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Abstract—This year marks about half a century since the birth of
the technique known as the partial element equivalent circuit mod-
eling approach. This method was initially conceived to model the
behavior of interconnect-type problems for computer-integrated
circuits. An important industrial requirement was the computation
of general inductances in integrated circuits and packages. Since
then, the advances in methods and applications made it suitable for
modeling a large class of electromagnetic problems, especially in the
electromagnetic compatibility (EMC)/signal and power integrity
(SI/PI) areas. The purpose of this article is to present an overview
of all aspects of the method, from its beginning to the present day,
with special attention to the developments that have made it suitable
for EMC/SI/PI problems.

Index Terms—Circuit modeling, electromagnetic modeling,
Kirchhoff laws, Maxwell’s equations, partial element equivalent
circuit (PEEC) method.

I. INTRODUCTION

THE numerical solutions of Maxwell’s equations were sig-
nificantly enhanced between the end of the ‘60s to the ’70s.

Until then, Maxwell’s equations were used to obtain analytical
solutions. The numerical solutions were rapidly advanced with
the first more powerful computers. Then, within a few years, we
witnessed the birth of several fundamental numerical approaches
which are in use today. Among them, we list the finite difference
time domain (FDTD) method [1], the finite element method
(FEM) [2], the method of moments (MoM) [3], [4], and the
finite integration technique (FIT) [5].

The partial element equivalent circuit (PEEC) method also
was conceived in the early ’70s. The IBM mainframe computers
which were the most advanced at that time, required model-
ing with more complicated inductive interconnect topologies.
Specifically, the electronic system problem required relatively
complex numerical modeling of inductive voltage drop in the
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power and ground voltages connected to ICs. The concept of par-
tial inductance-based complex circuit analysis was introduced
in [6], where it was shown how to solve circuits based on multiple
parts of conductors of finite length. This made complex inductive
structure models solvable.

Integrated circuit design and packaging also required the cal-
culation with capacitive elements. The capacitance computation
for 3-D conductors was presented in [7] using the concept of co-
efficient of potential. The two concepts of partial inductance and
coefficient of potential were integrated into the integral equation-
based formulation published in [8], which can be considered
the foundation of the PEEC method. More than 20 years after
the introduction of PEEC, the applications were mostly in the
modeling of interconnections in printed circuit boards [9], [10]
and packaged electronics [11], including dielectric as well [12],
[13].

New applications of PEEC, other than that of interconnections
date back to 1998. Specifically, new problems like the modeling
of lightning protection systems and its coupling to coaxial cables
were solved [14].

Since then, there has been a growing interest in the PEEC
method which has been applied to a large variety of differ-
ent fields including power electronics [15], [16], [17], [18],
[19], [20], power systems [21], [22], antennas [23], [24], [25],
[26], [27], [28], [29], [30], radio-frequency integrated circuits
(RFICs) [31], [32] and RF interferences [33], lightning [34],
[35], [36], filters [37], [38], on-chip interconnects [39], fre-
quency selective surfaces [40], [41], [42], Litz wires [43],
[44], [45], [46], neuromorphic chip crossbar array [47], flex-
ible electronics [48], [49], high-temperature superconducting
(HTS) cables [50], decoupling capacitors [51], wireless power
transfer [52], [53], [54], and return network in composoite
aircraft [55], just to name a few. The list of applications and
contributors increases continuously due to recent improvements.
Furthermore, up to date, two books [56], [57] have been pub-
lished on the PEEC method. Other books have chapters or
sections devoted to PEEC [58],[59, Ch.6], [60].

The number of papers on the PEEC method has been con-
stantly increasing over the years, as shown in Fig. 1.

An important added value of the PEEC method is represented
by the fact that, by providing a circuit interpretation of Maxwell’s
equations, it is totally compatible with circuit solvers, such as
SPICE [61], [62], [63]. A SPICE solver modified to take the
propagation into account has been presented in [64].
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Fig. 1. Number of articles on the PEEC method from 1972 to present.

It is also worth mentioning that the PEEC method is listed
among the numerical methods to solve Maxwell’s equations
listed in the IEEE Standard for Validation of Computational
Electromagnetics Computer Modeling and Simulations (IEEE
Std 1597.1-2008) [65].

In this work, we retrace the 50 years’ history of the method
and the evolution that led it to be considered today among the
most suitable ones to be used in the field of electromagnetic
compatibility (EMC), signal, and power integrity (SI/PI).

II. BASIC PEEC FORMULATION

The PEEC method is based on the electric field integral
equation (EFIE) and the continuity equation (CE). Differently
from the MoM (Z-MoM) [3], the continuity equation is kept
separate from the EFIE such that the solution includes both
currents as well as potentials or charges. The basic derivation
of PEEC equations is carried out in this section for a conductor
in the Laplace domain. The modeling of different materials is
described in Section V.

The electric field at a point r in a conductor is

E(r, s) =
J(r, s)

σ
= Einc (r, s)− sA(r, s)−∇Φ(r, s) (1)

where σ is the conductor conductivity, Einc(r, s) is the external
electric field impressed at point r at a Laplace frequency s.
A(r, s) and Φ(r, s) are the magnetic vector and electric scalar
potentials [66], respectively. They read

A(r, s) =
μ0

4π

∫
V ′

J(r′, s)e−sτ

|r − r′| dV ′ (2)

and

Φ(r, s) =
1

4πε0

∫
V ′

q(r′, s)e−sτ

|r − r′| dV ′ (3)

where τ = |r − r′|/c0 is the speed of light in the background
medium. If we replace the vector potential A(r, s) in (1), we get

Einc (r, s) =
J (r, s)

σ
+ s

μ0

4π

∫
V ′

J(r′, s)e−sτ

|r − r′| dV ′ +∇Φ (r, s)

(4)

which has J(r, s) and Φ(r, s) to be determined. In addition to
the EFIE, the continuity equation is used

∇ · J(r, s) = −sq(r, s) (5)

that makes the problem well-posed. If the charges are assumed
to be located on the surface of volumes, which is a reasonable
hypothesis for good conductors, then the continuity equation has
to be written as

∇ · J(r, s) = 0 r ∈ V ′ (6a)

∇ · J(r, s) = − sqs(r, s) r ∈ S ′. (6b)

In this case, the electric scalar potential has to be redefined as

Φ(r, s) =
1

4πε0

∫
S′

qs(r′, s)e−sτ

|r − r′| dS ′. (7)

Then, current and charge densities J(r, s) and q(r, s) are ex-
panded in terms of pertinent basis functions b ∈ R3 and p ∈ R

J(r, s) ∼=
Nv∑
n=1

bn (r) In(s) (8a)

q(r, s) ∼=
Ns∑
j=1

pj (r)Qj(s) (8b)

where In(s) and Qj(s) are the expansion weights that must be
determined at each angular frequency s,Nv andNs represent the
number of the elementary volume and surface regions, respec-
tively. Then, expansions (8) are substituted into (2)–(4), and (6)
and the so-called Galerkin’s testing or weighting process [67] is
used to generate a system of equations for the unknowns weights
In(s), n = 1, . . . , Nv and Qm(s),m = 1, . . . , Ns by enforcing
the residuals of (3)–(5) to be orthogonal to a set of weighting
functions that are chosen coincidently with the basis functions.
Then, two inner products are defined

〈bm (r) , f (r)〉 =
∫
Vm

bm (r) · f (r) dVm m = 1, . . . , Nv

(9a)

〈pj (r) , g (r)〉 =
∫
Si

pj (r) g (r) dSj i = 1, . . . , Ns. (9b)

They are used to average (4) and (6) on elementary volumes
and (7) on elementary surfaces. Importantly, the averaging pro-
cess leads to double integration in the partial elements, e.g., (21)
and (28), making symmetric the corresponding matrices.

