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SIMP-Method Topology Optimization of Ferrite
Structures in Inductive Power Transfer Systems

Yao Pei , Lionel Pichon , Yann Le Bihan , and Mohamed Bensetti

Abstract—This article demonstrates the interest of topology op-
timization in designing the ferrite plate used in an inductive power
transfer system for electric vehicles. The solid isotropic material
with the penalization (SIMP) method is used to optimize the ferrite
plate, and it modifies the topology of the ferrite shape iteratively.
This SIMP method can lead to novel structures compared with
usual existing shapes. In this article, it is found that a part of the
ferrite from the center and the edges of the predefined ferrite plate
can be removed to save the ferrite volume while achieving a minimal
reduction of transmission efficiency. Moreover, the results from
topology optimization are influenced by the aluminum shielding
plate near the ferrite plate. Hence, the ferrite on the receiver side
has to be larger than the one on the transmitter side. These results
give some design guidelines on arranging the ferrite placement for
the system, and the approach could be generalized for shielding
sheets/walls.

Index Terms—Inductive power transfer (IPT) system, shielding
optimization, topology optimization (TO).

I. INTRODUCTION

THE electrification of transportation means has taken im-
portance in recent years, especially in the automotive

domain, where the problems of global warming are driving
manufacturers to find cleaner solutions that are more respectful
of the environment. However, promoting and adopting plug-in
electric vehicles (EVs) raises many questions. First, the cost
of lithium batteries is high. Second, the batteries are heavy.
Third, the charging time for the battery is so long that it requires
an expensive infrastructure for charging stations [1], [2], [3].
The use of inductive power transfer (IPT) charging systems is a
promising solution. In such a system, the energy is transferred
wirelessly between two coils (constituting the coupler) through
the magnetic field. However, this inevitably causes electromag-
netic field (EMF) leakage around the system [1], [2], [3], [4], [5].
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To mitigate the effects of EMF leakage, shielding is usually
added in IPT systems, thus improving the system performance
and leading to better efficiency [4], [5], [6]. Different types of
shielding have been reported in the literature. In [7], [8], and [9],
the extra coil turns wounded in the reverse direction to create
a magnetic field in a reverse direction to the original magnetic
field created by the coupler to minimize the EMF leakage. Moon
et al. [10] incorporated additional reactive components (e.g.,
capacitors) and coil turns close to the transmitter coils for the
shielding. Lee et al. [11] designed a soft-magnetic-metal-based
shield structure to reduce magnetic flux leakage. Recently, a
hybrid shielding structure has been proposed by surrounding
a reactive LC coil with a ring-based aluminum plate, which
weakens EMF leakage around the system [12].

Among the types of shielding mentioned above, ferrite ma-
terials are commonly used in IPT systems due to their high
permeability and low electrical conductivity [1], [2], [3], [4], [5],
[6]. Ferrite structures contribute to the shielding effectiveness of
the system. The permeability and the losses of the ferrite material
determine the magnetic field strength and hence the transmission
efficiency of the system. Then, optimizing the ferrite topology
can lead to significant improvements in the efficiency of the IPT
system.

Recent literature proposes some parameter optimization
methods used for the ferrite design of IPT systems [13], [14],
[15], [16], [17], and for optimizing structural parts in antenna
systems [18], [19], [20], [21]. Although combining 3-D finite
element methods (FEM) with optimization algorithms provides
a systematic, iterative process, it leads to heavy computations. To
reduce the overall cost, a metamodel, such as sparse polynomial
chaos expansions (PCE), can be used in the iterative procedure
to deal with multiobjective optimization [22], [23]. With such
an approach, the computational burden can be strongly reduced.
However, in these previous parametric optimization works, the
general shape of the ferrite structures remains the same and
follows some predefined shapes (rectangular, for example).
This does not allow innovative ferrite structures. To face such
limitations, topology optimization (TO) appears as a powerful
computational technique that can be used to optimize the design
of ferrite materials in IPT systems [24], [25], [26], [27]. It
involves iteratively modifying the topology of the ferrite material
while ensuring that certain performance criteria are met. The
performance criteria may include the magnetic field strength,
the energy transfer efficiency, or the losses in the ferrite material
[28]. The main TO methods are the solid isotropic material with
the penalization (SIMP) method [29], the ON–OFF method [30],

© 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see
https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-0099-4001
https://orcid.org/0000-0002-3402-5498
https://orcid.org/0000-0001-5563-9192
https://orcid.org/0000-0002-4755-5113
mailto:yao.pei@centralesupelec.fr
mailto:mohamed.bensetti@centralesupelec.fr
mailto:lionel.pichon@centralesupelec.fr
mailto:yann.lebihan@geeps.centralesupelec.fr
https://doi.org/10.1109/TEMC.2023.3311632


PEI et al.: SIMP-METHOD TOPOLOGY OPTIMIZATION OF FERRITE STRUCTURES 1745

Fig. 1. IPT system.

and others [31]. The main advantage of TO is that it can lead to
novel structures, but it is limited by the predefined investigation
area.

