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Abstract—The aim of this article is to efficiently and accurately
calculate the integrals of the full-wave (FW) partial element equiv-
alent circuit (PEEC) method. The accuracy of the analytical formu-
las calculated by the standard precision can be compromised when
using nonuniform mesh to properly model the high-frequency ef-
fects. The numerical errors can be avoided by using a high-precision
arithmetic, i.e., higher number of digits, however, at the expense
of significantly higher computation time. This article presents an
analytical approach for calculating the FW-PEEC interaction in-
tegrals of two elementary volumes/surfaces based on the Taylor
expansion, which allows a high computational speed preserving
the accuracy with a relative error of less than 0.1%. The proposed
solution is verified compared to the high-precision arithmetic and
the standard Gaussian integration for two examples of strip lines.
Moreover, it is shown that the accuracy of FW-PEEC integrals can
affect the convergence of an iterative PEEC matrix solver.

Index Terms—Adaptive integration, electric field, integral
equations, numerical integration, partial element equivalent circuit
(PEEC) method, Taylor series expansion.

I. INTRODUCTION

E LECTROMAGNETICS modeling has received increasing
interest in recent decades due to its ability to predict the

electromagnetic performance of an electronic system in an early
design phase much before the realization of a physical proto-
type. For this purpose, consequently, the numerical solution of
Maxwell’s equations has acquired increasing importance and has
become a powerful tool for designers. Many methods have de-
veloped over the years, such as the finite-difference time-domain
technique [1], the finite-element method [2], the method of
moments [3], and the partial element equivalent circuit (PEEC)
method [4], [5], [6], [7].

Nowadays, the most challenging objective is the development
of a method that is accurate from the very low frequencies,
including dc, to the highest frequencies that can easily reach
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the tens of gigahertz. Among the methods listed above, the
PEEC method is different as it can transform an electromagnetic
problem into a circuit model, in which the circuit parameters
model the dissipative phenomena and electromagnetic coupling.
The latter are known as partial inductances and potential coef-
ficients [7]. Since the PEEC method is based on the principle
of volume equivalence, the currents and charges are assumed
to radiate in the background medium, and therefore, free-space
Green’s function has to be considered. If the quasi-static assump-
tion can be done, for electrically small problems (e.g., involving
low frequencies and/or geometrically small structures), Green’s
function simplifies and the partial elements become frequency
independent. If an orthogonal mesh is used, analytical formulas
are available for both partial inductances Lp and coefficients
of potential P [7]. However, the existing analytical formulas
are affected by significant numerical errors for certain PEEC
structural mesh necessary to model the skin and proximity
effects with higher accuracy. In [8], a systematic strategy to
select a proper analytical formula depending on the dimensions
and positions of two elementary volumes is proposed for the ac-
curate computation of partial inductances under the quasi-static
hypothesis.

When the quasi-static hypothesis is not valid longer, full-wave
Green’s function has to be considered. In this case, the calcula-
tion of the partial elements modeling the magnetic and electric
field couplings, Lp and P , respectively, is normally carried
out by using numerical integration, which, however, is very
computationally expensive. This limitation can be overcome by
using Taylor expansion, as presented in [9]. Nevertheless, similar
numerical issues can also be found in the full-wave calculation
of the partial elements based on Taylor expansion. The aim
of this article is to define a multifunction strategy that allows
preserving the accuracy in the calculation of the coefficients of
Taylor expansion of the partial elements as the frequency, size,
and distance between the domains vary. An orthogonal mesh is
assumed in this article.

The rest of this article is organized as follows. Section II sum-
marizes the problems in the computation of integrals involved
in the mutual partial inductance between two elementary paral-
lelepipeds and the conditions to be used to set a correct strategy
preserving the accuracy of the quasi-static partial inductance.
The details of the computation of the Taylor series expansion
coefficients, for different domains, e.g., volumes, surfaces, and
lines, are given in Section III along with the strategy proposed
to switch from one to another analytical formula in the different
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scenarios. The range of applicability is described in Section IV
along with an example. Finally, Section V concludes this article.