The Galerkin’s method applied to the EFIE (4) yields, in a
matrix form

−ATΦ(s) + RI(s) + sLp(s)I(s) = Vs(s) (10)

where vectorsΦ(s) and I collect the potentials to infinity and the
currents flowing through the volumes, respectively, the matrix
A is the usual circuit incidence matrix, R is a matrix account-
ing for conductor losses, Lp is the partial inductance matrix
that models the magnetic field/inductive coupling due to the
currents, and vector Vs(s) represents the voltages induced on
elementary volumes by the incident electric field Einc (r, s) [68].
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Fig. 2. Equivalent circuit modeling the displacement currents in the back-
ground medium.

Equation (10) can be regarded as the Kirchhoff voltage law
(KVL) enforced to loops constituted by each ohmic-inductive
branch and its closures at infinity.

Applying the Galerkin’s method to (6) and (7) yields

sQ(s) + Y(s)Φ(s) + AI(s) = Is(s) (11)

and

Φ(s) = P(s)Q(s) (12)

where matrix Y(s) models lumped elements and vector Is(s)
accounts for eventual lumped current sources.

Equation (12) is well suited to identify an equivalent circuit for
the displacement currents in the background medium. Indeed,
they read

Ic = sQ(s). (13)

Some simple algebraic manipulations allows to rewrite (12) as

Ic = sQ(s) = sDΦ(s)− Ĩc (14)

where Ĩc = TIc and matrices D and T are

D =

⎡⎢⎢⎢⎣
1

P11
0 · · · 0

0 1
P22

· · · 0
...

...
...

...
0 0 · · · 1

PNsNs

⎤⎥⎥⎥⎦ (15a)

T =

⎡⎢⎢⎢⎢⎣
0 P12

P11
· · · P1Ns

P11
P21

P22
0 · · · P2Ns

P22

...
...

...
...

PNs1

PNsNs

PNs2

PNsNs
· · · 0

⎤⎥⎥⎥⎥⎦ . (15b)

Ns denotes the number of elementary surfaces where the
charge is localized. Equation (14) admits the circuit synthesis
sketched in Fig. 2 for the case of Ns = 3 patches.

Using (12) to eliminate the charges from (11) yields[
sP−1(s) + Y(s)

]
Φ(s) + AI(s) = Is(s). (16)

Equation (16) can be regarded as the Kirchhoff current law
(KCL) enforced to each node corresponding to elementary

volumes[
Y + sP−1(s) A

AT − [R+ sLp(s)]

]
︸ ︷︷ ︸

N(s)

·
[
Φ(s)
I(s)

]
︸ ︷︷ ︸

X(s)

=

[
Is

−Vs

]
︸ ︷︷ ︸

U(s)

.

(17)
Equation (17) is the modified nodal formulation (MNA) of

the PEEC circuit [69] equations. It is also worth noticing that
additional lumped elements can be easily added to the model
just by stamping them into the MNA matrix [57]. We note that
the inversion of matrix P(s) in (17) can be time-consuming
when the problem size is large. However, this matrix inversion
can be avoided. As an example, the admittance part can be
premultiplied by P(s).

III. MESH GENERATION AND BASIS FUNCTIONS

The choice of the basis functions is directly related to the
mesh. Over the years, several different meshing techniques have
been considered.

A. Orthogonal Meshing

Initially, the meshing for most PEEC solvers was based on
orthogonal Manhattan meshing only, and piecewise constant
basis functions were used exclusively [8].

Hence, the basis function for the current density is chosen as

bn (r) =

{
t̂n/An if r ∈ Vn

0 otherwise
(18)

where t̂n is the tangential unit vector for the current direction
in volume cell Vn. With such a choice of the basis function,
the corresponding weight represents the current flowing in the
volume Vn with orientation t̂n.

Assuming that the free and bound charge densities are located
on the surface of conductors, the basis functions used to expand
the charge densities are chosen as follows:

pm (r) =
{
1/Sm if r ∈ Sm

0 otherwise.
(19)

This choice implies that the corresponding weight Qm repre-
sents the charge on cell m and is assumed to be uniformly
distributed on the surface.

Fig. 3 shows a simple PEEC ohmic-inductive cell structure
for a metal sheet. It represents the layout of the nodes with
resistive and inductive cells. Please note that in this example,
half-width cells are used at the edge of the conductors so that
the cell nodes can be connected at the edge, by assembling the
substructures which may consist of multiple sheets. We notice
that the inductive and resistive cells are rectangular of zero or
a finite thickness. An example of uniform mesh for a finite
thickness cell is shown in Fig. 4.

Today, for most problems, the high-frequency skin effect
can be included in the model by subdividing the cross-section
such that the redistribution of the high-frequency current to the
surface can be modeled.
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Fig. 3. PEEC circuit of a thin conductive panel.

Fig. 4. Volumetric uniform mesh for a simple structure.

Fig. 5. Volumetric nonuniform meshing for a simple structure.

Thus, when skin-effect has to be caught at high frequencies,
the standard PEEC formulation requires a fine mesh of the vol-
ume. Such a model can be very inefficient if uniform subsections
for the current flow are used, as shown in Fig. 4. However,
several different solutions can be used like highly nonuniform
meshing [70]. Fig. 5 shows an example of a nonuniform meshing
of the cross-section of a conductor.

Theoretically, a surface integral formulation of the PEEC
method (e.g., the PMCHWT method) can give a rigorous eval-
uation of the skin-effect losses for piecewise homogeneous
conductors [71], [72]. However, problems may occur in the
numerical implementation due to the high contrast between the
conductor and the surrounding dielectric, which makes the re-
sultant linear system highly unbalanced. In [73], the interaction
integrals involving the curl of the magnetic and electric vector
potentials are computed through the Taylor series expansion of
the full-wave Green’s function, leading to analytical forms that
are rigorously derived, thus reducing the numerical issues. When
the skin-effect is well-developed, a valuable alternative option
is represented by the use of the surface impedance accounting

Fig. 6. Example of quadrilateral cell structure.

for the nonuniform distribution of the current density [74], [75].
More recently, it has been coupled to voxellized fast Fourier
transform (FFT)-based PEEC models [19].

Finally, skin- and proximity effects can also be efficiently
modeled by adopting ad-hoc global basis functions, as is done
in [76], [77], [78], [79], [80], and [81].

B. Nonorthogonal Meshing

The need to model more complex geometries has led to the
development of the PEEC method which is also able to handle
problems with non-Manhattan geometry.

