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Optimizing Low-Frequency Mode Stirring
Performance Using Principal Component Analysis

Luk R. Arnaut

Abstract—We formulate and perform principal component anal-
ysis (PCA) of mechanically stirred fields, based on tuner sweep data
collected across a frequency band at a single location of a sensor
inside a reverberation chamber. Both covariance- and correlation-
based PCA in undermoded and overmoded regime are performed
and intercompared. The nonstationarity of the stir performance as
a function of the angular position of the stirrer is demonstrated. It
is shown that this nonuniformity can be quantified and exploited
to select a set of optimal stir angles. The rotated principal com-
ponents are found to be interpretable as energy stirred by specific
angular sectors of the stirrer and are related to the correlation
structure of the data. The analysis leads to the concept of eigen-
stirrings (stir modes), which form an orthonormal set of empirical
basis functions for expanding stir data.

Index Terms—Multi-variate analysis, optimization, principal
component analysis, reverberation chamber, statistical modelling.

I. INTRODUCTION

S TATIONARITY—also known as homogeneity—is a pow-
erful concept in the theory of stochastic processes,

particularly wide-sense stationarity (WSS). For analysis of
fields in mode-tuned or mode-stirred reverberation chambers
(MT/MSRCs), it allows for considerable simplification and
progress in their statistical modeling [1], [2]. In essence, a ran-
dom field is WSS if its first- and second-order statistics (in
particular, its probability density function (PDF)/characteristic
function, and its autocorrelation function (ACF)/power spectral
density function, respectively) are independent of the choice
of origins of space and time. As a result, first-order statistics
of a WSS field such as its average, standard deviation, per-
centiles, etc., are statistically homogeneous in space and time,
whereas the second-order properties, e.g., correlation length, co-
herence bandwidth, etc., depend only on the difference between
space-time coordinates. Quantities that depend on both first-
and second-order properties only (e.g., statistics of the extreme
value of a Gaussian random field) are then also homogeneous.
Mixed states are possible, e.g., a random field may be spatially
homogeneous but temporally inhomogeneous, etc.

WSS is often prescribed as a prerequisite for statistical mod-
eling of MT/MSRCs in an ideal setting [1], [3]. However, devi-
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ations from WSS are known to exist. For example, in the spatial
domain, random fields and energy near an EM boundary ex-
hibit different PDFs and ACFs compared to locations “deep”
inside the cavity [4], [5]. In the time domain, nonstationar-
ity is observed when a “time boundary” exist. For example, a
pulse-modulated excitation yields time-variant distributions and
correlations during the rise and decay in the received pulse re-
sponse, in both mode-tuned [6] and mode-stirred [7] operation,
or during step transitions [8]. In the stir domain (i.e., in sampled
ensembles of statistically equivalent fields), WSS has so far been
the default working assumption [9]. For an MT/MSRC exhibit-
ing N uncorrelated field states at a fixed single frequency and
location, one typically assigns N uniformly separated stir states,
e.g., equal angular steps of a paddle wheel in mechanical stir-
ring, frequency steps in frequency stirring, separated locations
in source stirring, etc. However, glimpses of nonstationarity in
the stir domain (i.e., nonuniform stir performance across uni-
formly sampled stir states) have previously been observed. For
example, at relatively low frequencies, sudden irregular jumps
were detected in the steady-state energy levels (cf., the interval
650 s < t < 750 s in [8, see Fig. 2(a)]). At higher frequencies,
such jumps are harder to detect, because they are masked by the
increased fluctuation (variance) of the stir process. Neverthe-
less, indirectly, the nonuniform increase of N with frequency,
especially the occurrence of intermediate plateaus of stir per-
formance N(f) where such increase stalls, has been observed
even at gigahertz frequencies [10, Fig. 10], [11, Figs. 2, 3, 12].
Specifically, in [11, Fig. 12], the plateau disappears when the
number of sampled stir states is approximately quadrupled at
constant stir speed. This suggests that certain better perform-
ing stir states can easily be missed if the sampling rate is too
low.

In this paper, we apply principal component analysis (PCA)
[12]–[15] to evaluate the stir performance of individual stir states
across a specified frequency interval, thus abandoning the as-
sumption of WSS. In the context of MT/MSRCs, functional
PCA (also known as orthogonal expansion) was already intro-
duced in [17, Section IV.2], [18], to eliminate arbitrariness in
the choice of correlation threshold level to estimate N . Here,
the emphasis is on (but not limited to) operation at relatively
low frequencies, aiming to further reduce the lowest usable fre-
quency (LUF) by identifying superior stir states. Thus, rather
than being an undesirable property, nonstationarity offers scope
for achieving a better-than-average stir performance. Although
the performance may become frequency- and location-specific,
PCA can optimize these frequencies and locations as well, by
using a dual formulation. Without loss of generality, we con-
sider mechanical stirring through angular rotation of a single
paddle wheel. The field is received at a single spatial location
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and orientation of the sensor, measured across a frequency
interval. The formalism is confined here to real-valued fields,
but extends effortlessly to circular complex fields.

Overbar (X) and bracket (〈X〉) notations refer to sample
and ensemble averagings, while Roman uppercase and corre-
sponding lowercase symbols denote random variables and their
values, respectively, except for matrix dimensions and their in-
dices. Nil, single, and double underlined quantities represent
scalars, vectors, and matrices, respectively.

II. BASIC CONCEPTS

A. Motivation

In the context of MT/MSRCs, PCA identifies a specific set
of N states based on a larger set of M original correlated stir
states, such that the combined stirred energy produced by these
fewer states is close to the total stirred energy for all M states.
Here, “close” means substantially higher than the average frac-
tion N/M expected if the N states were selected by simple
random sampling. The N states cannot be truly “equivalent” to
the original M , because all stirred energy can be fully captured
only if N = M . However, if the correlation between the M
states is strong, then a subset of N states may yield negligible
loss of stir performance.

Unlike classical decimation based on uniform sampling at
regular intervals starting at an arbitrary stir state, PCA identifies
groups of weighted stir states that are ranked according to the
maximum residual stirred energy, as will be shown.

B. PCA Algorithm

The general method of PCA is described extensively in the
literature, e.g., [12]–[14]. Here, we formulate the technique in
terms of its application to MT/MSRCs. The correlation structure
of the stir states is either assumed to be known a priori or can
be estimated from a set of observations. PCA calculates specific
linear combinations of stir states, called principal components
(PCs), based on the observed (measured) values of the stirred
field. The expansion (weight) coefficients for the stir states in
each PC are chosen iteratively, such that:

1) the first PC captures the maximum fraction of the stirred
energy (variance) in the dataset of stir sequences;

2) each subsequent (nth) PC:
a) maximizes the remainder stirred energy (residual

variance), after the contributions by the n − 1 pre-
vious PCs have been removed;

b) accounts for a fraction of the stirred energy that does
not exceed any of the n − 1 previous fractions;

c) is chosen to be uncorrelated with, and having a di-
rection orthogonal to all n − 1 previous PCs (or-
thogonal PC loadings and uncorrelated PC scores).

