
IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, VOL. 65, NO. 4, AUGUST 2023 1211

Efficient Noninvasive Fault Injection Method
Utilizing Intentional Electromagnetic Interference

Hikaru Nishiyama , Daisuke Fujimoto , Senior Member, IEEE, Hideaki Sone , Life Member, IEEE,
and Yuichi Hayashi , Senior Member, IEEE

Abstract—In the fault injection method, an electromagnetic
(EM) wave is injected to temporarily cause a fault at a specific time
of the encryption process, the faulty outputs are obtained from the
cryptographic device, and the secret key is extracted by analyzing
the faulty outputs. In the conventional method, the intentional
electromagnetic interference (IEMI) wave is injected at a random
time because it is difficult to obtain information on the start time of
the encryption process. Thus, a cryptographic module must execute
a large number of encryption trials before the occurrence of a fault
that enables the secret key to be extracted. In this article, we propose
a fault injection method that can generate the faults at a specific
time with high probability, which is like the method of injecting
an IEMI wave synchronized with the start time of the encryption
process. The proposed method inserts glitches into the encryption
process at fixed times by injecting a continuous sinusoidal wave of a
specific frequency while controlling the amplitude and phase. This
generates faults required for the secret key analysis method with a
high probability even when the start time of the encryption process
cannot be obtained. We experimentally demonstrate the impact of
the aforementioned IEMI using the advanced encryption standard,
which is an ISO/IEC 18033 block cipher, implemented as a module
on a standard evaluation board. The conventional method requires
more than 30 000 encryption processes to obtain the secret key.
In contrast, the results indicate that we can obtain the secret key
with approximately 22 encryption processes which is almost three
orders of magnitude less than that with the conventional method.
This confirms that secret keys can be extracted in a brief period
of time. Moreover, devices previously excluded from IEMI-based
fault injection because they can only be accessed for a brief period
because their physical access was surveilled, may now be the target
of the threat.

Index Terms—Cryptographic devices, electromagnetic
information security, fault injection method, intentional
electromagnetic interference (IEMI).

I. INTRODUCTION

INTENTIONAL electromagnetic interference (IEMI) poses a
threat to cryptographic devices. This threat has been studied

Manuscript received 25 October 2022; revised 10 February 2023 and 23 March
2023; accepted 24 March 2023. Date of publication 18 April 2023; date of current
version 15 August 2023. This work was supported in part by JSPS KAKENHI
under Grant JP19H01104, Grant JP21K19772, and Grant JP21K03995, and
in part by JST FOREST Program under Grant JPMJFR206L. (Corresponding
author: Yuichi Hayashi.)

Hikaru Nishiyama, Daisuke Fujimoto, and Yuichi Hayashi are with the
Division of Information Science, Nara Institute of Science and Technol-
ogy, Ikoma 630-0192, Japan (e-mail: nishiyama.hikaru.na1@is.naist.jp; fuji-
moto@is.naist.jp; yu-ichi@is.naist.jp).

Hideaki Sone is with Tohoku University, Sendai 980-8577, Japan (e-mail:
sone@tohoku.ac.jp).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TEMC.2023.3264586.

Digital Object Identifier 10.1109/TEMC.2023.3264586

as a fault injection attack wherein hardware-level vulnerabilities
in the cryptographic device can be exploited to steal information
about the secret key [1], [2], [3], [4], [5], [6], [7], [8]. The attack
requires an injection method that induces a temporary computa-
tional fault in the operation of the cryptographic module, and an
analysis method that can extract the secret key from the faulty
output obtained. Based on these requirements, existing research
include theoretical methods that hypothesize the occurrence of
a fault in a specific intermediate process of the cryptographic
algorithm, they then use the faulty output to estimate the secret
key [9], [10], [11], [12], [13], [14], [15].

Research focused on injection methods has investigated spe-
cific approaches for generating faults required for secret key
estimation in real cryptographic modules. For example, IEMI-
based fault injection methods propagate an IEMI wave to the
clock supply circuit [2], [3] or the power supply circuit [4],
[5] to cause momentary fluctuations (glitches) that generate
setup-time violation faults. These methods require physical
access to the device to obtain information on the start time of
the encryption process so that the fault injection time can be
precisely synchronized with the former. A fault can occur only at
a specific time. However, these fault injection methods may not
work under conditions where physical access is difficult, such
as when the cryptographic module has a protective mechanism,
such as tamper detection or enclosure physical protection.

In contrast, noninvasive IEMI-based fault injection methods
from outside the cryptographic device has been investigated by
generating clock glitches with a continuous sinusoidal wave
injected via the power cable of the device [6], [7], [8]. In [6], the
attacker does not have direct access to the device and cannot
obtain the start time of the encryption process. Therefore, a
continuous sinusoidal wave is injected without synchronization
with the start time of the encryption process. In this case, clock
glitches occur at random times; therefore, the secret key may be
obtained after an enormous number of encryption trials.