Quadrilateral and hexahedral type meshing for PEEC model-
ing has been developed and presented in [70], [82], [83], [84],
and [57, Ch. 7]. An example of a zero-thickness hexahedral cell
is given in Fig. 6.

An unstructured PEEC formulation by dual discretization for
2-D geometries has been proposed in [85] and [86] and then used
in [87] to analyze two-port TEM cells for VHF applications.
Then, it has been extended to volume, dielectric, and magnetic
media [88], [89], [90], [91]. A 3-D PEEC formulation for struc-
tured and unstructured PEEC models that is based on the cell
method [92] has been presented in [93]. It guarantees a circuit
interpretation of Maxwell’s equations also in magnetic materials
and a reduction in the number of degrees of freedom (DoFs)
(i.e., required memory) compared to the full-wave unstructured
PEEC formulation previously proposed in [89] for electric and
magnetic media.

Triangular cells have been applied for a long time in the MoM
approach using the Rao–Wilton–Glisson (RWG) basis functions
[94], [95]. Triangular meshing has also been considered for the
PEEC modeling of conductors in [74], [75], [96], [97], and [98].
Triangular cells have been applied for a long time in the MoM
approach using RWG basis functions [94], [95]. Triangular



ANTONINI et al.: PARTIAL ELEMENTS EQUIVALENT CIRCUIT METHOD: THE STATE OF THE ART 1699

meshing has also been considered for the PEEC modeling of
conductors in [74], [75], [96], [97], and [98].

More recently, an isogeometric analysis (IgA) is proposed for
the PEEC method for electrostatic problems in [99]. It is shown
that using the spline-based geometry concepts from IgA allows
for extracting circuit elements without an explicit meshing step,
with a lower number of DoFs and faster convergence compared
to the standard PEEC approach.

IV. COMPUTATION OF THE PARTIAL ELEMENTS

Once this decomposition takes place analyzing a given EM
problem, it is straightforward to place these effects in a circuit
context where electric and magnetic phenomena are always
concentrated and well separated, and where each single EM
interaction is described by a “partial element.” Therefore, the
so-called partial elements are subdivided into two categories.

1) Partial Inductances: Describing the mutual or self effects
due to electric currents flowing through volumes.

2) Coefficients of Potential: Describing the mutual or self
effects due to electric charges localized on surfaces.

3) Resistances describing losses.
In this section, the partial elements’ rigorous mathematical

definitions as well as their approximations typically employed
in a PEEC model are described and discussed.

A. Partial Inductance for Both Domains

Depending on the highest frequency of interest, the elements
are differently formulated. The inductances for quasi-static or
low-frequency solutions are

LQS
pm,n

=
μ0

4π

1

AmAn

∫
Vm

∫
Vn

t̂m · t̂n
|rm − rn|dVmdVn (20)

where t̂m and t̂n represent the unit vectors in the direction of
the current flow and Sm and Sn are the current conductor cross-
section areas for the current. Further, Vm and Vn represent the
threefold integrals for the conductor volumes. The inductances
are called to be partial since a single partial inductance does not
result in a meaningful inductance result.

The analytical evaluation of the partial inductances (20) is
possible for rectangular Manhattan shapes [6]. This approach
has several advantages since it results in nonsingular partial self-
inductance and it can handle large aspect ratio shapes which
would be very costly using numerical techniques.

The most complete (full wave, full spectrum) solution requires
that the exponential term is included under the integral as

LFW
pm,n

(jω) =
μ0

4π

1

AmAn

∫
Vm

∫
Vn

t̂m · t̂n
e−jβRm,n

|rm − rn|dVmdVn

(21)
where β = ω/c0 The exponential e−jβRm,n is the factor ac-
counting for the propagation delay effects taking place between
the two volumes. Rigorously, the delay exponential function is
fully involved in the integration process, since the propagation
effects are connected to the whole points in the volumes Vm, Vn.

We observe that using (21) requires the recomputation for the
partial inductances at each frequency sample, which is expen-
sive. The numerical evaluation of (21) can be performed using
numerical integration using methods like the Gauss quadrature.
Of course, the computational effort increases linearly with the
number of frequency samples required and, as usual, the singu-
larities for the self-term have to be taken care of. Unfortunately, a
full wave solution can be obtained only for limited cases of (21).

A direct improvement of (20) can be obtained by considering a
unique time delay between the volumes, to extract the exponen-
tial delay from the integral. Usually, the delay τcc = RCC

m,n/c0
corresponding to the distance RCC

m,n between the volume centers
is chosen. Thus, assuming Rm,n � RCC

m,n in (21), the center-to-
center (CC) approximation of the partial inductance LFW

pm,n
is

obtained

LCC
pm,n

(jω) =e−jβRCC
m,n

μ0

4πAmAn

∫
Vm

∫
Vn

t̂m · t̂n
|rm − rn|dVmdVn

= e−jβRCC
m,nLQS

pm,n
. (22)

In the recent work [100], it has been shown that the Taylor
series approximation can be used to compute the full-wave
partial elements. Using the Taylor series of the exponential
around zero

e−jβR=
∞∑
l=0

(−jβ)l

l!
Rl ≈ 1− jβR− β2R2

2
+ j

β3R3

6
+. . . .

(23)
leads to the expanded version of the partial inductance LFW

pm,n

LFW
pm,n

∼= μ0

4π

1

SnSm

N∑
l=0

[
(−jβ)l

l!

∫
Vn

∫
Vm

Rl−1dVm dVn

]
.

(24)
A better approximation for far-apart cells is obtained by taking

the center distance Rm,n/c0 delay between the two cell cen-
ters outside of the integral and then expanding the exponential
e−jβ(R−Rm,n). This leads to the following approximation of the
partial inductance LFW

pm,n
:

LFW
pm,n

∼= μ0

4π

1

SnSm
e−jβRm,n

·
N∑
l=0

[
(−jβ)l

l!

∫
Vn

∫
Vm

(R−Rm,n)
l

R
dVm dVn

]
.

(25)
For TD analyses, (20) can be used as is since it is frequency

independent. The TD counterpart of (21) can be recovered
via the inverse Fourier transform (IFT) but is computationally
expensive since it requires the computation of the partial element
at many frequency samples over a wide frequency range. The CC
approximation (22) can be easily translated to the time domain
as

LCC
pm,n

(t) = LQS
pm,n

δ

(
t− RCC

m,n

c0

)
(26)

where δ(t) denotes the delta Dirac function.
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Fig. 7. PEEC equivalent circuit model of a conductive elementary volume.

More recently, rigorous TD expressions for partial induc-
tances and coefficients of potentials have been proposed in [101],
[102], and [103] assuming rectangular Manhattan shapes. An ef-
fective way to recover TD partial inductances for nonorthogonal
shapes of the volumes is to use the modified numerical inversion
of the Laplace transform [104] that uses the Cauchy’s theorem.

B. Coefficients of Potential

There is a great similarity between the coefficient of potential
partial elements and the partial inductance in Section IV-A.