II. MUTUAL PARTIAL INDUCTANCE COMPUTATION

In the quasi-static PEEC method, the magnetic field coupling
between two elementary volumes i and j carrying uniform
currents is described by the partial inductance, which requires
the computation of the following double-folded volume integral:

Lpi,j
=

μ0

4πSiSj

∫
Vi

∫
Vj

1

R
dVjdVi (1)

whereR = ||Ri −Rj || is the distance between two points inside
the two cells, and Si and Sj are the cross sections normal to
the current directions of two volumes i and j, respectively.
When the quasi-static hypothesis is not satisfied, the full-wave
computation is required. In this case, the coefficients (1) must
consider the retardation through the exponential term, as shown
in the following equation:

Lpi,j
=

μ0

4πSiSj

∫
Vi

∫
Vj

1

R
e−jβRdVjdVi︸ ︷︷ ︸
I(FW)
v−v

(2)

where β = 2πf
√
μ0ε0.

In [9], it is shown how it is possible to compute the coefficients
(2) by resorting to the Taylor series expansion of the exponential
term. In particular, the most efficient expansions reported in [9]
work as described in the following. The double-folded integral
I (FW)
v−v in (2) is rewritten into an equivalent form as follows:

I(FW)
v−v =

∫
Vi

∫
Vj

1

R
e−jβ(R−Rcc)e−jβRccdVjdVi (3)

where Rcc is the center-to-center distance between the two
volumes. Then, the term e−jβRcc is approximated with its Taylor
expansion, and it is moved out the integral, leading to

I(FW)
v−v =e−jβRcc

∫
Vi

∫
Vj

1

R

[
1− jβR̂− β2R̂2

2
+j

β3R̂3

6

]
dVjdVi

(4)
where R̂ = R−Rcc.

By performing some trivial algebraic manipulations, it fol-
lows that

I(FW)
v−v = e−jβRcc

{
I(QS)
v−v + jβ

[
I(QS)
v−v Rcc − I(o1)

v−v

]

+β2

[
−1

2
I(QS)
v−v R2

cc+I(o1)
v−vRcc− 1

2
I(o2)
v−v

]
+
1

2
jβ3·

·
[
−1

3
I(QS)
v−v R3

cc+I(o1)
v−vR

2
cc−L(o2)

pij
Rcc+

1

3
I(o3)
v−v

]}
(5)

where

I(QS)
v−v =

∫
Vi

∫
Vj

1

R
dVjdVi (6a)

I(o1)
v−v =

∫
Vi

∫
Vj

1dVjdVi = VjVi (6b)

I(o2)
v−v =

∫
Vi

∫
Vj

RdVjdVi (6c)

I(o3)
v−v =

∫
Vi

∫
Vj

R2dVjdVi. (6d)

Integrals in (6) are frequency independent, and hence, they are
computed only once and then used to compute a full-wave co-
efficient at any frequency. The analytical formulas for integrals
(6), in the case of orthogonal volumes, are provided in [9] and
[10]. The case of nonorthogonal volumes can be handled in two
ways, in addition to the brute-force numerical integration.

1) The coefficients of Taylor expansion are computed once
at the beginning and reused at different frequencies.

2) As a second option, a fine orthogonal mesh is used to ap-
proximate the nonorthogonal objects. Thus, the number of
elementary unknowns can be very high. Such an approach
is usually used in conjunction with an iterative method, in
which the matrix–vector products are accelerated, e.g., via
fast Fourier transform (FFT) [11], [12], [13], [14].

A. Problems in the Analytical Evaluation of Integrals (6)

Let us consider the following example, also presented in [8]
for the quasi-static case. In particular, it considers two volumetric
cells arranged as follows.

1) The dimensions of the first cell are sx1 = 10 μm, sy1 =
4 mm, sz1 = 0.8 μm.

2) The dimensions of the second cell are sx2 = 1 μm, sy2 =
10 μm, and sz2 = sx2/k, where k ranges from 10−6 to 1,
i.e., sz2 varies in the range from 1 μm to 1 m.

3) The distance between the cells in x, y, and z directions
is Δx = sx1 · h, where h ranges from 10−2 to 105, Δy =
0, and Δz = 0, i.e., the minimum distance between cells
Rmin varies between 0.1 μm and 1 m.

For all these geometrical configurations, the computation of
integrals in (6) is performed in the standard double-precision
arithmetic by using the analytical solution provided in [9] and
[10], while the reference values are computed using the Sym-
bolic MATLAB Toolbox [15] (with at least 32 digits). The result
of such test is reported in Fig. 1 .