This article proposes a fault injection method that can obtain
the secret key after a small number of encryption trials, which is
similar to when an attacker with access to the device injects an
IEMI wave synchronized with the start time of the encryption
process. The proposed method focuses on the relationship be-
tween the clock frequency of the cryptographic module and the
frequency of the injected continuous sinusoidal wave. The times
at which clock glitches occur during the encryption process
can be kept constant by setting the frequency of the injected
continuous sinusoidal wave to an integer multiple of the clock

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-8534-3595
https://orcid.org/0000-0001-9389-7977
https://orcid.org/0000-0002-9395-9987
https://orcid.org/0000-0002-1160-8156
mailto:nishiyama.hikaru.na1@is.naist.jp
mailto:fujimoto@is.naist.jp
mailto:fujimoto@is.naist.jp
mailto:yu-ichi@is.naist.jp
mailto:sone@tohoku.ac.jp
https://doi.org/10.1109/TEMC.2023.3264586

1212 IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, VOL. 65, NO. 4, AUGUST 2023

frequency. Under these conditions, a fault can be generated
during a particular encryption operation by varying the phase
and amplitude of the continuous sinusoidal wave to control the
occurrence of clock glitches. Consequently, the secret key can
be obtained after a small number of encryption trials.

The contributions of this article to the study of the above
threats are listed as follows.

1) This article proposes and verifies the feasibility of a method
to estimate the clock frequency from the device’s conducted
emissions and determine the frequency of the sinusoidal wave
injected by the attacker corresponding to the estimated clock
frequency.

2) The proposed method enables fault injection only at a
specific time synchronized with the start time of the encryption
process.

3) Focusing on the occurrences of faulty ciphertext after
fault injection into the device, we propose a method to obtain
ciphertext that can be applicable to secret key analysis. This
allows the secret key to be obtained faster than in conventional
attacks, suggesting the possibility of a noninvasive IEMI-based
fault injection method against cryptographic devices that can be
accessed only for a brief period because their physical access is
limited or surveilled.

4) Fault injection, which is noninvasive to the device and
performed at a specific time synchronized with the start time
of the encryption process, is highly dependent on the clock rise
time. Therefore, we proposed a concept for a countermeasure
method that focuses on the clock rise time and considers both
security and EMC.

The rest of this article is organized as follows. In Section II,
we describe the mechanism of fault generation by continuous
sinusoidal wave injection. Subsequently, we propose a noninva-
sive IEMI-based fault injection method that enables the attacker
to generate a fault at a specific time with a high probability of
success, even when the start time of the encryption process is not
synchronized with the start time of fault injection. In Section III,
we provide the experimental validation that demonstrates the
effectiveness of the proposed method. Moreover, we describe
a concept of effective countermeasures against the proposed
method. Finally, Section IV concludes the article.

II. PROPOSED METHOD

Fig. 1(a) shows the conceptual diagram of noninvasive IEMI-
based fault injection method from outside the device. This
method considers the transfer efficiencies of EM waves from
the injection point to each module mounted on the device, and
injects a continuous sinusoidal wave with a frequency that max-
imizes the transfer efficiency to the cryptographic module. This
can generate a fault only in the cryptographic module without
affecting other modules. However, if the continuous sinusoidal
wave is injected without synchronization with the start time of
the encryption process, clock glitches occur at random times.
Consequently, faults only at a specific time necessary for key
extraction are rarely generated.

In this article, the frequency of the continuous sinusoidal wave
to be injected is selected by considering not only the transfer

Fig. 1. Noninvasive IEMI-based fault injection method from outside the
device. (a) Conventional method presented in [6]. (b) Method presented in
this article. By applying the proposed method, the attacker can generate faulty
ciphertexts necessary for the secret key analysis with high probability.

efficiency but also the clock frequency, which determines the
start time of the encryption process, as shown in Fig. 1(b). The
times at which clock glitches occur can be controlled and faults
can be generated at regular intervals by varying the phase of the
continuous sinusoidal wave under these conditions, this enables
us to generate the faults necessary to obtain the secret key with
a high probability in a noninvasive manner.

A. Fault Generation by Continuous Sinusoidal Wave Injection

Like in [6], the evaluation platform and target for injecting
faults in this work entails a circuit with a loop architecture,
which is a common implementation scheme for symmetric key
cryptography. In the loop architecture, a unit process for block
ciphers called round is implemented in a combinational circuit
that operates repeatedly in synchronization with the rising clock
edge.

Fig. 2(a) shows a conceptual diagram of the relationship
between the clock signal and the time to complete the process
called the data path delay time. RoundRi begins when the rising
clock edge exceeds the threshold voltage VTH . At this time, the
delay time for each data path depends on the input value to the
combinational circuit, i.e., intermediate value to the round.