In the case of good conductors, it is assumed that the charge is
on their surface because it moves to the surfaces at a fast rate [57].
Also in the case of homogeneous dielectrics, the polarization
charge can be assumed to be only on their surface. Under the
quasi-static approximation, the basic form of the coefficient of
potential is

PQS
m,n =

1

4πε0

1

SmSn

∫
Sm

∫
Sn

1

|rm − rn|dSmdSn (27)

where, in this case, Sm,n represents the area surface of the cells.
The full-wave coefficient of potential is

PFW
m,n =

1

4πε0

1

SmSn

∫
Sm

∫
Sn

e−jβRm,n

|rm − rn|dSmdSn. (28)

In lossy dielectrics, such as silicon, due to the reduced value of
their conductivity, the charge is not restricted to its surface, e.g.,
the relaxation time is not as small as in standard conductors. In
this case, the coefficients of potential have to be computed as a
double-folded volume integral

PQS
m,n =

1

4πε0VmVn

∫
Vm

∫
Vn

1

|rm − rn| dVm dVn. (29)

In [105], analytical formulas are presented for (28) under the
hypothesis of orthogonal geometries.

V. MODELING OF CONDUCTORS, DIELECTRICS, AND

MAGNETIC MATERIALS

Over the years, the PEEC method has had many improvements
concerning the possibility of modeling materials of different
types. This section briefly revised the models which have been
introduced since the beginning.

A. Conductors

In its original 1974 version [8], the PEEC method only con-
sidered conductors. Fig. 7 shows an example of the equivalent
circuit of an elementary volume of a conductor. Conductive dis-
persive materials are in use today like graphene. PEEC modeling
of graphene interconnects has been presented in [106] and [107].

Fig. 8. PEEC equivalent circuit of a dielectric elementary volume.

Fig. 9. PEEC equivalent circuit of a dielectric elementary volume of Lorentz
type.

B. Dielectric Materials

The equivalent circuit model of lossless ideal dielectrics was
introduced in 1992 making it possible to model realistic inter-
connects [12]. The polarization of the dielectric is modeled by
the so-called excess capacitance which, assuming a Manhattan-
type mesh, for a cell of length 
 and cross-section S, can be
written as

Ce =
ε0 (εr − 1)S



(30)

where εr is the relative permittivity of the dielectric. It is to
be noticed that polarization currents are bound to the dielectric
and generate magnetic fields and interact exactly as electrical
currents. The equivalent circuit of an elementary volume of a
dielectric is sketched in Fig. 8.

With the increase of the frequencies of interest, it has become
more and more important to model the dispersive and lossy
behavior of dielectrics. PEEC models of dispersive dielectrics
of Debye and Lorentz type have been presented in [108]. Fig. 9
shows an example of the equivalent circuit of a dielectric ele-
mentary volume of Lorentz type.

PEEC models of lossy dielectrics, like silicon, and anisotropic
dielectrics have been presented in [105] and [109], respectively.
Finite-sized piecewise homogeneous dielectrics easily require
massive equivalent circuits. Novel compact models of finite-size
dielectrics that are based on the surface equivalence principle
and the quasistatic assumption are presented in [110] and [111].

C. Magnetic Materials

The modeling of magnetic materials has been addressed first
by considering the magnetization and the constitutive

B(r, s) =
μ0μr

μr − 1
M(r, s) (31)

which, being the flux density divergence-less, can be rewritten
as

∇×A(r, s) =
μ0μr

μr − 1
M(r, s). (32)
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Fig. 10. Closed magnetic circuit (not to scale). All dimensions are in mm.

Enforcing (32) in each direction of the Cartesian reference
yields an additional set of equations

DI(s) +TM(s) = −GIs(s). (33)

Furthermore, the magnetic vector potential has an additional
contribution due to the magnetization resulting in a modified
KVL

−ATΦ(s) + RI(s) + sLp(s)I(s) + sLm(s)M(s) = Vs(s).
(34)

Hence, the set of equations to be solved reads⎡⎣sP−1 A 0
AT − [R+ sLp] −sLm

0 D T

⎤⎦ ·
⎡⎣ΦI
M

⎤⎦ =

⎡⎣ Is
−Vs

−GIs

⎤⎦ . (35)

This formulation was proposed for the first time in [112]. Un-
der the quasi-static hypothesis, rigorous analytical formulas are
proposed in [113] for integrals accounting for flux density due
to current and magnetization densities for the Manhattan-type
discretizations. The formulation presented in [112] has been
extended in [114] for modeling 3-D magnetic plates for low-
frequency magnetic shielding problems. An augmented PEEC
formulation has been proposed in [106] to model dispersive
and lossy linear magnetic materials again under the quasi-static
hypothesis. A novel PEEC formulation that is able to handle
3-D nonlinear problems has been proposed in [115]. A behav-
ioral magnetostatic hysteresis model has been implemented in
a PEEC environment and presented in [116]. Fig. 10 shows an
example of a closed magnetic circuit that is excited by a loop
driven by an enforced current. The time evolution of the B and

Fig. 11. Closed magnetic circuit. (a) Time evolution of Bz and Hz at the
center of the excited limb. (b) Bx versus Hx at the same point.

H z-components, probed at the center of the excited limb, are
presented in Fig. 11 along with the corresponding B-H curves.

VI. PEEC SOLVERS

The equivalent circuits generated by the PEEC method are
well suited to be analyzed in both the frequency and the time
domains.

A. Frequency Domain Solvers

Frequency domain solvers solve the MNA set of equations
(17) over a set of frequency samples sk = jωk, k = 1, . . . , Nf ,
in the frequency bandwidth of interest.

For small problems, with a number of DoFs not exceeding
30 000, the solution can be addressed using direct solvers, e.g.,
the LU decomposition. The direct solution can be accelerated by
resorting to the multiscale block decomposition and the adap-
tive cross approximation (ACA) technique [117], as described
in [118], [119], [120], and [121].

Typically, the filling of partial inductances and coefficients of
potential matrices,Lp(jω) andP(jω), respectively, is computa-
tionally heavy since they must be computed at each frequency.
Their computation can be accelerated by resorting to the fast
multipole method (FMM) [122]. Indeed, these matrix entries
fluctuate slowly with frequency and have a polynomial behavior
that can be efficiently interpolated by the Lagrange interpolation
scheme, as was shown in [123]. In [124], an effective method-
ology for the interpolation in space of the partial inductances
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required by the PEEC method is developed. It makes use of the
cubic spline interpolation method, that, under the hypothesis of
cubic meshed regions, guarantees always a significant speed-up
without loss of accuracy.

For large problems, iterative solvers become mandatory be-
cause matrices become so large that they cannot be stored.
In this case, matrix-vector products must be computed. An
approach that is based on the compression of the partial in-
ductance matrix utilizing the QR decomposition of the far
coefficients submatrices is proposed in [125]. To speed up the
matrix-vector products, the translational invariance of elemen-
tary magnetic and electric field interactions can be exploited.
In particular, in [126] a method is proposed that allows one to
exploit providing significant memory saving and an excellent
improvement of the computation performances. This method
was then applied to inductance extraction in [127]. A Tucker-
enhanced and FFT-accelerated version of the method has been
proposed for capacitance and inductance extraction in [128]
and [129], respectively. Such an approach has been applied
to PEEC models of power electronics applications in [18]
and [19].

