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Abstract—Fast Fourier transform (FFT)-based techniques are
used in conjunction with iterative solvers to accelerate matrix–
vector products in the framework of integral-equation-based meth-
ods. Even using this type of technique, the interaction matrix fill-in
can be time consuming because of the huge number of coefficients
to be computed. In this work, a cubic spline interpolation in space
of the coefficients of potential is proposed in the framework of the
partial element equivalent circuit method. The presented method
can be used in the framework of FFT-based volume integral tech-
niques, such as the partial element equivalent circuit technique.
Two numerical tests are presented confirming a significant speedup
while preserving the accuracy.

Index Terms—Cloud computing system, cubic spline inter-
polation, integral equations, partial element equivalent circuit
(PEEC) method, partial element evaluation.

I. INTRODUCTION

NOWADAYS, integral-equation-based methods are recog-
nized as powerful numerical methods for solving elec-

tromagnetic (EM) radiation and coupling problems. The most
popular technique in the antenna area is the method of mo-
ments [1], [2], while in the EM compatibility/EM interference
area, the partial element equivalent circuit (PEEC) method [3]
has become increasingly popular because of its ability to provide
a circuit interpretation to the mixed-potential integral equation,
thus allowing to handle mixed circuit/EM problems. The appli-
cation of all the integral-equation-based methods ends up with
the solution of a linear system in the frequency domain and has
O(N2) memory requirements to store the system matrix and
O(N2) operations to perform the matrix–vector products via an
iterative solver, where N is the number of unknowns. Over the
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last 30 years, many algorithms have been proposed to reduce the
memory requirement and central processing unit (CPU) time for
solving linear systems iteratively: the fast multipole method in
its single- and multilevel versions [4], [5], [6], algebraic meth-
ods like the adaptive cross approximation [7], [8], multiscale
decomposition techniques [9], and hierarchical matrices [10].

Despite these advancements in the iterative solution of linear
systems for the integral-equation-based methods, the CPU time
for calculating the interaction matrix is still significant because
the number of fill-in coefficients is extremely large, and thus,
their computation is time consuming.

In the case of the PEEC method, the coefficients to be
computed describing the magnetic and electric field couplings
are known as partial inductances and coefficients of poten-
tial [11], [12]. Furthermore, when the full-wave Green’s function
is considered, these coefficients have to be recomputed at each
frequency in the range of interest. To mitigate this computational
burden, a new accurate interpolation methodology is proposed
in [13] for fast frequency sweeps taking advantage of the smooth
behavior of these coefficients with the frequency.

On the other hand, the PEEC method is based on the source-
contrast formulation, the magnetic and electric field couplings
are assumed to take place in the background medium, and thus,
the free-space Green’s function is used. This implies that there
is a dependence of the PEEC coefficients on distance R, while
the size of the elementary volumes and surfaces is less and less
important as the distance increases. This results in an almost
1/R behavior of coefficients in space, which is, in principle, well
suited for the interpolation when a large number of elementary
volumes and surfaces can have the same relative geometrical
configuration, i.e., their absolute geometrical positions result
from only rotational and/or translation transformations.

A way to exploit such geometrical configurations was pre-
sented in [14] and [15] using an efficient identification of the
elementary cell positions allowing a significant speedup of the
partial element matrices filling-in process.

More recently, in the framework of integral-equation-based
techniques, the translational invariance of elementary magnetic
and electric field interactions has been exploited in [16] to
accelerate the matrix–vector product of iterative solvers. This
leads to significant memory saving and improvements in com-
putation performances since it is shown that only one row of the
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interaction matrices of the voxelized geometry has to be com-
puted. Such an approach was applied to PEEC models in [17]
and [18] in the so-called fast Fourier transform (FFT)-PEEC
method. Nevertheless, the number of coefficients can be huge.

Therefore, a practical methodology for the interpolation of the
partial inductances based on a cubic voxelization was presented
in [19] for the quasi-static PEEC method.