To successfully execute a round, the longest data path delay
(the critical path delay, tcp) must be less than or equal to the
clock cycle (tclk). If the condition is not satisfied, a fault will
be generated due to a setup time violation [16]. The device is
designed such that tclk is given a sufficient margin with respect
to tcp to account for the increase in the delay time attributed to
temperature and other factors.

NISHIYAMA et al.: EFFICIENT NONINVASIVE FAULT INJECTION METHOD UTILIZING INTENTIONAL EM INTERFERENCE 1213

Fig. 2. (a) Relationship between the rise time of clock signal and processing time of a single-round. (b) One-byte fault occurrence generated by executing irregular
round operation.

Fig. 3. Relationships between the start time of the encryption process and
overclock occurrence time. As shown in Cases 1 and 2, fault occurrence rounds
become independent of the start time of the encryption process when the injected
frequency is set to an integer multiple of the clock frequency.

Fig. 2(b) shows that a clock glitch causes an irregular rising
edge in addition to the original rising clock edge when the
clock glitch is superimposed near VTH . This causes the irregular
execution of the next roundRi+1 in addition to the current round
Ri. At this time, if tcp in Ri is longer than the clock cycle
shortened by the clock glitch tsc, the process of Ri+1 can be
executed before the process of Ri completes, which generates a
setup-time violation fault.

B. Proposed Noninvasive Fault Injection Method

In this section, we describe the proposed method in detail.
Most of the existing research on the analysis methods assume
that a fault is generated only in a specific single-round of the
encryption process. In this article, we focus on the single-round
fault as the fault required for secret key estimation.

We injected a continuous sinusoidal wave with a frequency
that is an integer multiple of the clock frequency. This can keep
the occurrence time of the clock glitches at each rising edge
constant. Therefore, as illustrated in Fig. 3, the length of tsc

becomes constant. As shown in Cases 1 and 2 in Fig. 3, the
round in which the fault occurs is the same regardless of which
clock is synchronized with the encryption process.

Fig. 4. Sinusoidal waves superimposed onto the clock signals with three
different phases. (a) Length of tsc increases with the controlling the phase.
(b) Length of tsc decreases with the controlling the phase.

In this method, the round at which the fault occurs will vary
depending on which rising clock edge is synchronized with the
start time of the encryption process, the original one or the false
one induced by the glitch. For example, if the start time of the
encryption process is synchronized with the first rising edge,
overclocking occurs in an odd-numbered round, as indicated in
Cases 1 and 2. The overclocking occurs in an even-numbered
round if the start time of the encryption process is synchronized
with the second rising edge, as shown in Case 3. Furthermore, the
length of tsc is significantly shorter than the time interval from
the second rising edge to the first rising edge of the next clock
(tclk − tsc) because the device is designed so that tclk is given
a sufficient margin with respect to tcp. No fault is expected to
occur in the round processing executed in synchronization with
the second rising edge.

In addition, the attacker needs to estimate the clock frequency
from outside the device for executing the method described
above. The clock frequency can be estimated from outside the
device by observing the EM radiation from the device and
assuming the clock signal is the noise source because the clock
is the primary source of noise emitted from the device [17].

Next, we describe the proposed method of controlling the
length of tsc, which involves controlling the phase of the contin-
uous sinusoidal wave. Fig. 4 displays an image of the rising clock
edge when three continuous sinusoidal waves with different

1214 IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, VOL. 65, NO. 4, AUGUST 2023

Fig. 5. Variation in the number of rounds in which a fault occurs by control-
ling the phase of the continuous sinusoidal wave. Single-round faults can be
generated by setting tsc short for only the longest data path delay (tmax) because
the length of tcp varies for each round operation.

phases are injected. In Fig. 4(a), the case of θA, the clock glitch
exceeds the threshold and overclocking occurs. In this state, the
length of tsc is minimized (tsc = t). The length of tsc increases
until the phase reaches θB when the phase is controlled from this
state and when the length of tsc is maximized (tsc = t′). Then,
the length of tsc decreases until the phase reaches θC shown in
Fig. 4(b), when the phase is controlled from state θB and when
the length of tsc is again minimized (tsc = t). No fault occurs
in the subsequent phases.

Fig. 5 shows an image of the variation in the number of rounds
in which a fault occurs when the length of tsc is increased by
phase control. The length of tcp varies from round to round
even if the length of tsc is constant for each rising edge, and
therefore, whether a fault occurs depends on the round. In
the example shown in Fig. 5, tcp in byte 3 of Ri+2 has the
longest data path delay of all operations (assuming that this
delay time is tmax), and therefore, it is possible to generate a
fault only in a single-round by setting tsc to generate faults only
for operations executed at this time tmax. However, the round
and byte in which the fault occurs will be randomized because
the round where tmax is observed and the length of tmax depends
on the input value. The intermediate value of the encryption
process and output ciphertext exhibit uniformity because of the
nature of the algorithm when the random plaintext is input.
Therefore, we assume that the occurrence probability of the
round with tmax is uniform and its length of tmax is normally
distributed [18].