The ACA coupled with hierarchical matrix (H-matrix) arith-
metics [130] can also provide an effective method to increase
the size of the largest solvable problems. This approach has been
investigated in the framework of the PEEC method in [131] and
[132].

1) dc and Low-Frequency Solution: A rigorous dc solution
of PEEC models of conductors has been proposed in [133]
using a two-step process. First, a magnetostatic problem is
analyzed by solving a purely resistive network providing the
currents in the circuit. Then, an electrostatic problem is solved by
enforcing the neutrality of each conductor, which is completely
disconnected from the others, and using the voltage drops known
from the magnetostatic problem as a boundary condition. This
methodology has then been extended in [134] to PEEC models
consisting of conductors but also of ideal dielectrics and mag-
netic materials. Fig. 12 shows the geometry of a loop inductor
and the corresponding distribution of node dc potentials.

2) PEEC Models With Dyadic Green’s Function: The tout-
court application of the PEEC method to problems involving
large layered media, as they occur in PCB modeling or in prob-
lems involving transmission lines over or buried in the ground,
would require the dielectric to be discretized using a 3-D grid.
Thus, it would end up in a large system of algebraic equations
with a computational cost that easily becomes prohibitive. A
valuable alternative for such problems is represented by the use
of the dyadic Green’s functions for layered media (DGFLM).
This formulation requires the discretization only of conductors,
while the Green’s functions include the features of the multilayer
substrate. A novel numerical solution for the mixed potential
integral equation for layered media using the PEEC method
has been presented in [135]. The same concept has been used
for modeling patch antennas [136], PI problems, multilayered
PCBs [137], [138], [139], [140], and 3-D IC/packaging analy-
sis [141], [142].

When the PEEC method is adopted to analyze lightning tran-
sients in wire/plate structures in the air and lossy-ground space, it

Fig. 12. Loop inductor and dc node potential distribution.

is necessary to evaluate the Green’s functions for layered media
for both vector and scalar potentials for source and field points
in any of these two layers. This approach has been applied
to address both transient current and voltage in a variety of
structures with arbitrarily oriented lines and plates [143], [144],
[145], [146], [147], [148], [149], [150], [151], [152], [153].

Time domain solvers: Full-wave PEEC models can be
analyzed in the time domain using three different approaches
which are as follows.

1) Time-stepping methods.
2) Inverse Fourier transform (IFT)
3) Numerical inversion of the Laplace transform (NILT).
3) Time Stepping Methods: The enforcement of the Kirch-

hoff voltage and current laws to the PEEC model yields the fol-
lowing set of neutral delayed differential equations (NDDE) [57]

C(t)
dx(t)

dt
= −G(t)x(t) +Bu(t). (36)

The vector of the unknowns x(t) ∈ �nu×1 is given as

x(t) = [i(t) φsr(t) φi(t) vd(t) qs(t)]
T (37)
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where i(t) are the branch currents,φsr(t) are the scalar potentials
for surface nodes, φi(t) are the scalar potentials for internal
nodes, vd(t) are the excess capacitance voltages for dielectric
branches, and qs(t) represent the surface charges. Furthermore,
the state space matrices C(t), G(t), and B are

C(t) =

⎡⎢⎢⎢⎢⎣
Lp(t) ∗ 0 0 0 0

0 0 0 0 MT

0 0 0 0 0
0 0 0 Cd 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎦ (38)

G(t) =

⎡⎢⎢⎢⎢⎣
R As Ai Γ 0

−AT
s Gle 0 0 0

−AT
i 0 0 0 0

−ΓT 0 0 0 0
0 −M 0 0 P(t)∗

⎤⎥⎥⎥⎥⎦ (39)

B =

⎡⎢⎢⎢⎢⎣
I 0
0 I
0 0
0 0
0 0

⎤⎥⎥⎥⎥⎦ (40)

where ∗ represents the convolution operator, Cd is the excess
capacitance matrix [13],R is the branches resistance matrix,As

is the incidence matrix for the surface nodes, Ai is the incidence
matrix for the internal nodes, Γ is the dielectric region selection
matrix, M is the surface-to-node reduction matrix, and Gle is
the load conductance matrix (assuming by now for simplicity
that only resistive lumped elements are connected to the PEEC
model).

Also, the time-dependent partial inductance matrix Lp(t)
and the coefficient of potential matrix P(t) are considered as
impulsive, that is

Lp(t) = LDL
p δ(t) +

NLp∑
i=1

LD
p δ(t− τcc,i) (41a)

P(t) = PDLδ(t) +

NP∑
q=1

PDδ(t− τcc,q), (41b)

where the superscripts DL and D stand for delay-less and
delayed, respectively; NLp

is the number of significant delays
between elementary volumes while NP is the number of signif-
icant delays between elementary surfaces; τcc,i = Rcc,i/c0, i =
1, . . . , NLp

and τcc,q = Rcc,q/c0, q = 1, . . . , NP denote the de-
lays between the centers, identified by Rcc,i and Rcc,q, respec-
tively, of the spatial supports of the basis functions of currents
and charges; c0 is the speed of the light in the background
medium.

Finally, the source vector u(t) is given as

u =

[
vs(t)
is(t)

]
(42)

where vs(t) and is(t) are the voltage and current sources, which
are applied to branches and nodes, respectively.

The solution of (36) has been addressed in [154] experiment-
ing with different temporal basis functions.

Fig. 13. Transient temperature map on the surface of a multilevel on-chip
interconnect.

Fig. 14. Computed and measured ESD coupling waveform (see [159] for the
details).

Time domain PEEC modeling has been combined with a
thermal solver to perform an electrothermal analysis in [105].
Fig. 13 shows the surface temperature of a multilevel chip
interconnect [155].

In [156], the analysis of delayed PEEC models has been
accelerated by using the waveform relaxation technique. An
innovative time domain digital wave PEEC solver has been
presented in [157] under the quasi-static hypothesis.

PEEC time domain solvers have been used to analyze ESD
problems in [158] and [159]. Fig. 14 shows the calculated and
measured voltage waveforms induced by a 2-kV ESD event.

a) Time domain stability issues: Stability has for a long
time been a challenge for time domain methods [160]. It is an
issue also for PEEC models like (36).

The stability analysis of solutions consists of two basic as-
pects.

First, the stability of the model, and thus, of its differential
equation system, is to be considered. If the PEEC model is
unstable, its numerical solution is generally unstable. However,
sometimes, one can obtain a stable numerical solution by using a
numerical scheme whose region of absolute stability allows one
to obtain a stable solution even for unstable models, but it is not
granted that this solution represents well the physical response
of the system.

In [161], it is shown that the discretization of PEEC models
can lead to differential equations with unstable solutions. A
stabilization scheme is introduced using so-called split cells.
Damping resistors introduced in parallel to self-inductances in
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the standard PEEC have been suggested as an effective tool
for the stabilization of the solution [162]. This modification,
although it does not increase the number of unknowns, since it
increases the damping, may affect the accuracy of the results.

The accuracy in the computation of partial elements may have
an impact on the stability. We will distinguish two cases:

1) quasi-static (QS) PEEC models (propagation delays are
neglected); PEEC models are described by RLC equivalent
circuits and, Kirchhoff laws lead to ODEs;

2) full-wave PEEC models (propagation delays are consid-
ered; they are described by RLC circuits with delayed
sources and Kirchhoff laws lead to NDDEs.