The optimal weights of the PCs are obtained by minimizing
the distance of the original data to their best fitting hyperplane
(subspace) [12]. This is achieved by ranking and truncating the
PCs according to the contributing variance (stirred energy) of
each PC. PCA not only identifies the best stir states, but also

provides patterns of linear relationships between them. Other
uses of PCA (e.g., outlier detection) are not addressed here.

As with any correlation based analysis, PCA only yields com-
ponents that are linearly independent. If the random data are not
Gaussian, then the extracted PCs may still exhibit higher order
correlations. However, the applicability of PCA does not depend
at all on the PDF of the data.

C. Terminology and Notations

Based on standard terminology in PCA, when the goal is to
analyze stir performance, each (mth) stir state τm represents a
variable, with m = 1, . . . ,M . The field X measured at one of P
independent1 values of a chosen parameter op for the field sen-
sor (i.e., its location/orientation/measurement frequency/etc.)
across all M stir states is the pth observation (or sample) of X ,
with p = 1, . . . , P . It is represented by a single continuous stir
trace function xp(τ) in MSRCs, or by a 1 × M row vector stir
sequence xT

p = [xp1 , . . . , xpM ] in MTRCs or sampled MSRCs.
For example, if sensor locations constitute the observations, then
each observation is obtained at an arbitrary location for a fixed
sensor orientation, measurement frequency, etc.; by contrast,
if frequency is chosen as the observation quantity, then each
observation is a stir sequence/trace at an arbitrary frequency,
for a fixed sensor orientation, location, etc. The M stir states
sampled across the observations form a P × M data matrix
x ≡ [xm ] ≡ [xpm ] with columns xm of size P × 1, containing
all observations of the field for the mth stir state. This matrix is
either mean-centered to y ≡ [y

m
] = [xm − xm ] in covariance-

based PCA, or standardized to z ≡ [zm ] ≡ [(xm − xm )/sxm
]

in correlation-based PCA. The sample average xm and standard
deviation sxm

are taken across all P observations in the mth
column.

Based on y or z, PCA builds an M × N loading or compo-

nent matrix a ≡ [an ] ≡ [amn ]. On application of the PCA algo-
rithm described in Section II-B, the loading vectors an of a are
found to be (re-)normalized M × 1 column eigenvectors (EVEs)

ψ
n

of the M × M sample autocovariance matrix c
Δ= yT ·y/P

or autocorrelation matrix (ACM) k
Δ= zT ·z/P , with associated

eigenvalues (EVAs) λ2
n . Each loading (coefficient) amn is the

expansion coefficient (projection coordinate) for the mth state
of the stirred field y

m
or zm with respect to the nth principal

direction 1n = ψ
n
/‖ψ

n
‖ = an/‖an‖, i.e., it measures the sim-

ilarity (correlation) between the mth stir state and the nth PC.
For a random stir sequence ZT , the nth ensemble PC is then
specified by

Sn
Δ= ZT · an =

M∑

m=1

Zm amn , n = 1, . . . , N, . . . , M. (1)

The PCA algorithm extracts a subset of N PCs with scores

sn
Δ= zT · an =

∑M
m=1 zm amn in N iterations and terminates

1The requirement for all P observations of X to yield statistically independent
field values is only necessary when distributions of eigenvalues and principal
components are of interest. PCA also applies to correlated observations, without
loss of validity [15], provided that P � 1, i.e., a sufficiently large sample in
order to be representative of the ensemble.
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according to a chosen selection criterion, yielding a 1 × N sam-
ple PC vector sT = [sn ]. Note that for an assumed known cor-
relation structure of the field, the an in (1) are deterministic, not
random vectors even for random fields. If, however, the ACM
for ZT needs to be estimated from zT , then the an become
samples of random loading vectors An .

The score of the pth specific observed stir sequence

zT
p with respect to the nth sample PC is spn

Δ= zT
p · an =∑M

m=1 zpm amn , i.e., the projection of zT
p onto the nth eigendi-

rection, yielding the coordinate of this observation field vector
with respect to the nth principal axis. The spn have the same
physical unit as z. They combine to a P × N score matrix

s = z · a. (2)

The score vector for any new observation zT
p ′ at a frequency fp ′

is then sT
p ′ = zT

p ′ · a. The leverage of the scores, h
Δ= s · (sT ·

s)−1 · sT , measures the rotating power of the data about their
center, indicating how well the extracted PCs model the data.

In standard normalization of PCs, aT
n · an ≡

∑M
m=1 a2

mn
Δ= 1,

i.e., the amn are the direction cosines of a stir sequence zT rela-
tive to the nth principal axis along 1n . With this normalization,
the amn are related to the product-moment correlation coeffi-
cients between ZT and S, i.e., to

ρmn
Δ=

〈(Zm − 〈Zm 〉)(Sn − 〈Sn 〉)〉√
(Zm − 〈Zm 〉)2

√
(Sn − 〈Sn 〉)2

(3)

by the expression amn = ρmn/
√

λ2
n , or their sample equiva-

lents. Instead, if aT
n · an

Δ= λ2
n is chosen as normalization, then

amn = ρmn [13], so that the summed squared PC loadings
across all M stir states then yield the nth EVA as

λ2
n =

M∑

m=1

a2
mn =

M∑

m=1

ρ2
mn , n = 1, . . . , N (4)

with
∑M

n=1 λ2
n = M . The proportion of the total stirred energy

(i.e., variance of the stirred field) explained by the nth PC is

η2
n =

λ2
n∑M

m=1 λ2
m

, n = 1, . . . , N, . . . ,M. (5)

Instead, if reference is made to the extracted variance for N
PCs, then M in (5) must be replaced by N .

Another useful concept is the communality κN (m) of zm ,
representing the proportion of the stirred energy accounted for
by the mth stir state zm that it shares (has in common with,
contributes to) the energy extracted by the first N PCs. For

aT
n · an

Δ= λ2
n , this is the sum of N energy contributions a2

mn of
a particular zm across the columns of a, i.e.,

κN (m) =
N∑

n=1

a2
mn =

N∑

n=1

ρ2
mn ≤ 1, m = 1, . . . ,M (6)

because the proportion of variance explained by a regres-
sion model and statistical effect size are generally expressed
by the coefficient of (partial) determination ρ2

mn . Naturally,

TABLE I
STIR SEQUENCES, LOADINGS, PCS, SCORES, EIGENVALUES AND

COMMUNALITIES FOR CORRELATION-BASED PCA

κN =M (m) = 1 and
∑M

m=1 κM (m) = M =
∑M

n=1 λ2
n . When

using standard normalization, κN (m) =
∑N

n=1 a2
mnλ2

n .
Similar to good practice in linear regression analysis, when

extracting N PCs one typically requires P ≥ 2N, . . . , 5N , as a
rule-of-thumb, in order to get sufficient accuracy in estimating
the sample EVEs and EVAs (and, hence, PCs), because the
variance on the nth score is λ2

n/P .
In the remainder, we shall generalize all sampled quantities

to random (ensemble) quantities.