This article presents an extended interpolation method for the
coefficients of potential and an efficient FFT-PEEC solver with
a feature of fast computation of large inductance and coefficient
of potential matrices.

II. BASIC PEEC FORMULATION

The standard PEEC method [20] discretizes volumes and
surfaces into hexahedra and patches, respectively. Current and
charge densities are expanded into a series of basis functions.
Current and charge densities are typically assumed to be con-
stant over the elementary volume and surface cells, and thus,
rectangular basis functions are chosen. By applying standard
Galerkin’s testing procedure to the electric field integral equation
and continuity equation, electrical lumped elements are identi-
fied modeling both the magnetic and electric field couplings.
Dielectrics are modeled by their excess capacitance taking the
dielectric polarization into account [21], while conductor losses
are modeled through their ohmic resistance or the introduction of
a surface impedance [22]. Magnetic and electric field couplings
are modeled by partial inductances and coefficients of potential,
respectively.

Enforcing Kirchhoff voltage and current laws to the PEEC
circuit yields the following system of equations in the frequency
domain:

⎡
⎣ Zs + jωLp 0 A

0 P −M
−AT jωM Y�e

⎤
⎦

︸ ︷︷ ︸
MNA

·
⎡
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⎤
⎦

︸ ︷︷ ︸
X

=

⎡
⎣ 0

0
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⎤
⎦

︸ ︷︷ ︸
U

(1)

where P accounts for the coefficients of potential, Lp is the
partial inductance matrix, Y�e is the lumped elements matrix,
A is the incidence matrix, andM is a selection matrix introduced
in [7]. Matrix Zs is a diagonal matrix with the self-impedances
of elementary volumes, which reduce to resistances for conduc-
tors [3] and the impedances of the excess capacitance [21] for
dielectrics. Finally, Is represents the independent current source,
which is assumed to excite the system.

When system (1) is large, the fill-in of the dense matrices P
and Lp is very time consuming even if closed-form formulas
can be used under the quasi-static hypothesis and assuming a
Manhattan mesh type. In [23] and [24], the FFT circulant tensors
for P and Lp are computed once, compressed with the Tucker
singular value decomposition, and then stored in a file. After that,
at each iteration of the iterative solver, the compressed circulant
tensors are first loaded and then decompressed. Then, they are
properly scaled during the matrix–vector products with a factor
of Δ−1

v for matrix P and with a factor Δv for matrix Lp, being
Δv the size of the cubes in each direction.

It is evident that this approach introduced in [23] and [24] is
very useful when operating on a single computer in conjunction
with the FFT acceleration technique, while in the case of a
parallelized environment, it is better to fast compute the partial
elements directly on each thread and/or a single computer of the
network.

In addition, if an iterative solver is used in a parallelized
environment, the storage and the transfer of a portion of these
matrices can be prohibitive, and for this reason, the matrix
coefficients are repeatedly computed directly on several threads
and/or computers of the network skipping in this way the data
exchange.

Under the same hypothesis of [23] and [24], in this work,
we propose a similar strategy to fast-filling of matrix P. A
coefficient of potential between two capacitive surface cells γ
and δ, under the quasi-static hypothesis, requires the evaluation
of the following double-folded surface integrals:

Pγδ =
1

4πε0

1

SγSδ

∫
Sγ

∫
Sδ

1

Rγδ
dSγdSδ (2)

where Rγδ is the distance between any two points on surfaces
γ and δ, while Sγ and Sδ denote the area of their respective
surfaces. The closed-form formulas for parallel and orthogonal
surfaces to compute the integrals in (2) can be found in [20].

III. P-MATRIX FILL-IN ACCELERATION VIA CUBIC SPLINE

INTERPOLATION

In the following, we propose a method for fast evaluation
of P by using the cubic spline interpolation [25], [26] with a
similar approach presented in [19] for matrix Lp. Nevertheless,
the interpolation of the P-matrix entries is more challenging as
it requires both the parallel and orthogonal geometrical positions
to be distinguished in comparison to the inductance matrix.