In both cases, PEEC model stability is significantly affected
by the mesh. Indeed, the aspect ratios of the elementary volumet-
ric and surface regions impact the accuracy of the computation
of partial elements. It happens when they are computed using
analytical formulas, which is possible under the quasi-static hy-
pothesis and using orthogonal meshes. Double precision floating
point (IEEE Standard 754), introduces a truncation error in their
computation. It is known that for cells with extreme form factors
(the ratios between the sizes of the cells) or for extreme ratio
distance/size, the truncation error might be so large that the
computation of the partial elements is completely dominated by
the numerical error. In [19], guidelines for using the analytical
formulas are provided depending on the sizes of the elementary
domains and their distances.

Then, as pointed out in [163], [164], and [165], the CC
approximation is recognized as one further cause driving the
model to instability. In [163], a low pass filter (LPF) is used
for each partial element, and then the state-space description of
the resulting delay-free system is constructed and the stability
is assessed by checking the eigenvalues of the system matrix.
However, to match the behavior at sufficiently high frequencies,
the order of each LPF has to be as high as 38, resulting in quite
a significant increase in the number of DoFs. This limitation is
mitigated in [166], where time domain models of integrals of
Green’s functions are proposed leading to full-spectrum convo-
lution macromodeling.

All these types of approximations may lead to right-half-plane
unstable poles causing the so-called late time instability. It is
important to observe that the unstable poles are very weak in
amplitude and typically have a very large imaginary part, so
they do not impact significantly the low frequencies. Fig. 15
shows an example of poles of a zero thickness conductor PEEC
model, 10-cm long and 2-cm wide. In particular, the poles have
been computed first neglecting all the delays (Quasi-static) and
then using a first-order Taylor expansion to approximate the
exponentials in a polynomial form.

To establish a priori the stability of a PEEC model, it would be
necessary to compute explicitly its poles. Due to the theoretical
complexity of a time-delayed system like PEEC, however, the
existing stability tests are all either sufficient or necessary, but not
both. The analytic computation of poles is possible only in a few
simple cases or when delays are neglected. On the other hand,
sufficient conditions hold under strong assumptions, considering
only a reduced number of delays, and with a significant com-
putational cost, making their utility questionable [167], [168],

Fig. 15. Stable and unstable poles of delayed PEEC models.

[169], [170]. An effective pole-based stability test is proposed
in [171].

Second, an unstable solution may be caused by the numer-
ical method itself. Different numerical methods have different
regions of absolute stability. They can be described as A-stable,
L-stable [160].

The influence of the numerical method features on the stability
of full-wave PEEC models has been investigated in [172], where
the P-stability has been defined as a criterion for choosing an
appropriate numerical method. Bellen et al. [167] studied a
PEEC model with one single delay, and propose a sufficient-
condition test based on checking some matrix-norm inequal-
ities. Extension of this method to models with more delays,
however, remains unclear. In general, the backward Euler (BE)
and Lobatto III-C have also been proposed as suitable numerical
methods for the PEEC method.

a) The Inverse Fourier Transform: The easiest way, although
not the most efficient one, to obtain TD responses of PEEC mod-
els is represented by the use of the FT applied to the FD results
made available by an FD solver of the equations in (17) over
a pertinent set of frequency samples sk = jωk, k = 0, . . . , Nf .
This approach has some disadvantages as follows.

1) The frequency response must be computed over the en-
tire bandwidth of interest in order to evaluate the time
domain counterpart; the maximum frequency for which
the model is accurate based on some criteria is decided by
the mesh; frequency responses at higher frequencies are
less accurate. This will only impact the accuracy of the
IFT computed waveforms, not the stability because the
IFT entails a weighted sum of multiple contributions and
it is not affected by the stability problems of time-stepping
methods.

2) If the sources to the system are waveforms with sharp
edges (such as a pulse with sharp rise/fall times), a very
large number of frequency points would be required in
order to avoid aliasing problems [173].

3) Nonlinear materials or lumped elements cannot be easily
handled.
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In addition, in order to achieve accurate results, it is necessary
to let the energy vanish at the end of the simulation. This means
that the signal exciting the system as well as the associated re-
sponse have to be band-limited in frequency and time. This poses
a serious limitation in computing the step response since the FT
of a step function is not band-limited. As an approximation, FT
of a square (more likely trapezoidal) pulse going back to zero
once the steady-state output is reached can be used. Additional
simulation time is required to ensure that the system response
goes to zero as well. This results in a larger number of frequency
points where the solution of the system equations is needed.
Moreover, the IFT needs the dc solution of the system which is
a well-known issue for EM models (see Section VI-A1).

a) The Numerical Inversion of the Laplace transform: The
numerical inversion of the Laplace transform (NILT) technique
represents a valid alternative to time-stepping solvers. This
technique, introduced in the early ’70s of the last century [174],
has gained more and more interest in the TD characterization
of linear-time-invariant (LTI) systems. Essentially, given the
state vector X(s) of an LTI system expressed in the complex
frequency domain in the form

N(s)X(s) = U(s) (43)

as it appears in (17), the well-known Laplace inverse transform
can express its TD counterpart as [175]

x(t) =
1

j2π

∫ α+j∞

α−j∞
X(s)estds (44)

where α > �e(pk) ∀pk, where pk are the poles of X(s). The
Laplace inverse integral can be approximated by replacing st
with z and ez with its [N/M ] Padé approximant [176] ξN,M (z),
finally employing the Cauchy theorem of residues [177]. As-
suming M an even integer, the NILT approximation for the TD
state vector results in

x(t) � −1

t

M/2∑
i=1

2Re [KiX(s)]s= zi
t

(45)

being zi and Ki the Padé poles and residues, respectively. It is
evident from (45) that the knowledge of the system’s poles is
not required to build the transient waveforms associated with
the corresponding Laplace domain quantities. Moreover, the
method’s accuracy is not bounded by the time-step choice and,
consequently, does not depend on the number of time samples
employed. Furthermore, also the solution’s stability of the solu-
tion is not affected by the time-step. Hence, the responses of LTI
PEEC models remain always stable when reproduced by NILT.

For illustrative purposes, Fig. 16 shows two different sets of
poles zi/t corresponding, respectively, to the choicesM = 6 and
M = 12, with N = M − 2. The two sets are computed over the
same time window [1− 5] ns.

It is evident that, as time t increases, each set of poles
approaches the origin of the complex plane, causing a loss of
accuracy with the evaluation time. To mitigate this limitation, a
modified NILT, known as NILTn, has been recently proposed in
the framework of TD simulation of multiconductor transmission
lines (MTL) [178]. The MNA representation of full-wave PEEC

Fig. 16. Two Padé poles sets moving in the complex plane as the evaluation
time increases.