III. PRE-PCA OPERATIONS AND CONSIDERATIONS

A. Inspection of Correlation Matrix

Before embarking on a PCA, it is advisable to check whether
selecting stir states may offer any gains at all, i.e., whether
there is sufficient inhomogeneity in the stirred energy to offer a
prospect of extracting optimum states. To this end, we inspect
the sample k of the the 2-D symmetric ACM K ≡ [�mn ], where

�mn ≡ �X (τm , τn ) = 〈(Zm − 〈Zm 〉)T · (Zn − 〈Zn 〉)〉

Δ=
〈(Xm − 〈Xm 〉)T · (Xn − 〈Xn 〉)〉√
(Xm − 〈Xm 〉)2

√
(Xn − 〈Xn 〉)2

(7)

where the samples of the field X at observation points op for
the mth stir state τm are contained in the vector

Xm
Δ= [X(o1 ; τm ), . . . , X(oP ; τm )]. (8)

This 2-D generalization of the 1-D ACF vector (correlogram)
[�X (τm − τn )] for WSS stir sequences is obtained by taking
each τn in turn as a reference state, against which the two-point
correlation coefficient with all other τm is calculated. A WSS
stir process produces a Töplitz circulant ACM with banded
structure [17], [18]. Any deviation from this structure indicates
stir inhomogeneity. Here, our interest is in those zones within
K, where �mn is close to zero, indicating sets of pairs of un-
correlated stir states (cf., Section VI). A row or column in K
that has |�mn | 
 0 throughout (except on the main diagonal,
where �mn = 1) corresponds to single stir state that is itself a
PC. While this is attractive with a view to maximize N , it does
not necessarily maximize the total stirred energy.
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In principle, the targeted optimum stir states could also
be guessed from inspection of K. However, this method is
subjective and becomes difficult to apply beyond the first
two dominant stir states. As will be shown, it can even
be misleading in some cases. This is because the �mn are
standardized quantities, which do not permit deciding which
one of two pairs of candidate states maximizes the combined
stir performance. For example, a stir state τn may be strongly
uncorrelated to two mutually strongly correlated states τm 1 and
τm 2 , yielding |�m 1 n |, |�m 2 n | ∼ 0, but perhaps with a high value
of �m 1 m 2 ≡ sX X (m1 ,m2)/[sX (m1)sX (m2)] ∼ 1. However,
the value of �m 1 m 2 itself does not give information about the
relative stir performance at m1 versus m2 , i.e., the magnitude
of sX (m1)/sX (m2). Instead, PCA offers an objective and sys-
tematic technique for ranking (clusters of) stir states and their
contributions to the total stirred energy. Pairs of strongly un-
correlated stir states in the ACM (|�mn | ∼ 0) suggest candidate
PCs; their actual contribution to the stirred energy follows in
conjunction with the EVAs.

B. Selection Criterion for Number of PCs to be Extracted

A major issue in PCA is deciding on the number of PCs
N to be retained, and the justification of any threshold value
(or other metric) defining this number. This bears resemblance
to the similar issue of finding “the” number of “equivalent”
independent stir states from analysis of the ACF for WSS stirring
[10], [19]–[25]. In addition to its obvious effect on the accuracy
of representing the actual stir data by accounting for a large
but incomplete fraction of the stirred energy, the choice of N
also has an effect on the rotation and physical interpretation of
PCs (cf., Section V-B). Several ad hoc rules exist [14], [26],
which are briefly summarized and evaluated here for use with
MT/MSRC data.

Cattell’s rule selects N at or below the first point of inflex-
ion in the “scree” plot of high-to-low ranked EVAs versus PC
number. For MT/MSRCs, this rule appears to be inapplicable
because in our analysis, the piecewise sequence of EVAs always
decreases with with a positive (convex) curvature throughout.

The Guttman–Kaiser criterion [27] retains only those PCs
whose EVAs λ2

n are larger than 1. The rationale is that such PCs
contain more than the average variance (stirred energy) shared
among all M variables. Each EVA represents how many times
the equivalent average stirred energy is comprised in the PC as-
sociated with this EVA. Here, the fictitious “equivalent average”
stirred energy is what would be obtained if all the stirred energy
were equally shared by all M states (WSS process). Thus, the
Guttman–Kaiser criterion suggests to retain only those PCs that
are comparatively more significant than the others with λ2

n < 1.
However, since there could be many small EVAs that together
form a substantial fraction of the total stirred energy, this crite-
rion typically underestimates N . Sometimes the threshold value
1 is lowered ad hoc to 0.7 [15]. For MT/MSRC data, which are
characterized by long-tailed (slowly decaying) EVA sequences,
this lowering increases the number of retained PCs substantially.
Nevertheless, discarding the M − N remainder PCs with EVA
below 1 can still result in a significant shortfall in the stirred

energy accounted for by the N retained states. A significance
test for absolute contributions is Bartlett’s test for the small-
est V = M − N EVAs to be zero, with the χ2

1
2 (V −1)(V −2) test

statistic

ν

[
V ln

(∑M
k=N +1 λ2

k

V

)
−

M∑

k=N +1

ln
(
λ2

k

)
]

(9)

where ν is the number of degrees of freedom (rank of K).
From a different perspective, one could envisage the N PCs

as “signals” and the remainder M − N components as “noise,”
where the latter produce fluctuating stir performance but add no
mean stirred energy. A result from information theory for blind
source separation in a multichannel time series then states that
the minimum code descriptor length (MDL) of the data [28],
[29] provides an objective estimation of N as the value that
minimizes the function

MDL(N) = −(M − N)P ln

[ ∏M
i=N +1(λ

2
i )

1/(M −N )

∑N
i=N +1 λ2

i /(M − N)

]

+
(2M − N)N

2
ln(P ). (10)

For P → ∞, this metric yields consistent estimates of N , unlike
Akaike’s information criterion (AIC) [29]. Generally, MDL and
AIC estimates of N are found to be considerably lower than
those obtained by the aforementioned criteria.

Cross validation [30] is a more intensive resampling tech-
nique, in which one PC is eliminated at a time. Here, the distance
of this component to the value estimated from a model based
on P − 1 other components (predicted residual sum of squares
(PRSS)) is minimized.

Another criterion selects N on the basis of a specified min-
imum proportion of cumulative variance

∑N
n=1 ηn retained by

the N largest EVAs, with recommended values typically ranging
between 75% and 90% [15]. While a physical foundation for the
selected confidence or significance level is lacking, it may pro-
duce more realistic values for N . An extension is the Wachter
plot, which is a Q–Q plot of the sample EVAs versus quantiles
of the Marčenko–Pastur semicircle limit density for the EVAs,
a result based on random matrix theory and asymptotic PDFs of
EVAs [31].