A. Minimal Domain Identification

For accelerating the computation of P-matrix elements, a
starting point is a voxelized mesh made by Nx ·Ny ·Nz cubic
voxels of unit size, where Nx is the number of voxels along x,
Ny is the number of voxels along y, and Nz is the number of
voxels along z. Let Nx = Ny = Nz = 1000. In the next step,
the minimal set of configurations inside the modeling domain
is identified. The minimal set of geometrical configurations
represents a set of surface pairs having a unique relative position
between them. For a case of Nx = Ny = 10 and Nz = 9 shown
in Fig. 1, the corresponding minimal sets of geometrical config-
urations are shown in Figs. 2 and 3 for parallel and orthogonal
surfaces, respectively.

Namely, the mutual couplings between the blue surface (the
surface closer to the origin of the Cartesian axes) with itself and
with all the other surfaces are considered. The surfaces marked
with a dot are distinguished, as discussed in Section III-C.

B. Near and Far Interaction Regions

To preserve higher accuracy for the mutual couplings for
which the surfaces are physically close to each other, we can
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Fig. 1. All possible cases for parallel surfaces for a cubic voxelization made
by Nx = Ny = 10 and Nz = 9.

Fig. 2. Reduced cases for parallel surfaces for a cubic voxelization made by
Nx = Ny = 10 and Nz = 9.

split the entire domain as follows. First, all the configurations
shown in Figs. 2 and 3 are sorted by using their center-to-center
distance Rcc. Then, we define:

1) a near interaction region that contains all the configura-
tions for which the surfaces are physically close. The used
criterion is a condition Rcc ≤ 100 m with the unit size
equals 1 m;

2) a far interaction region that contains all the configurations
for which the surfaces are physically distant. The used
criterion is a condition Rcc > 100 m.

C. Interpolation Strategy

The cubic spline interpolation, like other interpolation tech-
niques, is a method to find/estimate new data points based on
the range of a discrete set of known data points. A detailed
description of the technique can be found in [25]. To apply
the cubic spline interpolation for the parallel surfaces shown
in Fig. 2, we define two subsets of configurations.

1) The first subset includes the blue surface (the closest to the
origin of the Cartesian axes) and all the surfaces without

Fig. 3. Reduced cases for orthogonal surfaces for a cubic voxelization made
by Nx = 9 and Ny = Nz = 10.

the dot marker. The total number of these configurations
is

N∑
i=1

[
N − (i− 1)

]
i (3)

being N = Nx = Ny = Nz .
2) The second subset includes the blue surface (the closest to

the origin of the Cartesian axes) and all the surfaces with
the dot marker. The total number of these configuration is
N(N + 1)/2.

This separation is performed in order to consider that the
mutual coefficient between some pairs of surfaces having the
same Rcc can be quite different. For example, the P coefficient
calculated by (2) between the blue surface centered in the point
(0.5, 0.5, 0) and the surface centered in the point (1.5, 0.5, 0)
marked in the zoomed part of Fig. 2 is quite different to the
coefficient computed between the blue surface and the surface
centered in the point (0.5, 0.5, 1) even though the center-to-center
distance is the same.

In addition, these two subsets of parallel surfaces are further
split for both the near and far interaction regions defined in
Section III-B.

Finally, in each subset, 40 logarithmically spaced values
of Rcc are selected, and for these samples, we compute the
corresponding values of P, and we use only these points for
the interpolation. Accordingly, for parallel surfaces, there are
four subsets in total, i.e., two subsets previously defined for the
near and far interactions, each consisting of 40 samples used to
perform the interpolation.