The above information cannot be obtained when executing
the proposed method from outside the device, and therefore, a
technique for identifying the phase at which a single-round fault
occurs with a high probability without knowing this information
is described below.

Fig. 6 shows the relationships between variation in the length
of tsc, the total number of fault occurrences, and the number of
single-round fault occurrences for each phase of a continuous
sinusoidal wave. Here, tsc= 0 indicates that there is no glitch,
and N indicates the number of trials of the encryption trials.
The attacker can observe only information about whether a
fault has occurred from the output ciphertext, however, the
attacker cannot determine whether those faults occurred in a
single-round.

Fig. 6. Relationships between variation in the length of tsc, the total number
of fault occurrences, and the number of single-round fault occurrences by
controlling the phase of the continuous sinusoidal wave.

When the phase of the injected continuous sinusoidal wave
is θA or θC in Fig. 4, tsc is shorter than tcp in each round, and
multiple-round faults may occur in all encryption processes. If
phase is controlled from this state and tsc is increased, tmax and
tsc reach the value as in the state shown in Fig. 5. At this time, the
number of rounds in which faults occur in an encryption process
is decreased, and the number of single-round fault occurrences
will begin to increase. If tsc is further increased, the number
of encryption processes without fault increases by satisfying
tmax < tsc, and the total number of fault occurrences will begin
to decrease. The attacker can estimate the length of tsc that
generates a single-round fault with high probability by observing
this variation.

The range of lengths that tsc can assume by means of the phase
control illustrated in Fig. 6 depends on the injected frequency,
which can satisfy the condition of being an integer multiple of
the clock frequency, and on the value of the transfer efficiency to
the cryptographic module. Therefore, the injected frequency can
be modified to estimate the aforementioned value tsc if the range
of lengths that tsc can assume by means of the phase control does
not include cases where a single-round fault occurs.

III. EXPERIMENTAL VALIDATION

The experiment in this section, like that reported in previous
studies [6], [7], [8], targets the advanced encryption standard
(AES) [19], which is a widely used symmetric-key crypto-
graphic algorithm. In the experiment, we first demonstrate that
the clock frequency at which the cryptographic module imple-
menting AES operates can be estimated from outside the device,
and that a frequency that is an integer multiple of the clock
frequency can be injected such that the occurrence time of clock
glitches can be kept constant for each clock signal. Subsequently,
we conducted a fault injection experiment using the proposed
method. Using differential fault analysis (DFA) [10], which is a
typical secret key analysis method for symmetric-key cryptogra-
phy, we verify that the faults required for DFA can be generated
with a higher probability than that reported in [6].

NISHIYAMA et al.: EFFICIENT NONINVASIVE FAULT INJECTION METHOD UTILIZING INTENTIONAL EM INTERFERENCE 1215

Fig. 7. Actual photo of SASEBO-G.

Fig. 8. Block diagram of the experimental setup.

A. Experimental Setup

Fig. 7 displays a photo of the test board with the built-in
cryptographic module used in this experiment called the side-
channel attack standard evaluation board (SASEBO-G) [20].
The SASEBO-G is equipped with two field-programmable gate
arrays (FPGAs) denoted as FPGA 1 and FPGA 2. A composite-
field S-Box AES [21] cryptographic module is implemented in
FPGA 1, whereas a module for communication between the PC
and FPGA 1 is implemented in FPGA 2. Next, the reference
value of secret key is (0x2b7e151628aed2a6abf7158809cf4f3c)
as given in the algorithm specification [19].

Fig. 8 shows a block diagram of the experimental setup, and
Table I lists all the equipment used in the experiment. For FPGA
1, on which the cryptographic module is mounted, the clock is
supplied from the port “Out 1” of the function generator through
the SMA port to supply clock signal (J3) for improving the
reproducibility of the experiment. For FPGA 2, the clock signal

TABLE I
EQUIPMENT USED IN THE EXPERIMENT

is supplied from a crystal oscillator asynchronously with the
clock signal supplied to FPGA1. The clock frequency was set
to 24 MHz for both FPGA 1 and FPGA 2, as in previous studies
[6], [7], [8]. The clock signal transmitted via the power cable
is observed with an oscilloscope after it is passed through a
low pass filter to eliminate unintended external noise. It is then
amplified by Amplifier 2. The continuous sinusoidal wave to be
injected is generated the port “Out 2” of the same individual
function generator that supplies the clock signal to FPGA 1.
After amplification using Amplifier 1, the signal was injected
into the power cable connected to FPGA 1 via an injection probe
placed 600 mm away from SASEBO-G. The frequency of the
continuous sinusoidal wave starts at 48 MHz, which is twice the
clock frequency, and it was increased in 24 MHz increments until
a frequency at which the variation in the number of occurrences
of faults can be observed adequately. The amplitude was set
to a starting value of 0.10 Vpp, at which no fault was observed
in the output of the FPGA 1. It was then increased until the
occurrence of a fault could be confirmed. The phase was swept
in 1° increments over a 360° range and the encryption process
was performed 200 times for each phase. In an actual attack
scenario, a randomly generated input value will be used, and
therefore the input plaintext value differs for each encryption
process. However, we generated the plaintext dataset in advance
and used the same dataset for each phase to prevent the change
of experimental conditions from one phase trial to another.