In summary, several comparisons of the predicted values of N
for some of these rules and others [14], [15], [26] all indicate that
no single rule is superior: their accuracy depends on the specific
level of data correlation. In our experimental results, we will
compare the Guttman–Kaiser and MDL-AIC criteria. Although
important for the practical implementation, it is emphasized that
the determination of N is a not the focus of PCA. Rather, PCA
addresses a follow-on question, i.e., given a value of N , find the
set of N variables that maximizes the stirred energy.

C. Covariance-Versus Correlation-Based PCA

In general, covariance- and correlation-matrix based PCA
yield different PCs, because autocovariance and autocorrela-
tion matrices have different eigendecompositions. Covariance-
based PCs are generally more easily interpretable. However, the
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decisive factor in choosing between both methods is the level of
inhomogeneity of the variance (heteroscedasticity) of sequences
of observations between stir states: covariance-based PCA
requires near-homogeneity (quasi-homoscedasticity) in order
to detect correlations between weaker stir states. In MT/MSRC
applications, substantial heteroscedasticity is often found, e.g.,
in wideband operation and/or undermoded chambers for fre-
quency as the observation quantity (as a result of strong fre-
quency dispersion), or in statistically anisotropic vector fields
near PEC walls for sensor location/orientation as the observa-
tions (due to polarization dispersion). Correlation-based PCA
has several other advantages, including scale invariance [15].
Ultimately, however, both approaches maximize the variance of
the standardized variables [15, p. 42]. This should be especially
remembered when unstandardizing PCs in postprocessing (cf.,
Section V-C).

D. Choice of Observation Parameter

PCA requires generating data through multiple observations
at each variable (stir state). To optimize stir performance in
order to minimize the LUF, one is ideally interested in gener-
ating observations at a single frequency, e.g., by varying the
location or orientation of the transmitting or receiving antenna.
Choosing the sensor location r as the observation parameter
[(o1 , . . . , oP ) ≡ (r1 , . . . , rP )] has several benefits compared to
choosing the frequency f [(o1 , . . . , oP ) ≡ (f1 , . . . , fP )]. First,
the extracted optimum stir states at a single frequency are not af-
fected by any frequency dispersion of the stir performance. Such
dispersion may be particularly strong near the LUF, so that opti-
mization based on observations across a narrow band may yield
a different optimum than obtained for a wider band. Second, ob-
servations at different spatial locations yield optimum stir states
that apply2 across the 3-D volume spanned by these locations,
e.g. at the corners of a cubic or other working volume [9] en-
closing an EUT. On the other hand, this inherent dependence on
different locations implies that the optimum stir states ignore
statistical spatial inhomogeneity (spatial dispersion), which is
stronger near the LUF than at higher frequencies. This issue
is dual to the frequency dispersion associated with observation
frequencies. In addition, the mechanics of sensor displacements
for generating of different locations are more cumbersome and
time consuming, compared to frequency scanning for generating
frequency observations.

In practice, changes in the field caused by moving a probe
or cabling layout between locations may limit the generality of
the optimization result. Since existence of some data correlation
between different observations is not a fundamental issue (cf.,
Section II-C), one may choose the spatial locations at relative
distances that are slightly below the ideal spatial correlation
length, i.e., between λ/4 and λ/2 (or in excess of λ/2 near con-
ducting boundaries [16]), to maximize P and hence minimize
uncertainty. One could also choose mixed frequency and spatial
locations as observations (3-D PCA), analyzed with tensorial

2Strictly, the optimization applies only at the specifically chosen spatial lo-
cations. The optimum may be expected to extend to other points within the
spanned volume if this volume is not electrically large in any dimension.

PCA techniques or by vectorizing the data and applying 2-D
PCA.

IV. PCA COMPUTATION

A. Orthogonal Expansion (Karhunen–Loève Expansion,
Functional PCA)

In the context of EMC and MT/MSRCs, orthogonal expansion
(OE) was introduced in [17], [18]. While closely related to PCA,
it is typically used with continuous functions, i.e., unsampled stir
traces. We show that solutions obtained by OE and PCA satisfy
the same characteristic equation, i.e., both methods select the
same stir states in the continuum limit. For large M and N , the
eigenfunctions for OE are known in closed form [17], providing
an efficient alternative to PCA.

Consider Z(τ) = [X(τ) − 〈X(τ)〉]/σX (τ ) at the contin-
uum stir state τ , representing a stochastic stirred field (en-
semble of random continuous stir trace functions). A sam-
ple function z(τ) is realized by selecting an arbitrary fre-
quency/location/orientation of the sensor. The random stir trace
Z(τ) can be expanded into a linear combination of N determin-
istic continuous basis functions ψn (τ) with random expansion
coefficients Zn as

Z(τ) = l.i.m.
N →∞

N∑

n=1

Znψn (τ), Zn =
∫ T

0
Z(τ)ψn (τ)dτ. (11)

Generally, the ψn (τ) are arbitrary complex-valued functions. In
OE, they are chosen to form a complete orthonormal set such
that the random coefficients are uncorrelated, i.e.,

〈(Zn − 〈Zn 〉)(Zm − 〈Zm 〉)∗〉 = λ2
nδnm . (12)

Substituting (11) into (12) leads to the condition
∫ T

0
ψn (τ)

[∫ T

0
K(τ, μ)ψ∗

m (μ)dμ

]
dτ = λ2

nδnm (13)

for all m and n, where K(τ, μ) Δ= 〈(Z(τ) − 〈Z(τ)〉)(Z(μ) −
〈Z(μ)〉)∗〉 is the two-point ACF evaluated at (τ, μ). Nontrivial
solutions of (13) require that

∫ T

0
K(τ, μ)ψ∗

n (μ)dμ = λ2
nψ∗

n (τ) (14)

which is satisfied by the condition

K(τ, μ) − λ2
nδ(τ − μ) = 0. (15)

For stir traces sampled at τm = mΔτ , the stir trace function and
basis functions are discretized to

X(τ) =
∑

m

Xm δ̃(τ − τm ), ψn (τ) =
∑

m

ψnm δ̃(τ − τm )

(16)
where δ̃(·) is the discrete unit-amplitude sampling comb func-
tion. In vector format

X = [Xm (τm )]Mm=1 , ψ
n

= [ψnm (τm )]Mm=1 . (17)

After standardizing X and applying point matching to (15), the
uncorrelatedness of the sample coefficients (12) leads to

(
K − λ2

nI
)
· ψ

n
= 0 (18)
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for the M × M ACM K(m,n), whose EVAs λ2
n are solutions

of the characteristic equation

det(K − λ2
nI) = 0. (19)

If K is Hermitean (WSS), then all λ2
n are positive and ψ

n
are real. With (11), if Z(τ) is Gaussian then the Zn are also
Gaussian.