Fig. 17. Power-divider port voltage computed with NILT: a comparison with
well-established methods.

models in the Laplace domain (43), being the NILT scheme
easily applicable. The NILT technique has been applied for the
first time to retarded PEEC models in [179], where its stability
properties are emphasized when compared to time-stepping
methods applied to the resolution of retarded PEEC models. For
illustrative purposes, in Fig. 17 the port voltage response of a
power divider, a typical microstrip device, is depicted, assuming
a trapezoidal waveform at its feeding port. The EM model of the
structure has been built through the PEEC model considering
the propagation delays, giving rise to an LTI retarded system.
The NILT results agree with those of the IFFT, while those
obtained through the BD2 time-stepping scheme exhibit clear
late-time stability issues (t > 1 ns).

Subsequently, in [180], the modified NILTn has been success-
fully employed for retarded PEEC models showing accuracy
improvements and reduced computational costs.

It is worth noticing that the NILT approach does not compute
the response based on the singularities of the PEEC model, but
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rather on the relevant Padé matrix. Hence, the eventual right-
hand side (RHS) unstable poles of the PEEC model are automat-
ically filtered and do not impact the accuracy of the solution.

VII. COMPARISON WITH THE METHOD OF MOMENTS

Both the MoM and PEEC integral equation-based approaches
are using what is known as the weighted residual method (MWR
or WRM) [181], [182] to discretize the formulation into numer-
ical solutions. Originally, the mathematical MoM notation was
part of fundamental WRM techniques. As pointed out in [181],
WRM applies to the solution of both differential as well as
integral equation-based problems. Hence, WRM can be used
for both approaches we consider here.

To give a unique name to the MoM considered here, we
call it the Z-MoM method since the formulation leads to an
impedance formulation. Of course, the Z-MoM name can also
be used for the time domain versions since the basic equations
are the same. Further, the Z-MoM method was devised in a time
before PEEC [4]. The key difference between the two methods
is in the fundamental derivation of the solution which results in
different unknowns. The derivation of the PEEC method is given
in Section II, where it is clear that the unknowns are both the
potential Φ and the current I, which leads the equations in the
MNA form (17) which can be implemented with other SPICE
type circuit domain models.

The Z-MoM method is based on the same fundamental inte-
gral equation (4) as is PEEC. However, the charge or potential
variable is eliminated using the continuity equation (5). This
results in the impedance formulation of the Z-MoM method.

Another difference exists between Z-MoM and PEEC mesh-
ing approaches. The main issue is based on the fact that Z-MoM
has mesh cells only for the current variables, while PEEC
requires appropriate, separate cells for both the potential as well
as the currents, as is obvious from the formulation in Section II.
It is clear that the inductive and resistive partial elements connect
between nodes while the capacitive cells are connected to the
nodes. This applies to all types of cells including nonorthogonal
meshing. In the original PEEC method, the meshing was mostly
based on orthogonal bricks or hexahedron volumes and rectan-
gular cells or quadrilaterals to mesh the surfaces. The Z-MoM
mostly uses triangular meshes for surfaces [94] and tetrahedral
meshes for volumes [95]. This has led to the development of
dedicated basic functions, known as the RWG basis functions for
triangles [94] and the Schaubert–Wilton–Glisson (SWG) basis
functions for tetrahedral volumes [95].

The use of triangular/tetrahedral cells allows for an accurate
model of complex geometries. However, easily results in a large
number of cells and unknowns when compared to quadrilateral
meshes.

An important issue for the Z-MoM formulation is the
so-called low-frequency breakdown. This is because the
low-frequency response including the dc [183] solution is poor
or missing. This high-pass behavior is an important issue for
the solution of some EMC, SI, and PI problems while it is
not an issue for the solution of high-frequency antenna prob-
lems. The Z-MoM formulation has been improved by resorting

to augmented formulations which also assume the charges as
unknowns, and also by adopting suitable scalings to improve
the condition of the system [184], [185]. In [186], it has been
shown that the MNA form of PEEC models attenuates the
low-frequency breakdown even for problems that do not have
closed loops which also results in dc solutions.

VIII. COMPUTATIONAL COMPLEXITY OF PEEC MODELS

Being an integral equation-based method, similar to MoM,
the solution of PEEC models in both the frequency and time
domains for quasi-static models requires the solution of a block-
dense linear system. In the frequency domain, small problems,
with a number of unknowns N < 30 000, can be solved with
direct solvers. They involve a factorization step followed by a
solve step. The factorization step comprises an LU factorization
or QR factorization, which is generally computationally very
expensive. Further, direct solvers are advantageous when one is
interested in multiple RHSs. A naive direct solver costs O(N3),
which is prohibitively resource-demanding for large system
sizes. To reduce the computational complexity, fast methods
are used. Many dense matrices arising out of N -body prob-
lems possess a hierarchical low-rank structure. This low-rank
structure is exploited to construct hierarchical matrices and hi-
erarchical matrices-based fast direct solvers [130], [187], [188].
In the framework of the PEEC method, multiscale compressed
techniques exploiting the low-rank nature of magnetic and elec-
tric field interactions have been presented in [118] and [189].
In [190], it has been shown that the storage requirements and
computation time of these types of techniques scale as O(N3/2)
and O(N2), respectively, for asymptotically high frequency.

Hierarchical matrices have been used along with the PEEC
method in [131], [191], and [192].

Larger-dimensional problems require iterative solvers that re-
quire repeated vector-matrix products with O(N2) complexity.
It is possible to accelerate such vector-matrix products by resort-
ing to methods, such as the FFM [193] and Barnes–Hut [194].
Using a multilevel approach, a O(N logN) computational com-
plexity can be achieved asymptotically. Further, for fast con-
vergence in problems with high-condition numbers, iterative
solvers are coupled with a preconditioner. More recently, the
FFT-based technique presented in [126] has been applied to
the PEEC method in [18] and [19] allowing obtaining excellent
memory and CPU time savings.

In the time domain, the system matrix is typically very sparse.
This enables the efficient use of multifrontal techniques to per-
form the LU decomposition even for very large problems [195],
[196], [197]. Nevertheless, when using time-stepping
techniques, the RHS vector has to be updated at each time step
requiring many matrix-vector products. In this case, FFT-based
techniques can also be used to accelerate these matrix-vector
products [198].

IX. MODEL ORDER REDUCTION OF PEEC CIRCUITS

The equivalent circuits generated by the PEEC modeling
can be very large and easily require prohibitive storage and
significant computing resources. Model order reduction (MOR)
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techniques [199], [200] can be adopted to compress theC,G,B
matrices in (36) preserving the accuracy of the reduced model at
the ports. Equation (36) can be rewritten in the Laplace domain
as

sC(s)X(s) = −G(s)X(s) +BU(s) (46a)

Y(s) = BTX(s) (46b)

C(s) = C0 +

nτ∑
k=1

Cke
−sτk (46c)

G(s) = G0 +

nτ∑
k=1

Gke
−sτk . (46d)