In particular, for orthogonal volumes, when integrals (6)
are computed in double precision, some numerical errors oc-
cur [16], [17]. More recently, Kovacevic-Badstuebner et al. [8]
have proposed a technique that solves definitively the numerical
problems related to the analytical computation of I(QS)

v−v .
The behavior of this approach has been summarized in Ap-

pendix A for completeness.

III. IMPROVED INTEGRAL (6) EVALUATION

The novelty of this article is to extend the technique presented
in [8] for the computation of integrals I(o2)

v−v and I(o3)
v−v (6). To

this aim, the closed-form solutions for these integrals when
suppressing one or more dimensions at the time are needed.
Similarly to the definitions made in (13), for I(o2)

v−v and I(o3)
v−v ,

we will have: surface–volume I(o2)
s−v and I(o3)

s−v , surface–surface

I(o2)
s−s and I(o3)

s−s , line–volume I(o2)
�−v and I(o3)

�−v , point–volume
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Fig. 1. Closed-form solution evaluation error for the integrals defined in (6) when the double-precision arithmetic is used for their computation. (a) I(QS)
v−v .

(b) I(o2)
v−v . (c) I(o3)

v−v .

I(o2)
p−v and I(o3)

p−v , line–surface I(o2)
�−s and I(o3)

�−s , point–surface

I(o2)
p−s and I(o3)

p−s , line–line I(o2)
�−� and I(o3)

�−� , point–line I(o2)
p−� and

I(o3)
p−� , and point–point I(o2)

p−p and I(o3)
p−p , respectively.

The closed-form solutions for all these integrals, that represent
the major novelty introduced in this article, are provided in
Appendix B for the sake of readability.

A. Improved I(o2)
v−V and I(o3)

v−V Evaluation

The strategy introduced in [8] (summarized in Appendix A for
I(QS)
v−v ) can be applied to the integrals I(o2)

v−v and I(o3)
v−v , defined in

(6), by exploiting the formulas defined in Figs. 12–15. The main
difference with I(QS)

v−v described in [8] relies on the choice of
the thresholds ε1, ε2, ε3, and ε4 required by the algorithm for the
suppression reported in Fig. 11, while condition1 (14a) for I(o2)

v−v

and I(o3)
v−v is calculated following the same derivation procedure

as applied to I(QS)
v−v . In particular, we have the following.

1) The correct evaluation of I(QS)
v−v is obtained with the

thresholds ε1 = 10−3, ε2 = 5× 10−3, ε3 = 10−3, and
ε4 = 3× 10−1.

2) The same thresholds used for I(QS)
v−v are used also for the

integral I(o2)
v−v . This is due to the fact that each analytical

solution of the integrals for I(QS)
v−v , that can be found in [8]

and [17], defined in (13), has a similar counterpart in the
solution of the integrals for I(o2)

v−v , given in [9] and Figs.
12–15, in the sense that there are similar summations of
terms having the same exponential values. This is also
confirmed by the similar error map that can be observed
in Fig. 1(a) and (b). Moreover, condition1 (14a) in this
case is the following:

condition1 = V1V2
dn12,max

Rmin
< ε1. (7)

3) Finally, for integral I(o3)
v−v , from Fig. 1(c), it can be ob-

served that more relaxed thresholds of suppression can be
used since its computation fails for higher values of sizes
and distances. Experimentally, by running a very large set

of test cases, the best thresholds found for the suppression
strategy are the following: ε1 = 10−4, ε2 = 3× 10−4,
ε3 = 10−3, and ε4 = 3× 10−1. Furthermore, condition1
(14a) in this case reads

condition1 = 2V1V2dn12,max < ε1. (8)

Hence, by applying the proposed technique to the same exam-
ple of Section II-A, with the reported choice of thresholds, we
obtain the results summarized in Fig. 2, where, also in this case,
the reference values are computed using the Symbolic MATLAB
Toolbox [15] (with at least 32 digits).

As seen, applying the proposed strategy for the computation of
integrals (6) leads to very low errors. This allows us to conclude
that the evaluation of (5) is affected now only by the Taylor
expansion truncation of the exponential term and not by the
digits of precision used in the evaluation of integrals (6).