B. Variance Maximization

Equation (19) also corresponds to the solution of an iterative
variance maximization problem for a random stir sequence Z
as aimed for in PCA, as shown next.

In the first iteration, the vector a1 that maximizes var(ZT ·
a1) ≡ aT

1 · K · a1 , i.e., contains the maximum stirred energy
subject to the constraint that aT

1 · a1 = 1, follows by the method
of Lagrange multiplication as

aT
1 · K · a1 − λ2

1(a
T
1 · a1 − 1) = 0. (20)

The derivative of (20) with respect to a1 yields (19) for n = 1.
Since 〈Z〉 = 0, this EVE also maximizes the mean square, i.e.,
〈(ZT · a1)(Z

T · a1)〉 = aT
1 · K · a1 = λ2

1a
T
1 · a1 = λ2

1 . Thus,
the EVE associated with the largest EVA λ2

1 = var(ZT · a1) ex-
tracts the maximum stirred energy λ2

1 . In successive iterations,
with the subsequent conditions that cov(ZT · a1 , Z

T · a2) =
· · · = cov(ZT · a1 , Z

T · an ) = 0, it follows that conditional
variance maximization yields

λ2
n = var(ZT · an ) ≡ var(ZT · ψ

n
) (21)

as the maximum remainder (i.e., the thus far unaccounted)
stirred energy extracted by an in the nth iteration, where
λ2

n ≤ λ2
n−1 ≤ · · · ≤ λ2

1 . In other words, each EVE ψ
n

accounts
for (100 × λ2

n/M)% of the total stirred energy. Ranking the
EVAs from high to low, the share of stirred energy decreases
progressively.

Naturally, if all M PCs were extracted (N = M ), then no
information is lost, but no reduction is gained either. Neverthe-
less, ranking of all M contributions to the total stirred energy
can still provide useful insight into the data structure.

C. Decomposition of Correlation and Field Matrices

In order to detect the structure of the ensemble ACM K =

〈Z ZT 〉 = limP →∞ ZT ·Z/P and to determine how different
stir states might contribute to it, it is instructive to decompose
K in terms of its EVEs ψ

n
as its natural axes. To this end, recall

that the M × N component matrix A
N

used with the standard

PC normalization is orthonormal, i.e., AT
N
· A

N
= I

N
, where a

subscript N denotes limitation to the first N rows and columns
of A, with zeros replacing the last M − N row and column
entries. A singular value decomposition (SVD) of Z yields

Z
N

= U
N
· Λ

N
· AT

N
(22)

where Λ
N

= (Λ2
N

)1/2 = diag(
√

λ2
1 , . . . ,

√
λ2

N ). The P × N

matrix U
N

is orthonormal with nth column Un
Δ=Z

N
·

ψ
n
/
√

λ2
n , so that U

N
= Z

N
· A

N
· Λ−1

N
≡ S

N
· Λ−1

N
. The P ×

N score matrix is then

S
N

= U
N
· Λ

N
. (23)

Hence, the SVD of the stir data in Z enables the ACM to be
decomposed into PC dyadics as

K
N

=
〈
A

N
· Λ2

N
· AT

N

〉
=

N∑

n=1

λ2
nanaT

n . (24)

Physically, each successive (nth) PC adds a “layer” of stir en-
ergy in K

N
. The det(K

N
) is then a metric for the generalized

variance of the energy stirred by N PCs, which is maximized
by the PCA as well.

D. Residual Error for Reconstructed Data

From (2), (22), and (23), it follows that the original data
matrix can be approximated from its truncated scores as

Z
N

= S
N
· AT

N
. (25)

The representation by less than M variables introduces an ap-
proximation error ‖Z − Z

N
‖, where ‖ · ‖ is a suitably chosen

norm. From (2), i.e., S
N

= Z · A
N

, combined with (25), it fol-
lows that

∥∥∥Z − Z
N

∥∥∥
2

=
∥∥∥Z ·

(
I − A

N
· AT

N

)∥∥∥
2

≤
∥∥Z

∥∥2
∥∥∥I − A

N
· AT

N

∥∥∥
2
. (26)

V. PCA INTERPRETATION

A. Geometric Interpretation of Unrotated PCs

Geometrically, ψ
n

defines the direction of maximum spread
of data in the remainder (M − n + 1)-dimensional (sub)space
that is also mutually orthogonal to all n − 1 previous ψ

n ′

(n′ = 1, . . . , n − 1). PCA transforms the original correlated stir
sequences into N new orthogonal functions (“axes”), i.e., PCs
with associated uncorrelated coefficients (“coordinates,” i.e.,
scores for the specific observations). In Section VI, the PCs are
interpreted in terms of stir quantities.

The PCs can also be interpreted in terms of the Euclidean
distance [12]: transforming the M stir states to a subset of N
linear combinations corresponds to projecting the P vectors in
M -dimensional space onto a subspace of dimension N ≤ M .
The Euclidean distances between all pairs of stir sequences
within this subspace are their projected lengths, whose sum of
squares is then maximized (i.e., maximum accounted stirred
energy) if the subspace is defined as the span of the N largest
PCs, while minimizing the distance of each stir sequence to this
subspace (minimum unaccounted stirred energy), to provide a
hyperplane of best fit.

B. Rotation of PCs and Their Physical Interpretation

Rotational transformation of the extracted PCs often facili-
tates their physical interpretation (here, with reference to the
original stir states and stir parameters), in spite of the fact that
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it eliminates the hierarchy between PCs [32]. Oblique rota-
tions [33] allow for larger separation between rotated PCs, re-
sulting in PC loadings that are closer to±1 or 0 than for orthogo-
nal rotations, and are hence more easily interpretable. However,
losing orthogonality between PC axes as a result of maximizing
this separation is undesirable in MT/MSRC stir optimization.
Given a choice, in the present application it is more important to
preserve the orthogonality of the loading vectors in rotated PCs
than the uncorrelatedness of their scores because, for centered
Y or Z, this orthogonality defines the decorrelation between the
stir components, while the scores relate to correlation between
their associated amplitudes for the transformed field.

Orthogonal rotation (e.g., varimax [27]) preserves orthogo-
nality of PCs, provided it is used with standard normalization
AT

N
· A

N
= 1. To show this, consider the rotated loading ma-

trix is A′
N

= A
N
· R

N
, where the prime denotes rotation with

its associated transformation matrix R
N

being orthogonal, i.e.,

RT
N
· R

N
= I . Hence,

A′T
N
· A′

N
= RT

N
·
(
AT

N
· A

N

)
· R

N
= I (27)

i.e., orthonormality of PCs after rotation is preserved. For the
rotated score matrix S′

N
, however, substituting S

N
= Z

N
· A

N

and AT
N
· A

N
= I with the SVD (22) yields

S ′T
N

· S′
N

= RT
N
·
(
AT

N
· A

N

)
·
(
Λ

N
· UT · U · Λ

N

)

·
(
AT

N
· A

N

)
· R

N
= RT

N
· Λ2

N
· R

N
�= Λ2

N
. (28)

Since RT
N
· Λ2

N
· R

N
is not diagonal, the rotated PC scores may

now be correlated. With different normalizations of an , one
can arrange for either the rotated scores to remain mutually
uncorrelated or for the rotated loading vectors to remain mu-
tually orthogonal, but never both simultaneously and possibly
neither [34].