B. Observation of Clock Signal From Outside the Device

Here, we first demonstrate that the clock frequency of the
cryptographic module can be estimated from outside the device
using a current probe to observe the clock signal transmitted via
the power cable. Moreover, we show that the occurrence time of
the clock glitch can be kept constant.

Fig. 9(a) shows the clock signal supplied from the function
generator to J3, and Fig. 9(b) illustrates the clock signal observed
from the power cable. A comparison of Fig. 9(a) and (b) confirms
that the clock cycles match the clock frequency at which the
cryptographic module operates can be estimated even from
outside the device. Fig. 9(c) shows an example waveform when
a continuous sinusoidal wave of 144 MHz, which is six times
the clock frequency, is injected via the power cable. Fig. 9(c)
shows that the times of glitches superimposed on each clock

1216 IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, VOL. 65, NO. 4, AUGUST 2023

Fig. 9. (a) Original clock signal directly observed output from the function
generator. (b) Clock signal observed from the power cable. (c) Clock signal
superimposed with a sinusoidal wave with a frequency of 144 MHz.

Fig. 10. Method for estimating the fault occurrence round and the number of
fault bytes.

signal can be kept constant by injecting a frequency that is an
integer multiple of the clock frequency.

C. Estimation of the Fault Occurrence Round for Evaluating
Experimental Results

Fig. 10 shows a conceptual diagram of this method. First, the
ciphertext output from the cryptographic module is obtained and
the corresponding correct ciphertext is written back in a proce-
dure equivalent to decryption. The exclusive OR of the correct
and incorrect output intermediate values is then calculated for
each round to obtain the number of fault bytes. The fault is
expanded every four bytes by a linear transformation called Mix-
Columns, which refers to a one element process in a round. For
example, if a one-byte fault occurs in the input of MixColumns,
four-byte faults occur in the output of MixColumns. Therefore,
if a fault occurs in one round, the number of fault bytes increases
in the subsequent rounds. Similarly, the number of fault bytes

Fig. 11. Number of fault occurrences by injecting the continuous sinusoidal
wave with the controlled phase. The number of single-round faults is highlighted
as dark gray, and the number of multiple-round faults as light gray.

increases by the inverse MixColumns operation when decrypting
from the fault occurrence round. Fig. 10 shows an example when
a one-byte fault occurs in round 7. In this case, the number of
fault bytes increases after round 8 and before round 6. Therefore,
the fault occurrence round can be assumed to be the round with
the smallest number of fault bytes. In this article, the above
method is used for evaluating the fault occurrence round and the
number of fault bytes in the experimental results.

This method cannot accurately isolate the round in which
the fault occurs if a fault occurs in more than two rounds.
Furthermore, as shown in [22], the reliability of this method
decreases when the number of fault bytes is 13 or more because it
includes cases in which the encryption process is not performed
due to communication faults or the like [22]. In this article, as in
[22], the fault is evaluated as a single-round fault if the number
of fault bytes is less than or equal to 12, otherwise, the fault is
evaluated as a multiple-round fault.

In addition, the MixColumns operation is only skipped in
round 10 in the case that AES-128 is used. This method cannot
distinguish faults that occur in these rounds because the number
of fault bytes is not expanded between the input intermediate
value and the output value in round 10. Moreover, tcp will
be shorter than in the other rounds because the MixColumns
operation is skipped in round 10, and, it will be unlikely to
require a delay time of tmax. Therefore, in this article, a fault
that occurs in either round 9 or round 10 is treated as a fault that
occurred in round 9.

D. Experimental Results and Discussion

Fig. 11 shows the number of multiple-round faults (light
gray) and number of single-round faults (dark gray) when the
proposed method was applied to the cryptographic module for
200 encryption processes. The experiment confirmed that at 144
MHz (six times the clock frequency estimated in Section III-B),
the total number of fault occurrences decreased, and the number
of single-round fault occurrences increased in the phase range
from 70° to 110° and from 200° to 280°, as shown in the red
boxes in Fig. 11.

NISHIYAMA et al.: EFFICIENT NONINVASIVE FAULT INJECTION METHOD UTILIZING INTENTIONAL EM INTERFERENCE 1217

Fig. 12. Distribution of the number of single-round fault occurrences and the
number of fault occurrences required for DFA in the range from 70° to 110°.