IV. NUMERICAL TESTS

A. Evaluation of the Range of Applicability

The range of applicability of the proposed formulas when
using the double- or quadruple-precision arithmetic is analyzed
by calculating the integral (5) for different volumes sizes and
distances. In particular, the distance between two cubic volumes
is varied in the range from 0 to 1 m leading to 30 geometrical
configurations. Such distance is calculated between the two
nearest edges of the two volumes. In addition, the tests are
performed for the edge size of the two volumes ranging from
10 μm to 1 mm. In the presented analysis, the integrals are
computed based on five different approaches.

1) Numerical: The integral I (FW)
v−v in (2) is calculated through

the adaptive numerical integration of MATLAB with an
error threshold set to 10−9. In particular, the integration
is performed with the Gauss–Kronrod quadrature for-
mula [18], where the adaptive strategy is implemented
with seven evaluation Gauss points and 15 evaluation
Kronrod points.



ROMANO et al.: OPTIMIZED ANALYTICAL COMPUTATION OF PARTIAL ELEMENTS USING A RETARDED TAYLOR SERIES EXPANSION 1223

Fig. 2. Closed-form solution evaluation error for the integrals defined in (6) when the double-precision arithmetic is used for their computation together with the

proposed strategy. (a) I(QS)
v−v . (b) I(o2)

v−v . (c) I(o3)
v−v .

2) Double Taylor: The integralI (FW)
v−v in computed as reported

in (5) by computing the integrals (6) by using the double-
precision arithmetic.

3) Quad Taylor: The integral I (FW)
v−v in computed as re-

ported in (5) by computing the integrals (6) by using the
quadruple-precision arithmetic (at least 32 digits).

4) Suppression Taylor: The integral I (FW)
v−v in computed as

reported in (5) by computing the integrals (6) by using
the double-precision arithmetic together with the proposed
suppression strategy, as reported in Section III.

5) Proposed Taylor: It works like Suppression Taylor with
the difference that the integral I (FW)

v−v is approximated as

I(FW)
v−v � I(QS)

v−v e−jβRcc (9)

when the following condition is satisfied:

Rcc > 50smax and f >
1

10
· c0
30smax

. (10)

In (10), c0 denotes the speed of light in free space, f
denotes the frequency, and smax denotes the largest value
between the lengths, the widths, and the thickness of the
two bars, for whichI (FW)

v−v is computed. Clearly, the integral

I(QS)
v−v in (9) is computed by adopting the suppression strat-

egy given in [8]. Finally, the validity of the approximation
(9), along with the condition (10), has been proven by
running a large number of numerical tests.

The CPU times required for these methods are summarized
in Table I along with the details of the frequency range and
frequency samples for each case. Their computation has been
carried out in MATLAB on a PC equipped with two physical
processors operating at 3.46 GHz. From Table I, it is evident that
the use of Taylor expansion with the double-precision arithmetic
is extremely advantageous in terms of performances, while an
accurate numerical integration is prohibitive.The accuracy of the
Double Taylor, Quad Taylor, Suppression Taylor, and Proposed
Taylor approaches is defined by a relative error computed as

ε =
|hTAYLOR| − |hNUMERICAL|

|hNUMERICAL| . (11)

TABLE I
CPU TIME REQUIRED FOR CALCULATING THE INTEGRALS BASED ON THE

TAYLOR AND NUMERICAL APPROACHES FOR THE DESCRIBED TEST CASES OF

30 GEOMETRICAL CONFIGURATIONS

where the numerical reference solutionhNUMERICAL is computed
with the MATLAB adaptive integration with a relative error
threshold set to10−9. The relative errors for Double Taylor, Quad
Taylor, Suppression Taylor, and Proposed Taylor methods are
shown in Figs. 3– 5 for the described test cases. In this analysis,
the maximum frequency fmax has been chosen according with
the λ/30 criterion; in particular, we have

smax <
c0

30fmax
(12)

where the same notation of (10) has been used.
As can be clearly seen from Figs. 3(d), 4(d), and 5(d), the

proposed strategy always guarantees an error below 0.1%. Fur-
thermore, it is evident that the Quad Taylor approach can be used
as a reference method if the λ/30 criterion (12) is satisfied.