Since stirring is a process of continuous variation of the field,
rotated PCs can be expected to form clusters of adjacent stir
states. Hence, for mechanical rotational stirring, the PCs repre-
sent fields stirred by angular sectors of the paddle wheel. Thus,
the outcome of PCA is a set of (central) angular locations and
opening angles of circle sectors ranked from high to low accord-
ing to their stir performance. This will be further demonstrated
in Section VI-F.

C. Decentralization and Unstandardization

The PCs, loadings and scores for Z
N

can be trans-
formed back to those for the original decentered and
unstandardized field data X

N
, enabling their absolute contri-

butions to the overall stir performance to be intercompared.

With K
ZN

= 〈Zn ZT
n 〉 = limP →∞ ZT

N
· Z

N
/P for Z

N
=

[Zn ]Nn=1
Δ=[(Xn − 〈Xn 〉)/σX n

]Nn=1 and C
XN

= 〈Xn XT
n 〉 −

〈Xn 〉〈Xn 〉T = limP →∞[XT
N
· X

N
− (XN 1T ) · (1 XN

T
)]/P

for X
N

= [Xn ]Nn=1 with 1Δ=[1]Pp=1 , substitution yields

C
XN

= Σ
XN

· K
ZN

· Σ
XN

(29)

where Σ
XN

Δ=diag(σX 1
, . . . , σX N

). Since A
XN

and A
ZN

are

invertible, the eigendecompositions K
ZN

= A
ZN

· Λ2
ZN

· A−1
ZN

and C
XN

= A
XN

· Λ2
XN

· A−1
XN

lead to the EVE identity

A
XN

· Λ2
XN

· A−1
XN

= Σ
XN

· A
ZN

· Λ2
ZN

· A−1
ZN

· Σ
XN

(30)

whose solution A
XN

yields the PCs of X as a function of those
of Z. If the PC directions and loadings are maintained upon
unstandardization, then the EVAs remain unchanged as well.
More generally, however, the EVA matrices are merely similar,
i.e.,

Λ2
XN

=
(
A−1

XN
· Σ

XN
· A

ZN

)
· Λ2

ZN
·
(
A−1

XN
· Σ

XN
· A

ZN

)−1
.

(31)
The scores S

ZN
= Z

N
· A

ZN
for Z

N
= (X

N
−1 XN

T
)·Σ−1

XN

are unstandardized as S
XN

= X
N
· A

XN
in accordance with

S
XN

=
(
S

ZN
· A−1

ZN
· Σ

XN
+ 1 XN

T
)
· A

XN
. (32)

VI. EXPERIMENTAL RESULTS

As noted in Section III-D, for a fixed measurement frequency,
choosing spatial location as the observation parameter would
constitute an optimal choice for investigating the LUF in sev-
eral respects. However, collecting high-definition data in the
stir-space domain is considerably more time consuming than in
the stir-frequency domain and was not feasible with the avail-
able instrumentation. Our stir-frequency domain measurements,
i.e., with frequency as observation parameter at a fixed single
location of the sensor and stir state as the variable, serve as
a valid yet suboptimal dataset for demonstrating PCA for the
selection of optimum stir states.

In order to separate nonstationarity in the stir domain from
that in the time domain, data obtained using mode-tuned (as
opposed to mode-stirred) operation are examined. Specifically,
we analyze data for the function

X(f,m) Δ= Re
[

S21(f,m)
[1 − S11(f,m)][1 − S22(f,m)]

]
(33)

measured inside a MTRC using two biconical antennas, at M =
1000 equal tuner positions (Δτ = 0.36◦), with τm ≡ mΔτ .
First, values of X(·,m) were measured between 50 and 148
MHz in equal frequency steps of 2 MHz. After experiment-
ing with a few different frequency steps, this value was jus-
tified by inspection of the frequency ACM3, indicating that
|ρX (fk , f�)| < 0.3, . . . , 0.4 at nearly all frequency pairs, i.e.,
P 
 50. A frequency step smaller than 2 MHz increased the
effective value of P only marginally, because of increased
correlation between frequencies. Results were calculated for
both covariance- and correlation-based PCA, but were found to
be almost indistinguishable. The reported results here are for
covariance-based PCA, because of its greater pertinence when

3Not shown here due to space limitations, but of similar appearance as Fig. 8
although somewhat less uniform, and with frequency instead of stir state as its
axes. Generally, correlation between observations does not affect the validity of
PCA for descriptive analysis [15].
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Fig. 1. Standard deviation sX m
within frequency responses across the 50–

148 MHz band, as a function of stir state m.

Fig. 2. Correlation matrix (magnitude) of 1000 stir states across the 50–
148 MHz band.

all PCA variables have a similar scale of variation and the same
physical unit.

A. Standard Deviation

Fig. 1 shows that the sample standard deviation sX (m) of the
frequency responses changes by less than a factor 2.3 across the
stir states, but with no clear trend. The stir states 350 < m < 450
are earmarked as potentially more efficient, based on their higher
values of sX (m). However, without additional knowledge of
their mutual correlation, their fluctuations could range in their
level of similarity.

B. Autocorrelation Matrix

Fig. 2 shows the symmetric M × M ACM. The extensive
departures from an ideal Töplitz structure (i.e., color bands that
are ideally parallel to its main diagonal) indicate that this stirring
process is significantly non-WSS. For an arbitrary variance, stir
states with strongly dissimilar stir sequences are more likely to
accumulate to a larger total stirred energy. The primary interest
is therefore in finding clusters of weakly correlated stir states,
shown as “deep blue pools” in the ACM, e.g. near (120,30) and
(670, 40). “Large red plains” indicate strongly correlated states
with similar stir performances that are individually potentially
good, e.g., near (160,160), (700,700), and (400,400), where

(a)

(b)

Fig. 3. (a) Unrotated and varimax rotated eigenvalues of extracted PCs (λ2
m >

1, N = 20) and their cumulative percentage of stirred energy contribution across
the 50–148 MHz band. (b) MDL(N ) and AIC(N ) for real and imaginary parts
of normalized S21 (f, m).

red/orange areas are relatively wide. Horizontal or vertical strips
in the matrix that combine both features show the clearest con-
trast between state correlations, e.g., the bands 100 < m < 250,
500 < m < 600, 650 < m < 750, 900 < m < 1000, but not
e.g. 350 < m < 450, which has only a small blue area, despite
a wider red area around the main diagonal. Combined with
Fig. 1, this suggest that while the latter sector might provide
adequate stirring, it is likely to form a region of correlation
(overlap, if adjacent) between two or more other good stir sec-
tors and is hence poorly accumulating. By contrast, the pair of
states m1 = 970 and m2 = 570 combine well because they are
strongly uncorrelated (see Fig. 2) and exhibit relatively high
values of sX (m1) and sX (m2) (see Fig. 1).