For the orthogonal surfaces, the same interpolation strategy
is applied, but, differently from the parallel case, in this case, it
is not possible to have pairs of surfaces having the same center-
to-center distance with a different mutual coupling coefficient.
For this reason, for orthogonal surfaces, we distinguish only the
near region from the far region to set the samples required for
the interpolation.
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IV. NUMERICAL TESTS

In this section, the performance and the accuracy of the
proposed interpolation strategy for the coefficients of potential
for the near and far interaction regions are first presented.
In the next step, the interpolation strategy is applied in the
framework of the PEEC method for two numerical examples, in
which the accuracy and efficiency of the matrix Lp coefficient
interpolation, introduced in [19], are investigated. The PEEC
solver is an iterative solver based on the generalized minimal
residual method (GMRES), in which the matrix–vector prod-
uct involving Lp and P is accelerated through the FFT-based
approach [16], [17]. The FFT acceleration can be summarized
as follows. In each iteration step of the PEEC iterative solver,
the vector Iest representing the estimated solution for currents is
required to perform the matrix–vector product LpIest and find
a new estimated solution Xest, i.e., Xest = LpIest. In this case,
first, two 3-D matrices (circulant tensors) are stored for both Lp

and Iest through their multidimensional FFT, and then, a 3-D
matrix X3D

est is computed as the result of the member-to-member
product between the two circulant tensors. Finally, the vector
Xest is restored fromX3D

est through its inverse FFT. In this process,
it is sufficient to compute only one row of matrix Lp. A detailed
description can be found in [17]. The proposed cubic spline
interpolation is performed using thesplineMATLAB built-in
function, while the standard computation of matrices Lp and P
is carried out by using precompiled C++ MATLAB MEX files.
In addition, the fill-in of these matrices is performed by using
the technique proposed in [27] to avoid numerical errors due to
the precision digits. All the simulations have been carried out
on a computer equipped with 64 GB of RAM memory and a
quad-core Intel processor operating at 2.4 GHz.

A. Interpolation Validation

The accuracy of the proposed interpolation strategy of co-
efficients of potential is validated on the entire domain made
by Nx = Ny = Nz = 1000 cubic voxels. The relative error
between the coefficients computed by using the closed formula
(2), denoted as hclosed, and interpolated coefficients, denoted as
hinterp, is defined as

err =
|hclosed − hinterp|

|hclosed| . (4)

The coefficients and relative error are shown in Figs. 4 and 5
for parallel and orthogonal surfaces, respectively.

In the near region, for parallel surfaces, the maximum error is
around 0.01, while for orthogonal surfaces, it is around 0.003. In
the far region, for both the parallel and orthogonal surfaces, the
maximum error is around 0.027. In addition, for both the parallel
and orthogonal surfaces, the closed-form evaluation required
around 118 s, while the cubic spline interpolation required 8 s
(thus a 15× speedup).

B. Copper Horseshoe Example

To evaluate the effectiveness of the proposed approach, a
copper horseshoe structure has been modeled. Its geometry is

Fig. 4. Coefficients of matrix P and interpolation relative error in the case of
parallel surfaces on the entire domain made by Nx = Ny = Nz = 1000 cubic
voxels. (a) Rigorous and interpolated coefficients of potential. (b) Interpolation
relative error.

shown in Fig. 6. The PEEC analysis, from 10 Hz to 100 MHz,
has been performed by using a voxelization with Nx = 120,
Ny = 60, and Nx = 10, leading to 148 000 inductive branches,
16 000 external surfaces, and 52 000 nodes. With this mesh,
the edge size of the cubic voxels is 0.2 mm. It satisfies the
λ/40 criterion condition, i.e., 0.2× 10−3 < c0

40× 108 , while the
skin effect is properly modeled by using the surface impedance
introduced in [18]. In this example, system (1) is solved with:

1) the coefficients of matrices Lp and P computed by using
the closed formulas. The solution obtained in this way is
denoted as Reference;

2) the coefficients of matrices Lp and P computed by using
the cubic spline interpolation. The solution obtained in
this way is denoted as Proposed.