The following examples demonstrate how the calculation of
Lp and P matrices influences the calculated vectors of currents
and potentials. These coefficients are computed in C++, and
more specifically, they are computed in parallel on seven threads
in order to accelerate all the simulations.

B. Example 1: Coplanar Stripline Example

As the first example, a coplanar stripline structure described
in Fig. 6 is modeled. The conductive ground, the lines, and the
plate above the structure are made of copper. In addition, the
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Fig. 3. Error evaluation for the cubic volume case with an edge of 10μm. (a) Quad Taylor. (b) Double Taylor. (c) Suppression Taylor. (d) Proposed Taylor.

Fig. 4. Error evaluation for the cubic volumes case with an edge of 100μm. (a) Quad Taylor. (b) Double Taylor. (c) Suppression Taylor. (d) Proposed Taylor.

Fig. 5. Error evaluation for the cubic volumes case with an edge of 1 mm. (a) Quad Taylor. (b) Double Taylor. (c) Suppression Taylor. (d) Proposed Taylor.

Fig. 6. Second modeling example: a coplanar stripline structure where the
thickness of the dielectric is 2.7 mm and the thickness of all the conductors is
50μm. Finally, s = 2 mm and w = 1 mm.

lines are embedded into a dielectric with relative permittivity
εr = 4. All the geometrical details are given in Fig. 6.

The PEEC analysis has been performed from 100 MHz to
5 GHz by using a nonuniform mesh (with minimum mesh size
of 0.4 μm and maximum mesh size of 1.5 mm in each direction)
resulting in 25 680 PEEC inductive branches and 8688 capacitive
surfaces.

The CPU time and relative error for the double-folded in-
tegrals used to fill Lp and P matrices (2)–(6) are summa-
rized in Table II showing that the use of quadruple-precision
computation leads to a high computation time, while the pro-
posed solution shows a drastic reduction in the computation
times. In addition, the Proposed Taylor approach is also faster
than the Double Taylor, since, when several integration dimen-
sions are suppressed, the derived closed formula evaluation re-
quires less operations than the standard volume–volume integral
solution.

The choice of the integrals used to fill Lp and P matrices
by the Proposed Taylor method, between the developed closed
formulas given in Appendix B, is summarized in Table III. In
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TABLE II
CPU TIME AND RELATIVE ERROR FOR THE DOUBLE-FOLDED INTEGRALS

USED TO FILL Lp AND P MATRICES (2)–(6) FOR THE COPLANAR

STRIPLINE EXAMPLE

TABLE III
SELECTED CLOSED FORMULAS, IN PERCENTAGE, TO FILL Lp AND P

MATRICES (6), WITH THE PROPOSED TAYLOR METHOD, FOR THE COPLANAR

STRIPLINES EXAMPLE

this example, the approximation (9) is practically unused since
less than 1% of coefficients are corrected with it, and hence, the
accuracy is reached by only applying the suppression strategy
introduced in Section III.

In the next step, the accuracy in the computation of currents
and voltages between a node of the structures and all the other
nodes is evaluated for the Double Taylor and Proposed Taylor
approaches. The errors are computed by using (11) and presented
in Fig. 7. In this case, Fig. 7 demonstrates how the errors in
Lp matrix influence the calculation of the current distribution,
while the error on voltage distribution is less influent for the
same reasoning given in [8].

In any case, the errors of the current distributions have a
significant impact on the postprocessing step to calculate elec-
tromagnetic fields.

C. Example 2: Microstrip Line Example

As the second example, a microstrip line structure described
in Fig. 8 is modeled. The conductors are made of copper (con-
ductivity σ = 5.8× 107), while the dielectric substrate is made
of the standard FR4 material (εr = 4.2 and tanδ = 0.02).

The PEEC analysis has been performed from 500 MHz to
5 GHz by using an orthogonal mesh approach, in which all
the structures are discretized into voxels (that are practically
rectangular bars) having all the same sizes. The sizes of the
voxels along the x, y, and z axes are sx = 84μm, sy = 384μm,

Fig. 7. ε-errors of the current and voltage vectors for the coplanar stripline
example.