Several researchers have applied MOR techniques to ex-
amples of quasi-static PEEC models without retardation. See,
for example [201], [202], and [203]. Procedures for reducing
PEEC models with retardation were first proposed in [204]
and [205]. Both of these references construct reduced-order
models for the frequency domain transfer function. For PEEC
models with retardation the transformed system matrix Q(s)
contains many elements with factors of the form e−sτ for some
τ corresponding to a time delay (retardation) in the circuit. All
of those papers expand each delay term in an infinite Taylor
series. The authors in [204] used a single expansion point and
applies asymptotic waveform (AWE) model reduction [206]
to the resulting infinite order linear system. In that article,
an example is included for which good approximations were
obtained for low frequencies up to 1 GHz. Chiprout et al. [205]
used complex frequency hopping (CFH), considered several
expansion points, applied AWE to the infinite linear system
obtained at each such point, and then combined the pole and
residue information to obtain an approximation to the transfer
function of the PEEC system. It includes examples showing that
this method is accurate to approximate the transfer function of
a system up to 4.8 GHz. A similar approach has been applied to
a PEEC model in conjunction with an FFT grid representation
in [207]. Furthermore, in [207], an equivalent first-order system
is computed by means of a single-point Taylor expansion, and
a corresponding orthogonal projection matrix is computed by
means of a block Arnoldi algorithm [208], [209]. However,
the NDDE formulation is not preserved. In [210], a readily
parallelizable procedure is proposed for generating reduced-
order frequency-domain models from general full-wave PEEC
systems. Multiple expansion points and piecemeal construction
of pole-residue approximations are adopted to approximate the
transfer functions of the PEEC systems through an Arnoldi re-
cursion. The reduction of equivalent first-order systems become
computationally expensive and sometimes not feasible when
large delays are involved since exponential terms with large
delays need many terms in the Taylor expansion to be accurately
approximated. The multipoint expansion [211] addresses this
issue and is able to accurately reduce NDDE systems with large
delays since a small expansion Taylor order can be used for
each expansion point and the accuracy of the reduced model is
increased by adding new expansion points. In [212], an adaptive
algorithm is proposed to choose the expansion points, assuming

that the order of the Taylor expansion is fixed for each expansion
point.

When applying MOR techniques, in the simplest case, the
reduced-order model can be obtained by performing a single-
point expansion reduction. Denoting the orthogonal basis asK ∈
�nu×nr , the reduced order system is given by

sCr(s)Xr(s) = −Gr(s)Xr(s) +BrU(s) (47a)

Y(s) = BT
r Xr(s) (47b)

Cr(s) = Cr,0 +

nτ∑
k=1

Cr,ke
−sτk (47c)

Gr(s) = Gr,0 +

nτ∑
k=1

Gr,ke
−sτk (47d)

where the following congruence transformations are used:

Cr,i = KTCiK, i = 0, . . . , nτ (48a)

Gr,i = KTGiK, i = 0, . . . , nτ (48b)

Br = KTB (48c)

Lr = KTL (48d)

and Xr(s) is a vector containing the state variables in the
reduced domain. To obtain a compact and accurate reduced
order model over a wide frequency range it is important to
construct the orthogonal basisK. To this purpose, the Arnoldi al-
gorithm [208] can be adopted because of its numerical reliability
and robustness. Indeed, the Arnoldi algorithm is able to provide
the orthogonal basis for the transfer function moments without
computing these moments explicitly. Unfortunately, adapting
the Arnoldi algorithm for NDDE systems is not straightforward,
and, thus, the original NDDE system must be transformed into a
suitable form for standard Arnoldi-based reduction. To address
this issue, by expanding the exponential factors e−sτk in a Taylor
series form and using a companion form [213], an equivalent
first-order system is computed. Then, the Arnoldi algorithm
is applied to the first-order equivalent system, allowing the
computation of the corresponding orthogonal projection matrix
K for the original NDDE system, and a reduced NDDE system is
finally obtained [213]. This single point expansion-based MOR
algorithm for NDDE systems was proposed assuming s = 0 as
an expansion point. If any other expansion point s = s1, s1 �= 0
is selected, setting s = s1 + σ, where s1 is a frequency shift and
σ is the new Laplace variable, the NDDE system (46a)–(46b)
reads

σĈ(σ)X(σ) = − Ĝ(σ)X(σ) +BU(σ) (49a)

Y(σ) = BTX(σ) (49b)

Ĉ(σ) = Ĉ0 +

nτ∑
k=1

Ĉke
−στk (49c)

Ĝ(σ) = Ĝ0 +

nτ∑
k=1

Ĝke
−στk (49d)
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Fig. 18. Magnitude of the bivariate delayed ROMs of Y12(s,L) (L =
{6.4, 8, 9.6} mm. See [216] for more details).

where

Ĉ0 = C0 (50a)

Ĝ0 = G0 + s1C0 (50b)

Ĉk = Cke
−s1τk , k = 1, . . . , nτ (50c)

Ĝk = (Gk + s1Ck)e
−s1τk , k = 1, . . . , nτ (50d)

and the algorithm described in [213] is applied. While the
single-point MOR approach [213] is able to preserve the NDDE
formulation, it may be not able to reduce NDDE systems with
large delays since the reduction of equivalent first-order systems
becomes computationally expensive and sometimes unfeasible
because many terms in the Taylor expansion of the exponential
terms with large delays are required to preserve the accuracy.

A more valuable alternative is represented by the multipoint
expansion [211] that is able to accurately reduce NDDE systems
with large delays since a reduced order of the Taylor expansion
can be used for each expansion point while the accuracy of the
reduced model is achieved by adding new expansion points. If
the order of the Taylor expansion is fixed for each expansion
point, an adaptive algorithm can be used to identify the expan-
sion points. As described in [213], the NDDE formulation is
preserved in the reduced model. At each expansion point, the
MOR algorithm described in [213] is applied and the corre-
sponding projection matrix Ki, i = 1, . . . , npoints is computed,
where npoints denotes the number of expansion points. The final
projection matrix K is based on the orthogonalization of the
stack column collection of all single expansion point projection
matrices.

Parameterized MOR of both quasi-static and delayed PEEC
models have also been proposed in [214], [215], [216], and [217].
Fig. 18 shows the magnitude of the bivariate delayed ROMs of
Y12(s, L) of a power divider, withL = {6.4, 8, 9.6} mm) being
a geometric parameter [216].

Parameterized reduced order models for sensitivity analysis
of PEEC circuits have been presented in [218] and [219].

A different approach is presented in [220] to perform the
reduction of quasi-static PEEC models. By introducing a general
circuit transformation that can be directly applied to the circuit
configuration of the PEEC model, the proposed MOR method
progressively reduces the order of the original problem by at least
one order of magnitude without involving any matrix operations.
Furthermore, another attractive feature of this method is that its
computational overhead is dominated by the operation of outer
products in combining processes, which takes more than 95% of
overall computing time. This feature allows the MOR process
to be significantly accelerated by multicore parallel computation
using a massive GPU acceleration technology.

X. CONCLUSION

The purpose of this work is to summarize the progress made
in PEEC methods over the years. The key uniqueness of the
approach is the connection between electromagnetic and circuit
theory. This covers the important issue areas of combined sys-
tems with integrated circuits and EM problems. Over the course
of fifty years, the PEEC method has had many developments
and improvements regarding the types of materials that can
be treated, the meshers, and the solution methodologies, both
in the time and frequency domains. The number of scientific
articles dealing with it has steadily increased over time as has the
number of applications using it. In particular, its full-wave nature
combined with circuit interpretation and rigorous dc solution
has made it popular with engineers dealing with EMC/SI/PI
problems. A lot has been done, the best is yet to come.
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