Subsequently, we focus on the number of fault occurrences
required for Piret’s DFA. This method assumes the occurrence
of a one-byte fault in the input intermediate value of round 8 or
9 of AES-128. The difference between the faulty ciphertext that
match the assumption and the corresponding correct ciphertext is
calculated, and the number of candidate secret keys is narrowed
down by calculation for several different pairs of the faulty and
correct ciphertexts. The secret key can be uniquely extracted by
repeating the process using the several pairs.

Fig. 12 shows the distribution of the number of single-round
fault occurrences in each round and the number of fault oc-
currences required for DFA in the range from 70° and 110°.
F8R1B indicates the number of one-byte faults in the input
intermediate value at round 8, and F9R1B indicates the number
of one-byte faults in the input intermediate value at round
9. As noted in Section II-B, the occurrence probability of
tmax is uniform for all rounds, except for round 10. There-
fore, the number of single-round faults in each round can be
expected to be equal if a specific frequency, amplitude, and
phase of the injected sinusoidal wave are selected for fault
injection.

However, the results in Fig. 12 indicate that the frequency
distribution of rounds in which single-round faults occur is
biased with the fewest occurrences in the earlier rounds. The
input intermediate value varies in subsequent rounds if the first
fault occurs in any one round, the input intermediate value varies
in subsequent rounds when there is no fault. Therefore, the length
of the delay time in each round also varies. If any of these rounds
requires a delay time of tcp satisfying tmax < tcp, a second fault
occurs, which results in a multiple-round fault. Thus, a possible
source of the bias described above is the fact that, depending on
the first fault occurrence round, there will be a different number
of rounds with varying delay lengths. For example, if the first
fault occurs in round 1, there are four future rounds (rounds 3, 5,
7, and 9) in which a second fault may occur; therefore, there is a
high probability of a multiple-round fault. However, if the first
fault occurs in round 7, there is only one future round (round
9) in which a second fault may occur, and thus in this case the
probability of a multiple-round fault is low. This explains why
the number of single-round faults is the lowest in the earlier
rounds.

TABLE II
COMPARISON OF THE EXPERIMENTAL RESULTS BETWEEN PREVIOUS METHOD

AND PROPOSED METHOD REGARDING FAULTS REQUIRED FOR DFA

Table II presents a comparison between the number of en-
cryption trials and number of faults required for DFA using
the method in [6] and the method proposed in this study. In
[6], there is one occurrence of F8R1B and ten occurrences of
F9R1B after 340 000 encryption trials. From this, it follows that
the cryptographic module had to perform 340 000 and 30 000
operations, respectively, to generate the fault required for DFA.
In contrast, the present experimental results show that, after
8200 encryption trials performed in the range between 70° to
110°, there are 47 occurrences of F8R1B and 380 occurrences of
F9R1B . This means the cryptographic module had to perform ap-
proximately 174 (= 8200/47) and 22 (= 8200/380) operations,
respectively, to generate the fault required for DFA. The above
results demonstrate that the method proposed in this study can
generate the faults necessary for the estimation of the secret key
with a high probability. Furthermore, the fault required for DFA
can be obtained after three orders of magnitude less encryption
trials compared to that in [6].

E. Countermeasure Against the Proposed Method

We consider an approach to counteract our proposed fault in-
jection method. One potentially effective approach is to suppress
the variation in the total number of fault occurrences when the
attacker controls the phase of the continuous sinusoidal wave. As
a method for implementing this, we describe a countermeasure
focusing on the clock rise time.

The number of fault occurrences varies depending not only
on the parameters of the continuous sinusoidal wave, but also
on the clock rise time of the cryptographic module [23], which
is difficult for the attacker to control. This is because, as shown
in Fig. 13(a), the lengths of tsc will vary if the clock rise times
are different even when injecting continuous sinusoidal waves
of the same phase. Thus, as shown in Fig. 13(b), the range of
lengths that tsc can assume by means of phase control is believed
to depend on the clock rise time. Therefore, it is possible that
our proposed fault injection method can be counteracted by
evaluating the presence or absence of variations in the total
number of fault occurrences attributed to the phase control of
the continuous sinusoidal wave at various clock rise times and
by setting the rise time that does not cause any variation in the
total number of fault occurrences. Both information security and
EMC must be considered when dealing with fault injection meth-
ods, a clock signal rise time may be designed to minimize fault
occurrences; however, it should not be so steep that it increases
spurious EM emissions due to an increase in high-frequency
signal components.

1218 IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, VOL. 65, NO. 4, AUGUST 2023

Fig. 13. (a) Difference of the length of tsc according to the length of
clock rise time by injecting the continuous sinusoidal wave with same phase.
(b) Difference of the range of possible values of tsc according to the clock rise
time by controlling the phase of the continuous sinusoidal wave.

IV. CONCLUSION

In this article, we proposed a method that generates processor
timing faults required for secret key extraction that uses approx-
imately three orders of magnitude less encryption trials than
that in [6], even for noninvasive fault injection from outside the
device.