Fig. 8. Geometry of the microstrip line example. Geometrical parameters:
s1 = 0.35, s2 = 0.32,w = 0.33, � = 50,h = 0.2, τ1 = 0.04, and τ2 = 0.02
(all the dimensions are in millimeters).

and sz = 10μm, respectively. In particular, the mesh is achieved
through a rectangular grid having Nx = 20, Ny = 140, and
Nz = 26, whereNx,Ny , andNz are the number of voxels along
the x, y, and z axes, respectively, resulting in 186 288 inductive
branches, 18 864 capacitive surfaces, and 61 600 nodes. Since
the mesh is made by a regular 3-D grid in which all the voxels
have the same size, we can use an iterative solver in which the
matrix–vector products can be accelerated through the FFT [11],
[12], [13], [14]. In particular, we use the generalized minimal
residual method (GMRES) iterative solver, as described in detail
in [11], with the threshold of convergence set to 10−4 and
with the maximum number of iterations set to 3000. Since the
matrix–vector products are performed via FFT, it follows that
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TABLE IV
CPU TIME AND RELATIVE ERROR FOR THE DOUBLE-FOLDED INTEGRALS USED

TO FILL THE ROWS OF Lp AND P MATRICES (2)–(6) FOR THE MICROSTRIP

LINE EXAMPLE

TABLE V
SELECTED CLOSED FORMULAS, IN PERCENTAGE, TO FILL Lp AND P

MATRICES (6), WITH THE PROPOSED TAYLOR METHOD, FOR THE MICROSTRIP

LINE EXAMPLE

just one matrix row needs to be computed and stored to build
the circulant tensors required for the matrix–vector products
involving the matrices Lp and P [12].

The CPU time and relative error for the double-folded in-
tegrals used to fill the rows of Lp and P matrices (2)–(6) are
summarized in Table IV showing that the use of the quadruple-
precision computation leads to a high computation time, while
the double-precision computations are extremely fast (since, in
this example, just few matrix rows are computed to build the
circulant tensors).

The choice of the integrals used to fill Lp and P matrices by
the Proposed Taylor method is summarized in Table V, where the
notation is the same as used for Table III. Also, in this example,
the approximation (9) is practically unused since less than 1%
of coefficients are fixed by (9).

In addition, the scattering parameters are shown in Fig. 9.
As can be clearly seen, the proposed solution shows a very
good agreement with the Quad Taylor method, while the Double
Taylor method leads to less accurate results at high frequency.

Finally, the number of GMRES iterations is shown in Fig. 10,
in which it can be noted that the Quad Taylor method and the
proposed method perform the same number of iterations, while
the Double Taylor method exhibits a higher number of iterations
reaching also the limit of 3000 iterations at high frequency
without satisfying the 10−4 threshold used for the convergence
criterion.

Fig. 9. Scattering parameters for the microstrip line example.

Fig. 10. Number of GMRES iterations for the microstrip line example.

Clearly, from this results, it is evident that an inaccurate subset
of Lp and P coefficients has a negative impact on the conver-
gence of an iterative method, which worsens with increasing
frequency. This is a strong limitation because the use of an
iterative method is strictly needed to solve problems with a large
number of unknowns that appear for practical examples of 3-D
circuit layouts.

V. CONCLUSION

In this article, the accuracy of PEEC electromagnetic models
at high frequency has been significantly improved by exploiting
and extending strategy for selecting the right analytical formula
depending on the dimensions and positions of the two PEEC
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elementary volumes/surfaces. This allows the computation of
the interaction integrals with a relative error of less than 1%,
avoiding the numerical integration and the quadruple-precision
arithmetic. A provided set of analytical formulas, required by
the technique, can also be useful to any other numerical method
requiring double-folded volume or surface integrations of free-
space Green’s function over rectangular domains. Finally, the
numerical results show that significant speedup is achieved
while preserving the accuracy of the solution. In addition, the
last example also highlights that inaccurate mutual coefficient
computation can compromise the convergence of an iterative
solver required to solve large computational problems.