In [24] and [25], the coil and magnetic-core shapes are
optimized using the ON–OFF method with the aid of a genetic
algorithm and 3-D FEM so that the coupling coefficient of the
IPT system is maximized. Otomo and Igarashi [26] proposed a
TO method for the IPT system using the geometry projection
method to generate the bar-shaped magnetic cores. In [27], TO
is applied with the SIMP method to optimize the ferrite structure
for circular couplers. Although these papers optimize the ferrite
installed on circular/double-D couplers, they do not consider
how the ferrite structure varies under different ferrite volume
constraints (and then the cost of the system), and they do not
give any guidelines to arrange the ferrite placement.

The interest of this work is to find a design guideline for the
ferrite distribution that maximizes the transmission efficiency,
while constraining the volume of the ferrite plate, obtaining
a light and cost-effective IPT system. TO with SIMP method
is the most commonly used one due to its easy and intuitive
implementation [29], [31], and it is adopted to generate different
ferrite structures in two situations (without a shielding aluminum
plate above the receiver [22], and with a shielding aluminum
plate above the receiver [23]). The system has been previously
studied in our lab by coupling optimization algorithms with the
sparse PCE technique. The results obtained from TO could give
some design guidelines for the ferrite arrangement during the
design process of the IPT system.

The rest of this article is organized as follows. Section II
provides a general description of IPT systems for EVs and
gives some equations about transmission efficiency. Section III
presents an overview of TO and how it works with ferrite
structures. Some results are presented and discussed. Finally,
Section IV concludes this article.

II. IPT SYSTEM

Fig. 1 shows the block diagram of an IPT system, which is the
most attractive for EVs. The system comprises a transmitter, a
receiver, converters, and resonant compensation topologies. It is
based on ampere’s and Faraday’s laws in a time-harmonic regime

TABLE I
PARAMETERS AND IPT OPERATING STATUS

Fig. 2. Arrangement of the transmitter and the receiver. (a) Without an
aluminum plate [22]. (b) With an aluminum plate [23].

[4]. First, the electrical network provides a dc-link voltage
through the ac/dc converter to feed the transmitter. Then, the
magnetic field produced by the transmitter is coupled with the
receiver to induce voltages and currents. The induced power
is rectified to charge the EV battery. Compensation topolo-
gies (such as series–series, parallel–parallel, series–parallel, and
parallel–series) are connected to the transmitter and the receiver
to create the resonant case and reduce additional losses [3], [4],
[5]. The operating parameters of the system considered in this
article are listed in Table I [32], [33].

Normally, the transmitter and the receiver consist of copper
coils and ferrite plates. However, relying on the ferrite plates for
the shielding is not only expensive but also ineffective and heavy
for the receiver installed on the EVs [3], [4], [23]. Therefore, to
solve this problem, several solutions are proposed: one solution
[22] is to design the ferrite on the receiver side appropriately in
Fig. 2(a), and the other solution [23] is to add an aluminum plate
above the receiver to mitigate the magnetic field generated by
the transmitter, as shown in Fig. 2(b). It can also help to decrease
the power losses in the vehicle chassis. Although the sizes of
the coils are different in the figure, the total coil area is the
same, and the turns of the coils are both equal to six. The ferrite
thickness is 2 mm, and they are made of 3C95 material from
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Fig. 3. Domain Ω discretization with SIMP method [27], [31].

Ferroxcube [34], and its value of the saturation induction (Bs) is
around 500 mT.

For analyzing the IPT system transmission efficiency, circuit
models are often used, and the compensation topologies are
designed to minimize the reactive component of the electrical
circuit. Following [3], [4], and [5], the series–series compen-
sation topology is considered because the resonance condition
in this compensation remains constant, independently of the
variations of the mutual inductance and the load. Therefore, the
relationship between the maximum transmission efficiency ηmax

and the mutual inductance M between coils can be described in
the following equation when the transmitter coil and the receiver
coil are identical [35]:

ηmax = 1− R1

πf0M
(1)

where R1 is the resistance of the transmitter as same as that of
the receiver.