The proposed method injects a continuous sinusoidal wave
which is an integer multiple of the clock frequency and controls
the frequency, phase, and amplitude of the injected wave. This
enables the attacker to generate glitches at specific times and
causes faults at a specific time with a high probability of success
even when executing fault injection from outside the device.

The above results indicate that cryptographic devices that can
be physically accessed for only a brief period of time and were
not subject to fault injection methods in the past, may now be
compromised. Moreover, in the case of fault injection under
conditions where the cryptographic equipment is not directly
accessible, the secret key extraction methods that can be used are
limited because the faults occur randomly [6]. However, since
the proposed method can cause faults at arbitrary times, various
analysis methods proposed in past studies [12], [13], [14], [15]
may be applicable, and secret keys may be analyzed in a shorter
time.

The feasibility of our proposed fault injection method is
highly dependent on the rise time of the clock that operates
the cryptographic module. Therefore, as a countermeasure, it
is necessary to consider selecting a clock signal that improves
security while also considering EMC due to spurious emission.
The proposed noninvasive IEMI-based fault injection method
created a fault caused by a setup time violation due to clock
glitching. However, it is likely that IEMI may cause faults
because of causes other than a setup time violation. In the future,

it is desirable to study the security degradation caused by faults
other than fault injection methods.

REFERENCES

[1] A. Barenghi, L. Breveglieri, I. Koren, and D. Naccache, “Fault injection
methods on cryptographic devices: Theory, practice, and countermea-
sures,” Proc. IEEE, vol. 100, no. 11, pp. 3056–3076, Nov. 2012.

[2] J.-M. Schmidt and M. Hutter, “Optical and EM fault-attacks on CRT-
based RSA: Concrete results,” in Proc. Austrian Workshop Microelectron.
(Austrochip), 2007, pp. 61–67.

[3] N. Moro, A. Dehbaoui, K. Heydemann, B. Robisson, and E. Encrenaz,
“Electromagnetic fault injection: Towards a fault model on a 32-bit mi-
crocontroller,” in Proc. Workshop Fault Diagnosis Tolerance Cryptogr.,
2013, pp. 77–88.

[4] L. Zussa, J.-M. Dutertre, J. Clediere, and A. Tria, “Power supply glitch
induced faults on FPGA: An in-depth analysis of the injection mechanism,”
in Proc. IEEE 19th Int. -Line Testing Symp., 2013, pp. 110–115.

[5] A. Dehbaoui, J.-M. Dutertre, B. Robisson, and A. Tria, “Electromagnetic
transient faults injection on a hardware and a software implementations
of AES,” in Proc. Workshop Fault Diagnosis Tolerance Cryptogr., 2012,
pp. 7–15.

[6] Y.-I. Hayashi, N. Homma, T. Mizuki, T. Aoki, and H. Sone, “Transient
IEMI threats for cryptographic devices,” IEEE Trans. Electromagn. Com-
pat., vol. 55, no. 1, pp. 140–148, Feb. 2013.

[7] Y. Shinoda, M. Takenouchi, Y. Hayashi, T. Mizuki, and H. Sone, “Mea-
surement on effect of controlled wave phase in EM fault injection method,”
in Proc. Int. Symp. Electromagn. Compat. - Europe, 2020, pp. 1–5.

[8] H. Nishiyama, D. Fujimoto, Y. Kim, H. Sone, and Y. Hayashi, “IEMI fault
injection method using continuous sinusoidal wave with controlled fre-
quency, amplitude, and phase,” in Proc. 13th Int. Workshop Electromagn.
Compat. Integr. Circuits, 2022, pp. 97–101.

[9] E. Biham and A. Shamir, “Differential fault analysis of secret key cryp-
tosystems,” in Proc. Ann. Int. Cryptol. Conf., 1997, pp. 513–525.

[10] G. Piret and J.-J. Quisquater, “A differential fault attack technique against
SPN structures, with application to the AES and khazad,” in Crypto-
graphic Hardware and Embedded Systems—CHES (LNCS 2779). Berlin,
Germany: Springer, Sep. 2003, pp. 77–88.

[11] C. Giraud and A. Thillard, “Piret and quisquater’s DFA on AES revisited,”
Cryptol. ePrint Arch., Tech. Rep. 2010/440, 2010. [Online]. Available:
https://ia.cr/2010/440

[12] Y. Li, K. Sakiyama, S. Gomisawa, T. Fukunaga, J. Takahashi, and K.
Ohta, “Fault sensitivity analysis,” in Proc. Int. Workshop Cryptograph.
Hardware Embedded Syst., 2010, pp. 320–334.

[13] T. Fuhr, E. Jaulmes, V. Lomné, and A. Thillard, “Fault attacks on AES
with faulty ciphertexts only,” in Proc. Workshop Fault Diagnosis Tolerance
Cryptogr., 2013, pp. 108–118.

