-
tion results obtained using the proposed model and a standard
VF model (the same as depicted in Fig. 3). This result confirms
that an inappropriate modeling flow at low frequencies has a
strong impact also when performing time-domain simulations.
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Fig. 12. Transient simulation of the proposed model compared to a standard
VF model. The excitation field is a double exponential (HEMP) waveform [32]
defined as Einc = E0(e

−at − e−bt)u(t) with a = 40× 106 s−1, b = 476×
106 s−1 and amplitude E0 = 50 kV/m.

Fig. 13. As in Fig. 11, but for a 100-port shielding enclosure.

Fig. 14. As in Fig. 11, but for a 400-port shielding enclosure.

B. Scaling up to 400 Ports

In this section, we summarize the results of the proposed
procedure on several shielding enclosures of the increasing size
of the regular p× p series/parallel grid, corresponding to a
number of ports P = p2. We focus, in particular, on grids with
p = 8, 10, 15, 20 branches resulting in systems with P = 64,
100, 225, and 400 ports, respectively.

The regularization and extrapolation procedure of Section II-
C was applied to obtain a set of (modal) scattering responses
in the range [0, 1] GHz. Regularization resistances were set to
r = 0.1Ω and R = 100MΩ in order to minimize the perturba-
tion of the original MoM data. Different values of resistors with
R ∈ [106, 109] Ω and r ∈ [10−3, 1] Ω were also tested, with no
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TABLE I
SUMMARY OF DATA COMPRESSION

Second column shows the number of responses of the upper-triangular elements of the
TF, used as reference for the compression.

TABLE II
STRUCTURED COMPRESSED MACROMODELING RESULTS

practical impact on the overall modeling process except for a
slightly different dc response and induced perturbation amount
on the original data. The BD-SVD compression strategy was
then applied with truncation thresholds of {10−8, 10−6, 10−6}
for M1, M2, and M3, respectively. Note that the threshold on
M1 was determined compatibly with the estimated field solver
accuracy in order to guarantee a consistent reconstruction of the
dc matrix after compression.

A summary of the proposed data compression results for all
test cases is reported in Table I. This table shows that increasing
the number of ports leads to a drastic compression in terms of
basis functions ρ, already considering as a reference only the
upper triangular part of the transfer function with P (P − 1)/2
responses. Although the proposed structured compression ap-
proximately doubles the number of basis functionsρwith respect
to the standard compression of [27], the required elapsed time
is practically not affected.

The procedure of Section IV was applied to build a set of
macromodels preserving the LF content of the data. In particular,
the adaptive sampling method presented in [31] was used to
create the constraints (49) required by each iteration of the
passivity enforcement. The results are summarized in Table II.
All models are highly accurate. As far as runtime, the rational
fitting phase shows almost no dependence on the number of
ports since mainly affected by the number ρ of compressed
basis functions. Most of the execution time is required to enforce
macromodels passivity. For the adopted passivity enforcement
scheme, this time cannot be predicted a priori since depending
on the particular singular value trajectories and on the number
of required iterations.

Figs. 13 and 14 provide a comprehensive report on model
accuracy in all system representations (scattering, admittance,
and impedance) in the physical domain after conversion from
the modal reference system used for compression and models
identification. Results are shown only forP = 100 andP = 400

since nearly identical results were achieved forP = 64 andP =
225. All examples show a major improvement in the accuracy
with respect to the models obtained with [27], especially at low
frequencies and dc.

VI. CONCLUSION

In this article, we provided a general methodology to construct
rational macromodels of low-loss electromagnetic systems hav-
ing a large number of interface ports, starting from possibly
incomplete frequency characterization due to a low-frequency
gap in data samples from a full-wave solver. This situation
is known to be extremely challenging for macromodeling ap-
plications, with a low-frequency sensitivity to approximation
errors that are exacerbated by the low-loss nature and by a large
number of ports. The proposed strategy combines data prepro-
cessing involving regularization and extrapolation in a suitably
defined physics-based asymptotic modal domain, a structured
data compression based on a customized SVD, and a structured
rational fitting process based on compressed data. The result is a
robust framework that is able to preserve full-band accuracy
in the model down to dc while minimizing its sensitivity to
loading conditions, including the limit cases of short and open
terminations.

The derivations and the reference application examples con-
sidered in this work are conducting enclosures intended for
energy-selective shielding. This application requires loading
with nonlinear elements, a possibly large number of ports placed
as a grid throughout shield apertures. For this reason, a reduced
model sensitivity to changes in loading conditions is essential
for successful transient analyses aimed at nonlinear shielding
effectiveness assessments. Beyond this specific application, the
proposed regularization, extrapolation, and compression ap-
proaches are general and can be applied to different application
scenarios. Future investigations in this direction will involve an
application to system-level power integrity modeling, which is
another domain where sensitivity to loading conditions has been
identified and still requires an adequate systematic solution.
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