III. TOPOLOGY OPTIMIZATION

Although the dimensions of the ferrite can be easily selected
by parametric optimization, however, it is limited to how to
arrange the ferrite part in the specified size properly. So, to
solve this problem, TO is used to find a ferrite distribution that
maximizes the mutual inductance M , while constraining the
volume of the ferrite plate, obtaining a light design for the IPT
system. The basic idea of TO is to modify the topology of the
ferrite shape iteratively. Changing the value of the local relative
permeability allows the introduction of holes in the ferrite plate.
Although there are several TO methods in the literature, the
SIMP method is adopted to arrange the ferrite distribution in
this section.

A. Introduction to SIMP-Based TO

The SIMP method discretizes a studied domainΩ into numer-
ous elements, for which artificial density values are introduced
as design variables ρi, as illustrated in Fig. 3. ρi is the material
density in the ith element. The artificial density value of ρi lying
between 0 and 1, represents a proportion of solid material or
void. It is desired to have either solid material (ρi = 1), or void
(ρi = 0) as the final material in the element instead of having
intermediates (unless intermediates are materials that are avail-
able for the users) [27], [31]. The material properties between

Fig. 4. Ferrite placement with TO on SIMP method. (a) TO process on SIMP
method. (b) TO result.

the solid and void are interpolated with a smooth continuous
function, which depends on the material density ρi.

Then, as it is desired here to optimize the topology of the
ferromagnetic materials, the adequate choice is to consider only
permeability as the material property. So, the function of the
ferrite’s relative permeability μr is achieved in the following
equation [27], [29], [31], [36], [37]:

μri = μr0 + (μr − μr0) ρ
n
i (2)

whereμr is the relative permeability of ferrite, equal to 3000 and
μr0 is the relative permeability of air, equal to 1, and 0 ≤ ρi ≤ 1.
The penalization coefficient n, (usually set between 2 and 5)
is used to change the interpolation behavior with n ≥ 1, and it
works on the design variableρi. The gradient-based optimization
solver is used to find a good solution, and each variable is allowed
to take the relative permeability of either ferrite (μr) or air (μr0)
so as to maximize the objective function [27], [31], [36], [37].
Fig. 4(a) shows the initial domain to be optimized, where each
discretization represents a variable of the problem, and the color
legend for the materials, with the corresponding ρ and μr. The
TO result should be composed of ferrite and air, as shown in
Fig. 4(b).

In this section, the objective function of the ferrite placement
optimization, under the defined ferrite volume constraint, is to
minimize the ratio α

α =
Minitial ferrite domain

Mµri
optimized ferrite domain

(3)

where Minitial ferrite domain represents the mutual in-
ductance with the initial ferrite design domain and
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Fig. 5. Flowchart of TO in the ferrite placement.

Mµri
optimized ferrite domain represents the ith mutual

inductance with the ith ferrite structure. The optimization
process is based on the assumption that the ferrite is not in the
saturation state [27], [29].

The process for the TO on the ferrite placement is presented
in Fig. 5.

The constraint of ferrite volume can be defined manually, but
the optimization of the ferrite placement aims at minimizing the
reduction in the value of the mutual inductance M compared
with M with the initial ferrite domain. The TO result allows
some ferrite parts to be removed. The penalization coefficient
n is set to 4, which is suggested by some authors in order to
produce no intermediate values for μr [27], [31].

B. TO Applied to the Ferrite Plate

Here, the ferrite structure is discussed in two situations:
without an aluminum plate above the receiver [see Fig. 2(a)]
and with an aluminum plate above the receiver [see Fig. 2(b)].
The TO process works with the optimization module [38] from
COMSOL 5.6 on an Intel Xeon W-2125 processor.

1) Without an Aluminum Plate: In order to further save ferrite
volume and keep nearly the same mutual inductance, TO with
SIMP method is used to find an efficient arrangement of ferrite.
The initial dimension of the ferrite plate from Fig. 2(a) and
the ferrite structure resulting from the TO optimization under
different volume constraints are shown separately in Fig. 6.

The relationship between the ferrite volume and the mutual
inductance is shown in Fig. 7.

Fig. 6. Ferrite placement without an aluminum plate. (a) Structure from TO
under 70% of the ferrite volume. (b) Structure from TO under 50% of the ferrite
volume. (c) Structure from TO under 30% of the ferrite volume.

Fig. 7. Relationship between the ferrite volume and the mutual inductance.