[14] N. Ghalaty, B. Yuce, M. Taha, and P. Schaumont, “Differential fault in-
tensity analysis,” in Proc. Workshop Fault Diagnosis Tolerance Cryptogr.,
2014, pp. 49–58.

[15] A. Spruyt, A. Milburn, and Ł. Chmielewski, “Fault injection as an oscillo-
scope: Fault correlation analysis,” IACR Trans. Cryptographic Hardware
Embedded Syst., pp. 192–216, 2021.

[16] L. Zussa, D. Jean-Max, C. Jessy, R. Bruno, and T. Assia, “Investigation
of timing constraints violation as a fault injection means,” in Proc. 27th
Conf. Des. Circuits Integr. Syst., 2012, pp. 1–16.

[17] C. R. Paul, Introduction to Electromagnetic Compatibility. New York, NY,
USA: Wiley, 1992, pp. 335–400.

[18] S. Endo et al., “A silicon-level countermeasure against fault sensitivity
analysis and its evaluation,” IEEE Trans. Very Large Scale Integration
Syst., vol. 23, no. 8, pp. 1429–1438, Aug. 2015.

[19] NIST. “Specification for the advanced encryption standard (AES),” Tech-
nical Report FIPS PUB 197, 2001. [Online]. Available: https://doi.org/10.
6028/NIST.FIPS.197

[20] “Side-channel attack standard evaluation board,” 2007. [Online]. Avail-
able: https://www.risec.aist.go.jp/project/sasebo/

[21] A. Satoh, S. Morioka, K. Takano, and S. Munetoh, “A compact rijndael
hardware architecture with S-Box optimization,” in Proc. Adv. Cryptol.,
2001, pp. 239–254.

[22] J. Takahashi, Y.-I. Hayashi, N. Homma, H. Fuji, and T. Aoki, “Feasibility
of fault analysis based on intentional electromagnetic interference,” in
Proc. IEEE Int. Symp. Electromagn. Compat., 2012, pp. 782–787.

[23] N. Saga, T. Itoh, Y. Hayashi, T. Mizuki, and H. Sone, “Study on the effect of
clock rise time on fault occurrence under IEMI,” in Proc. IEEE Int. Symp.
Electromagn. Compat. IEEE Asia-Pacific Symp. Electromagn. Compat.,
2018, Art. no. 9.

https://ia.cr/2010/440
https://doi.org/10.6028/NIST.FIPS.197
https://doi.org/10.6028/NIST.FIPS.197
https://www.risec.aist.go.jp/project/sasebo/

NISHIYAMA et al.: EFFICIENT NONINVASIVE FAULT INJECTION METHOD UTILIZING INTENTIONAL EM INTERFERENCE 1219

Hikaru Nishiyama received the B.E. degree in en-
gineering from National Institute of Technology,
Sasebo College, Sasebo, Japan, in 2019 and the M.E.
degree in engineering in 2021 from Nara Institute
of Science and Technology, Ikoma, Japan, where
he is currently working toward the Ph.D. degree in
engineering.

His research interests include hardware security
and electromagnetic compatibility.

Daisuke Fujimoto (Senior Member, IEEE) received
the B.E., M.E., and Ph.D. degrees in engineering from
Kobe University, Kobe, Japan, in 2009, 2011, and
2014, respectively.

He is currently an Assistant Professor with the
Graduate School of Information Science, Nara Insti-
tute of Science and Technology, Ikoma, Japan. He is
also a Visiting Assistant Professor with the Institute of
Advanced Sciences, Yokohama National University,
Yokohama, Japan. His research interests include hard-
ware security and implementation of security cores.

Dr. Fujimoto is a Member of the Institute of Electronics, Information, and
Communication Engineers.

Hideaki Sone (Life Member, IEEE) received the
B.E. degree in electrical engineering and the M.E.
and Ph.D. degrees in electrical communications from
Tohoku University, Sendai, Japan, in 1978, 1980,
and 1992, respectively. He was the Chapter Chair of
Sendai Section Chapter, EMC Society, and is cur-
rently a Professor Emeritus with Tohoku University.

His main research interests include electromechan-
ical device components, information telecommunica-
tion systems, and instrumentation electronics.

Yuichi Hayashi (Senior Member, IEEE) received the
M.S. and Ph.D. degrees in information sciences from
Tohoku University, Sendai, Japan, in 2005 and 2009,
respectively.

He is currently a Professor with the Nara Institute of
Science and Technology, Ikoma, Japan. His research
interests include electromagnetic compatibility and
information security.

Dr. Hayashi was the recipient of many awards and
honors, including the IEEE Electromagnetic Compat-
ibility Society Technical Achievement Award, IEEE

International Symposium on EMC Best Symposium Paper Award, and Work-
shop on Cryptographic Hardware and Embedded Systems Best Paper Award.
He is the Chair of Electromagnetic Information Leakage Subcommittee in IEEE
EMC Technical Committee 5.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