For both the methods, the GMRES threshold for the con-
vergence is set to 10−5. The probe impedance, computed with
Reference and Proposed approaches, is shown in Fig. 7(a), where
it can be seen that the results are practically the same for both the
methods. The relative error between Reference and Proposed is
shown in Fig. 7(b), where it can be seen that the error is always
less than 0.1% on the entire frequency range.

The CPU time for all the PEEC steps required by Reference
and Proposed methods is reported in Table I. In particular, the



ROMANO et al.: ACCELERATED EVALUATION OF QUASI-STATIC INTERACTION INTEGRALS VIA CUBIC SPLINE INTERPOLATION 833

Fig. 5. Coefficients of matrix P and interpolation relative error in the case
of orthogonal surfaces on the entire domain made by Nx = Ny = Nz = 1000
cubic voxels. (a) Rigorous and interpolated coefficients of potential. (b) Inter-
polation relative error.

Fig. 6. Geometry of the copper horseshoe example.

TABLE I
CPU TIME REQUIRED BY REFERENCE AND PROPOSED TO FILL THE ROWS OF

MATRICES Lp AND P, REQUIRED BY THE FFT-BASED ACCELERATION

TECHNIQUE, FOR THE COPPER HORSESHOE EXAMPLE

Fig. 7. Input resistance and inductance and relative error for the copper
horseshoe example. (a) Input resistance and inductance. (b) Relative error.

Fig. 8. Number of iterations for the copper horseshoe example.

filling time for the partial coefficients is the time to compute just
one row of matrices Lp and P since the FFT-based acceleration
technique is applied.The results in Table I confirm that the
interpolation strategy leads to a speedup of 100× for Lp and a
speedup of 20× forP. Finally, the number of GMRES iterations
for both the Reference and Proposed methods is shown in Fig. 8.
As clearly can be seen, the proposed interpolation strategy does
not impact the convergence of the iterative solver.
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Fig. 9. Geometry of the copper interconnect structure example.

Fig. 10. S-parameters and relative error for the copper interconnect structure
example. (a) Scattering parameters. (b) Relative error.

C. Copper Interconnect Structure Example

In this last example, a copper interconnect structure exam-
ple is analyzed. Its geometry is shown in Fig. 9. The PEEC
analysis, from 10 Hz to 100 MHz, is performed by using a
voxelization withNx = 580,Ny = 190, andNx = 5, leading to
have 642 962 inductive branches, 107 066 external surfaces, and
232 165 nodes. With this mesh, the edge size of the cubic voxels
is 0.1 mm. Also, in this case, the mesh size of 0.1 mm satisfies the
λ/40 criterion condition since 0.1× 10−3 < c0

40×108 , while the
skin effect is properly modeled by using the surface impedance
introduced in [18]. Also, in this case, system (1) is solved with
the Reference and Proposed methods defined in Section IV-B,

TABLE II
CPU TIME REQUIRED BY REFERENCE AND PROPOSED TO FILL THE ROWS OF

MATRICES Lp AND P, REQUIRED BY THE FFT-BASED ACCELERATION

TECHNIQUE, FOR THE COPPER INTERCONNECT STRUCTURE EXAMPLE

Fig. 11. Number of iterations for the copper interconnect structure example.

and the GMRES threshold for the convergence is set to 10−5.
The magnitude and phase spectra of the scattering parameters
obtained with both the methods are shown in Fig. 10(a) con-
firming a good agreement between the results obtained with
both the methods. The relative error between Reference and
Proposed, shown in Fig. 10(b), is always less than 0.1% on the
entire frequency range of interest.

The CPU time for all the PEEC steps required by Reference
and Proposed methods is reported in Table II.

As can be clearly seen from Table II, the interpolation strategy
allows achieving a speedup of 112× for Lp and a speedup of
16× for P.

Finally, the number of GMRES iterations for both the Refer-
ence and Proposed methods is shown in Fig. 11. Also, in this
case, the proposed interpolation strategy does not impact the
convergence of the iterative solver.