Then, it can be observed that during the TO process, removing
a part of the ferrite from the center and the edges of the ferrite
plates is recommended, no matter the constraint of the ferrite
volume ratio. Arranging the ferrite plates with this tip can
facilitate a 40% reduction of the ferrite volume, as labeled by the
yellow star in Fig. 7. Besides, it also has an approximate 10%
reduction in the mutual inductance.
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Fig. 8. Ferrite placement with an aluminum plate. (a) Structure from TO under
70% of ferrite volume (the aluminum plate is hidden). (b) Structure from TO
under 50% of ferrite volume (the aluminum plate is hidden). (c) Structure from
TO under 30% of ferrite volume (the aluminum plate is hidden).

2) With an Aluminum Plate: Even in the case of an aluminum
plate above the receiver, the previous optimization procedure
can also provide an appropriate arrangement of ferrite for saving
ferrite volume and keeping nearly the same mutual inductance.
The initial dimension of the ferrite plate from Fig. 2(b) and the
ferrite structure under different volume constraints are presented
separately in Fig. 8.

It shows that during the TO process, a part of the ferrite from
the center and the edges of the ferrite plates should be removed
no matter the constraint of the ferrite volume ratio. However, due
to the effect of the aluminum plate, the ferrite on the receiver
side has to be larger than that on the transmitter side.

Then, the relationship between the ferrite volume and the
mutual inductance is summarized in Fig. 9.

Compared with Fig. 2(b), the ferrite structure Fig. 7(a) saves
almost 30% of ferrite, but the mutual inductance decreases by
around 10%.

C. Discussion

TO, with the SIMP method, provides a quite original ferrite
placement. A part of the ferrite from the center and the edges
of the ferrite design domain can be removed to decrease the
volume and keep a minimal reduction of the mutual inductance

Fig. 9. Relationship between ferrite volume and mutual inductance.

(compared with the one calculated with the initial ferrite design
domain) when the transmitter and the receiver are aligned.
However, the results from TO are influenced by the aluminum
plate near the ferrite design domain. With the existence of the
aluminum plate, the ferrite on the receiver side has to be larger
than that on the transmitter side.

The structures from the optimization procedure have to be
further simplified because the TO results cannot be easily man-
ufactured in reality. Then, the following features that can be
deduced from how ferrite should be placed in a manufactural
form [24], [25], [26], [27], [31].

1) The optimized ferrite structures are similar but not entirely
symmetrical plates. This is due to the optimization ran-
domness. In practice, the placement of the ferrite should
be symmetrical, as the coils are rectangular and identical.
Therefore, the ferrite should be simplified as symmetrical.

2) The appearance of curves is inevitable in TO. Therefore,
curves will be approximated by straight lines or stair-case
lines for simplification and operability. Ferrites are com-
mercially available as small tiles and bars. The curved
boundaries of the shapes obtained as theoretical results
have to be approximated according to the size of the
tile/bar.

The present work shows an interest in the distribution of
ferrite for IPT systems. Some researchers propose using ferrite
bars instead of the ferrite plate for the IPT systems [3], [4],
[5], [39]. In [40], the radial ferrite core is distributed on the
receiver side, as shown in Fig. 10(a). The center and the edges
of the ferrite corner are removed, and they are made from tiles of
ferrite material, which satisfies the manufacturing rules. In our
GeePs laboratory, for example, the ferrite bars are distributed as
illustrated in Fig. 10(b). The ferrite’s center is empty, and two
sides of the plate are arranged by ferrite bars. Fig. 10(a) and (b)
have an arrangement of ferrite bars similar to the TO results. Our
optimization procedure gives a possible theoretical explanation
of the ferrite shapes used in practice.
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Fig. 10. Ferrite placement for IPT systems. (a) Radial ferrite core [40].
(b) Ferrite bars.

IV. CONCLUSION

This article shows that TO of ferrite materials in IPT systems
is a promising approach for improving the efficiency of these
systems. By optimizing the design of the ferrite material, it is
possible to keep nearly the same power transmission efficiency
and reduce the overall size, weight, and cost of the system
compared with those obtained with traditional approaches. By
discussing the ferrite structures of the IPT system without an
aluminum plate and with an aluminum plate, decreasing 30%
of the ferrite volume leads to only a 10% reduction of the
mutual inductance. It is also found that a part of the ferrite
from the center and the edges of the predefined ferrite plate
can be removed to save the ferrite volume while achieving a
minimal reduction of the mutual inductance value. Moreover,
the results from TO are influenced by the aluminum plate near
the ferrite design domain, so the ferrite on the receiver side
has to be bigger than the one on the transmitter side. However,
if the TO results are planned to be used in reality, they need
to be further simplified for the manufacture. Current ferrite
structures can be explained as resulting from TO. Finally, the
approach described in this work can be applied to the design of
any shielding plate. Furthermore, for high-power IPT systems,
additional constraints, such as magnetic flux density distribution,
can be added to the optimization process.
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