C. Eigenvalues

Fig. 3 shows the first N = 20 ranked EVAs λ2
n as extracted

on the basis of the Guttman–Kaiser criterion (λ2
m > 1). Varimax

rotation of the extracted PCs is seen to produce a more uniform
spread of EVAs: for example, the first and tenth EVAs represent
the energy equivalent of 484.5 and 12.5 average stir states before
rotation, compared to 157.6 and 20.2 afterward, respectively.
The shown cumulative EVA percentage (100 ×

∑
m λ2

m /M)%
measures the relative amount of stirred energy accounted for
by the first m PCs. Unrotated EVAs are seen to outperform
rotated EVAs on this basis because of the much larger first EVA
value. Thus, while the total extracted stirred energy maximized
by PCA remains unchanged after rotation, its distribution across
the PCs becomes more equalized by rotation, with much reduced
hierarchy between them.

We also estimated N from the AIC and MDL criteria (10),
for the real and corresponding imaginary part of the bracketed
expression in (33). Compared to the Guttman–Kaiser value, the
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(a)

(b)

Fig. 4. Communalities of N extracted PCs, as a percentage of the total stirred
energy produced by stir state m, across the 50–148 MHz band: (a) unrotated
and (b) varimax rotated PCs.

MDL and AIC estimates are somewhat more conservative (min-
ima reached at N = 14 and 18 for (33), respectively). These esti-
mates were found to increase rather sensitively when increasing
M .

D. Communalities

A detailed breakdown of the fraction of stirred energy by N
PCs across individual stir states m is given by the cumulative
communalities, shown in Fig. 4(a). Each set of unrotated PCs
focuses on variation across different regions of m, e.g., the first
unrotated PC primarily accounts for energy around m 
 800.
Nevertheless, the PCs contain substantial contributions from
all stir states. The performance of some isolated stir states is
less than average throughout. For example, at m = 41 the 20
extracted PCs account for much less stirred energy than for
any other m, with the remainder 980 residual components still
accounting for 19.5 % of the energy stirred by the 41st state.

For the rotated PCs, Fig. 4(b) indicates that the contribution
of each rotated PC is now more concentrated around particular
stir states. For example, most stir states within 100 < m < 250
are prominent in the first rotated PC, although they make a less
than average contribution to the first unrotated PC.

E. Standardized Rotated PCs: Loadings and Interpretation

Grouping the contributions of individual stir states to rotated
PCs yields their ranked loadings. Their squared values are shown
in Fig. 5(a) (top). For clarity, only the first 12 PCs are shown,
although rotation was performed on all 20 extracted PCs. After
unranking, the groups of stir states that constitute each PC form
clusters of values of m [see Fig. 5(a) (bottom)]. A physical
interpretation of the rotated PCs thus follows as being associated
with the energy stirred by specific angular sectors of correlated
stir states. These sectors are in general not symmetric around
their peak loadings, nor do the clusters have equal width or
equally spaced centers. This demonstrates again that stirring
performance is not uniform across one revolution.

(a)

(b)

Fig. 5. First 12 of 20 varimax rotated PCs across the 50–148 MHz band:
(a) ranked (top) and unranked (bottom) standardized PC loadings, and (b) un-
standardized unranked PC scores.

F. Unstandardized Rotated Loadings

Rotated loadings identify sets of angular sectors, but do not
permit for their stir performance to be intercompared because
rotation may remove the hierarchy among the EVAs of the ro-
tated PCs. To restore ranking, the scores for the unstandardized
data can be calculated from (32), which involves accounting for
the standard deviations sX (m) shown in Fig. 1.

As an application, the IEC 61000-4-21 specification for
MT/MSRC validation and testing stipulates a minimum of 12
stir states [9, Table B.1] . Particularly, near the LUF, identifica-
tion of the optimum 12 stir states can be critically important with
regard to pass/fail, yet using trial-and-error based on equiangu-
lar stir steps can be time consuming and suboptimal. Moreover,
if the 12 PC sectors are not equiangular nor uniformly spaced
(non-WSS stir process), then one or more of them can be easily
missed when using equiangular stepping. The identification of
the angular positions in the smallest possible set of combined
stir states that meet this limit offers greater economy. Selecting
the stir states at the crests of each of the 12 unstandardized PCs
represents an optimum selection: Fig. 5(b) shows that the or-
dered set of optimum stir states for maximum energy stirring in
the 50–148 MHz interval is then:

566, 460, 959, 696, 375, 146, 60, etc.
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(a)

(b)

Fig. 6. First three unrotated PCs across the 50–148 MHz band: (a) as a function
of ranked stir states, ordered by their unweighted contribution to stirred field,
(b) as a function of actual stir states.

Compared to the standardized loadings, the width and shape of
the profiles are not much affected. However, the relative heights
have changed, particularly near the maxima. For N > 12, the
optimum set may have one or more of these 12 PCs substituted
by other ones. As noted in Section III-D, other frequency inter-
vals may lead to different PCs and, hence, different sectors of
stir angles when using frequency as observation variable. For
optimization at a single frequency, observation data based on
spatial scanning of the receiving antenna are recommended.

G. Unrotated PCs

With the insight provided by rotated PCs, one may attempt to
interpret the unrotated PCs as well. The first three of these are
shown in Fig. 6. Unlike rotated PCs for standardized data, they
exhibit a hierarchy. As seen from Fig. 6(a), the first, second and
third PC dominate across sectors of 784, 97 (=881−784) and
119 (=1000−881) stir states, respectively, but with rapidly de-
creasing magnitude. While some complementary features occur
in Fig. 6(b) (e.g., notches between the 418th to 439th state in PCs
1 (blue) and 2 (green)), each PC makes substantial contributions
to all 1000 stir states. The first PC has strictly positive loadings,
suggesting that it represents the average “dc” contribution of
stirred energy across all stir states. Combined with the bipolar
second and third PC, the features of sX (m) in Fig. 1 gradually
emerge on steadily smaller scales of m (cf., its evolution near
m 
 100 and for 850 < m < 1000, respectively).

H. High-Frequency PCs

For comparison, we present the main results for a band of
higher frequencies in the overmoded regime, between 900 and
998 MHz. Here, the Guttman–Kaiser criterion extracted N = 49
PCs.4 The standard deviations, ACM, EVAs, the first 12 stan-

4Since now P = 50 �� N when Δf = 2 MHz, the accuracy of the calculated
EVEs and hence PCs is more limited.