APPENDIX A

Improved I(QS)
v−V Evaluation

In [8], starting from the six-variable-folded integral I(QS)
v−v ,

a set of I
(qs)
v−v formulas was developed by suppressing one

or more dimensions at the time, which leads to nine spe-
cial cases (13): surface–volume I(QS)

s−v , surface–surface I(QS)
s−s ,

line–volume I(QS)
�−v , point–volume I(QS)

p−v , line–surface I(QS)
�−s ,

point–surface I(QS)
p−s , line–line I(QS)

�−� , point–line I(QS)
p−� , and

point–pointI(QS)
p−p , where v, s, �, and p stand for volume, surface,

line, and point, respectively

I(QS)
v−v ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�j · I(QS)
s−v

�j�i · I(QS)
s−s

�jk�jm · I(QS)
�−v

�jk�jm�jn · I(QS)
p−v

�jk�jm�i · I(QS)
�−s

�jk�jm�jn�i · I(QS)
p−s

�jk�jm�ik�im · I(QS)
�−�

�jk�jm�jn�ik�im · I(QS)
p−�

�jk�jm�jn�ik�im�in · I(QS)
p−p

. (13)

The algorithm needed to switch between the various formulas
in (13) is given in [8] and reported in the following for complete-
ness. By defining the following ε-condition:

condition1 = V1V2
dn12,max

R3
min

< ε1 (14a)

condition2(sni) = sni/Rmin < ε2 (14b)

condition3(sni) = sni/max(sxi, syi, szi) < ε3 (14c)

conditionA = condition1 and (condition2 or condition3)
(14d)

the algorithm reported in Fig. 11 can be applied to understand
what dimension must be suppressed for a volume.

Fig. 11. Reducing the volume (three-fold) integral for the volume cell i to
either zero-fold, one-fold or two-fold integral depending on the cell dimensions
and the distance to the other cell.

APPENDIX B

Closed Formulas for Integrals I(o2)
v−V and I(o3)

v−V

The analytical solutions is the integrals I(o2)
v−v and I(o3)

v−v (6)
are summarized in Figs. 12–15. It is important to underline that
only the closed-form solutions are given, while all the algebraic
steps performed to achieve them are skipped due to the lack of
space.

APPENDIX C

Tips for Integral Evaluation

The evaluation of the integrals given in Figs. 12–15
must be performed as follows. The singularity of type

x log

(√
x2 + y2 + z2

)
is solved using

lim
x→0

[
x log

(√
x2 + y2 + z2

)]
= 0. (15)

Function x2 tan−1

(
yz

x
√

x2+y2+z2

)
is evaluated as

x|x|arctan2

(
yz

|x|
√

x2+y2+z2

)
, where the function arctan2

is defined by

arctan2

(
k

m

)
=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

tan−1
(

k
m

)
, if m > 0

tan−1
(

k
m

)
+ π, if k ≥ 0 and m < 0

tan−1
(

k
m

)− π, if k < 0 and m < 0
π
2 , if k > 0 and m = 0

−π
2 , if k < 0 and m = 0

(16)

with tan−1(q) representing the inverse tangent of q computed
in the range [−π/2, π/2]
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Fig. 12. Analytical formulas for point-point I(o2)
p−p and I(o3)

p−p , line-point I(o2)
p−�

and I(o3)
p−�

and line-line I(o2)
�−�

and I(o3)
�−�

integrals, where x1 < x2, x3 < x4 and
z3 < z4.(a) Analytical formulas for the point-point integrals. (b) Analytical formulas for the point-line integrals. (c) Analytical formulas for the parallel line-line
integrals. (d) Analytical formulas for the orthogonal line-line integrals.
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Fig. 13. Analytical formulas for point–surface I(o2)
p−s and I(o3)

p−s and line–surface I(o2)
�−s

and I(o3)
�−s

integrals, where x1 < x2, z1 < z2, x3 < x4, and y3 < y4.
(a) Analytical formulas for the point–surface integrals. (b) Analytical formulas for the parallel line–surface integrals. (c) Analytical formulas for the orthogonal
line–surface integrals.
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Fig. 14. Analytical formulas for point–volume I(o2)
p−v and I(o3)

p−v and line–volume I(o2)
�−v

and I(o3)
�−v

integrals, where y1 < y2, x3 < x4, y3 < y4, and z3 < z4.
(a) Analytical formulas for the point–volume integrals. (b) Analytical formulas for the line–volume integrals.

Fig. 15. Analytical formulas for the surface–volume integrals I(o2)
s−v and I(o3)

s−v , where x1 < x2, y1 < y2, x3 < x4, y3 < y4, and z3 < z4.
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