V. CONCLUSION

In this article, the cubic spline interpolation method used to
accelerate the computation of partial inductances, introduced in
previous work, is extended for the computation of the coeffi-
cients of potentials for geometries meshed in cubic subregions
in the framework of the PEEC method under the quasi-static
hypothesis. To this purpose, a minimal set of geometrical config-
urations is first identified, and then, the cubic spline interpolation
is applied to speed up the computation of the mutual coupling
coefficients. The numerical tests demonstrate the accuracy of the
proposed interpolation scheme and a significant computation
speedup. The proposed method is particularly useful if used
in conjunction with an iterative solver implemented within a
parallel computing environment, where the rows of matrices
must be computed as fast as possible to avoid data exchange
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Algorithm 1: Pseudocode of Procedure PREPARE-P-
SAMPLES.

Output: Rsa, Psa

1: Compute the centers C for all the surfaces
2: Compute all the distances R between the point

Co = (0.5, 0.5, 0) and the centers C
3: Sort the vector R in ascending order
4: Store Nsa logarithmically spaced points of R into Rsa

5: Compute the Nsa coefficients of potentials Psa by
using the geometrical configurations belonging to Rsa.

between computers and/or threads. As a future step, the authors
will investigate the extension of the technique to the computation
of the full-wave coefficients.

APPENDIX

In what follows, the implementation of the proposed interpo-
lation strategy is discussed in detail . As the first step, it is needed
to create six datasets of the samples required to interpolate the
coefficient of matrix P, as reported in Section III: three datasets
for the near-field interactions and three datasets for the far-field
interactions:

1) one dataset for the parallel surfaces related to the dotted
surfaces (see Fig. 2);

2) one dataset for the parallel surfaces related to the nondot-
ted surfaces (see Fig. 2);

3) one dataset for the orthogonal surfaces (see Fig. 3).
To build a generic dataset, the procedure PREPARE-P-

SAMPLES can be used. Its pseudocode is given in Algorithm 1.
At line 1, the centers C for the surfaces are disposed, as shown
in Figs. 2 and 3. Then, the distances R between the centers
C and the point Co = (0.5, 0.5, 0) are computed, being Co the
center of the blue surface in Figs. 2 and 3. At line 3, the vector
R is sorted in the ascending order, and then, at line 4, Nsa

logarithmically spaced points of R are selected and stored into
a vector Rsa (we suggest to use at least Nsa = 40 since keeping
fewer samples leads to an inaccurate interpolation). Finally, at
line 5, the vectorPsa is filled withNsa coefficients of potentials,
computed through the formula (2), by using the geometrical
configuration of the surfaces belonging toRsa. It is important to
underline that this procedure is invoked just one time, and then,
the pairs of vectorsRsa andPsa (one pair for each dataset) must
be kept in RAM memory or must be directly hard coded into the
procedure COMPUTE-P-INTERPOLATED. Such a procedure,
whose pseudocode is shown in Algorithm 2, is the only function
used to compute a generic coefficient Pij of the matrix P.

At line 1, the center-to-center distance Rij between the sur-
faces Si and Sj is computed, and then, Rij , Rsa, and Psa are
used to compute the interpolated Pij by exploiting the cubic
spline interpolation [25]. Clearly,Rsa andPsa must be properly
chosen by checking the distance Rij (near or far field) and
distinguishing between the parallel (dotted surfaces or not) and
orthogonal surface cases. Finally, being Δv the edge size of the
cubes of the mesh, the coefficient Pij is properly scaled by the
factor Δ−1

v .

Algorithm 2: Pseudocode of Procedure COMPUTE-P-
INTERPOLATED.

Procedure: COMPUTE-P-INTERPOLATED(Si, Sj ,
Rsa, Psa, Δv)
Output: Pij

1: Compute the center-to-center distance Rij between the
surfaces Si and Sj

2: Compute the interpolated coefficient Pij by using Rij ,
Rsa, Psa

3: Set Pij = 1/ΔvPij .
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