Fig. 7. Standard deviation sX m
within frequency responses across the 900–

998 MHz band as a function of stir state.

Fig. 8. Correlation matrix (magnitude) of 1000 stir states across the 900–
998 MHz band.

Fig. 9. Unrotated and varimax rotated eigenvalues of extracted PCs (λ2
m > 1)

and their cumulative percentage of stirred energy contribution across the 900–
998 MHz band.

dardized and unstandardized rotated PC loadings, and the first
three unrotated PCs are shown in Figs. 7–11. On average, sX (m)
is now more uniform (see Fig. 7). The extracted EVAs have a
smaller dynamic range before rotation, while being still more
uniformly spread after rotation (see Fig. 9). Comparison of Figs.
8 and 10 indicates that stir sectors near m 
 250, . . . , 280, 450,
and 700 are marginally larger than others, while a horizontal
band of small correlations near m 
 950, . . . , 1000 is accom-
panied by lower sX (m). The generally small correlations away
from the main diagonal and the greater homogeneity of sX (m)
indicate that all 49 selected stir states for 900–998 MHz are now
more uniformly distributed and less overlapping than for the 50–
148 MHz band. However, the differences between the scores of
the rotated unstandardized PCs [see Fig. 10(b)] are still not
negligible, indicating that variation in the average stirred energy
remains, even at these relatively high frequencies. The unrotated
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(a)

(b)

Fig. 10. First 12 of 49 varimax rotated PCs across the 900–998 MHz band:
(a) ranked standardized PC loadings, (b) unstandardized PC scores.

(a)

(b)

Fig. 11. First three unrotated PCs across the 900–998 MHz band: (a) as
a function of ranked stir states, ordered by their unweighted contribution to
stirred field, (b) as a function of actual stir states.

PCs (see Fig. 11) have now more similar average loadings and
are more evenly spread, with the first PC now dominating over
fewer than a third of the stir states in the 50–148 MHz range,
without dominance of any of the first three PC across more than
half of the stir states.

VII. DUAL PCA: PRINCIPAL FREQUENCIES

PCA can also be used in a converse manner, viz., by assign-
ing the P frequency components of the field to be the variables
(data columns), with the stir states at an arbitrary frequency
now serving as observation samples (rows) ZT

m , where sample
averaging is now across all M stir states. The goal is then, on
the basis of M chamber responses at different stir states, per

frequency, to extract N out of P dominant frequency compo-
nents (“signals”) from the spectrum of the MT/MSRC as being
principal frequency components. Since these PCs are associated
with frequencies yielding the largest share of the variance of the
field, they represent the part of the spectrum that is most volatile
under mechanical stirring action. From a different perspective,
these frequencies produce maximally efficient electronic stir-
ring. These extracted principal frequencies or subbands can also
be used to compile a list of efficient (possibly irregularly spaced)
test frequencies within a specified interval [2], [9]. If data over a
wide band need to be analyzed, then one must take into account
that the fraction of stirred energy is usually smaller at lower
frequencies than at higher ones (heteroscedasticity). Hence, in
this case, covariance based-PCA is not applicable for principal
frequency extraction, and correlation-based PCA is necessary
to compensate for the disproportionally large weight of high-
frequency components.

Principal frequencies are easily extracted from the SVD (22)
by noting that the columns of U are the EVEs for the new ACM

KT = 〈ZT Z〉 
 z·zT /M , as opposed to taking the columns

of A as EVEs of K = 〈Z ZT 〉 
 zT ·z /P earlier.

VIII. PCS AS EIGENSTIRRINGS

The analysis of the measured data permits the following inter-
pretation. A stir sequence of sampled field values across M stir
states represents a unique point in an M -dimensional stir space
for each one of P measured frequencies. Generally, EVEs are
interpretable in PCA as modes of variation in the data, while the
EVAs are their associated modal amplitudes [14]. In the context
of MT/MSRCs, all M EVEs associated with the OE or PCs
of Z can thus be designated as eigenstirrings or stir modes,5

forming empirical eigenmodes in the stir domain. For exam-
ple, the first three eigenstirrings in the 50–148 MHz band are
shown in Fig. 6(b), after normalizing by their integrated squared
value. Since the EVEs are orthonormal, they form a set of basis
functions for expanding any individual stir sequence across the
specified frequency range. The interpretation of stir modes is
thus similar to cavity modes that form eigenmodes in the spatial
domain: just like cavity modes represent normalized patterns of
spatial variation of amplitude at locations P(x, y, z) as produced
by superpositions of travelling waves, stir modes are patterns of
fundamental fluctuations of the stirred field across the stirrer
that combine to the total extracted stirred energy at stir state τm .

While a full set of M stir modes allows for exact expansion
and representation of the stir sequence, correlations between the
M sequences makes the set partially redundant and allows for
reducing it to a smaller set of N stir modes with almost equal
total stirred energy.

In the limit N → ∞, stir modes become asymptotically
equivalent to individual stir states (stir angles, i.e., zero-width
stir sectors), because then any incremental change in stir state
gives rise to a nonneglible contribution to the stirred energy. In
this case, the ACM K has Töplitz structure and the eigenfunc-
tions ψ

n
(τ) are trigonometric [17], [35].

5Not to be confused with ‘stirred modes’, referring to dynamic spatial modes.



14 IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, VOL. 56, NO. 1, FEBRUARY 2014

IX. CONCLUSION

In this paper, PCA was applied to characterize nonstationarity
in the stir domain. Rotated PCs can be interpreted as energy
stirred by specific angular sectors of a rotating mode stirrer.
Close agreement was found between properties of extracted PCs
and features found in the ACM combined with the variation of
the standard deviation across stir sequences.

Presuming that stir states are WSS, thus considering them
as statistically equivalent, ignores possible differences in their
stir efficiency. This can potentially lead to suboptimal stirring,
particularly at lower frequencies. The ability to rank stir states
assists in selecting the best subset and helps to improve under-
standing about the effect of geometric design and operational
features on stir quality. In the frequency domain, this is a fa-
miliar situation: at any given stir position in an undermoded
MT/MSRC, a spectrum analyzer can detect spectral islands of
above-average density of cavity eigenmodes that offer better
scope for more efficient stirring than sparse frequency bands. In
analogy, OE and PCA provide a stir analyzer for detecting stir
states with above-average stir efficiency within a given spec-
tral band. In the highly overmoded regime, nonstationarity in
the stir domain may become negligibly small, whence ranking
stir states may be less advantageous. While we concentrated on
PCA as a statistical data analysis tool, probabilistic PCA theory
can be applied to build inferential models, in particular PDFs of
PCs for Gaussian data [36].

While the focus of this paper is on MT/MSRCs, PCA is a
versatile technique that is likely to benefit other areas of EMC
and other applications of stochastic electromagnetism as well.
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