
274 IEEE TRANSACTIONS ON EDUCATION, VOL. 59, NO. 4, NOVEMBER 2016

More Time or Better Tools? A Large-Scale
Retrospective Comparison of Pedagogical

Approaches to Teach Programming
Gabriela Silva-Maceda, P. David Arjona-Villicaña, Member, IEEE, and F. Edgar Castillo-Barrera, Member, IEEE

Abstract—Learning to program is a complex task, and the
impact of different pedagogical approaches to teach this skill has
been hard to measure. This study examined the performance data
of seven cohorts of students (N = 1168) learning programming
under three different pedagogical approaches. These pedagogical
approaches varied either in the length of the introductory pro-
gramming block of courses (two or three semesters) or in the
programming tool used in the first semester (C language or the
programming support tool Raptor). In addition, gender and initial
course selection differences were investigated. Raw pass rates un-
der the three pedagogical approaches were compared; they were
also compared, controlling for initial ability levels, using a logistic
regression. Results showed that a more extensive duration of the
introductory block produced a higher pass rate in students, but
changing the programming tool used did not. Raw gender differ-
ences were not statistically significant; admission phase differences
were initially statistically different, but not once initial ability and
pedagogical approach received had been accounted for. Findings
are discussed in relation to existing literature.

Index Terms—Admission phase, computer science education,
gender differences, learning programming, pedagogical ap-
proaches, programming curriculum.

I. INTRODUCTION

L EARNING to program is a difficult task because it re-
quires that students master different higher-order cogni-

tive skills, such as problem solving, developing and applying
mental or mathematical models, generating pseudocode and
algorithms that could solve a problem, and learning the syntax
and semantics necessary to code in a programming language.
In general, learning programming is a time-consuming process,
which requires effort and dedication from beginners. Therefore,
it is not uncommon that many students feel frustrated and
abandon their Computer Science (CS) programs [1], [2].

In search of solutions to this complex problem, researchers
have looked into the impact of diverse pedagogical approaches

Manuscript received July 22, 2015; revised November 23, 2015 and
January 28, 2016; accepted February 13, 2016. Date of publication March 24,
2016; date of current version October 27, 2016. This work was supported in part
by different grants from the Professional Development Program for Teachers
(PRODEP) and the National Council of Science and Technology (CONACYT)
of Mexico.

G. Silva-Maceda is with the School of Psychology, Universidad Autónoma
de San Luis Potosí, 78000 San Luis, Mexico (e-mail: gabriela.silva@uaslp.mx).

P. D. Arjona-Villicaña and F. E. Castillo-Barrera are with the School of
Engineering, Universidad Autónoma de San Luis Potosí, 78000 San Luis,
Mexico.

Digital Object Identifier 10.1109/TE.2016.2535207

and into the predictive power of student factors. Pedagogical
approaches are the different instructional strategies and tools
that faculty use to facilitate student learning, while student fac-
tors are naturally occurring student characteristics that can be
predictive of student performance.

The study described here takes advantage of curricular
changes in the teaching of introductory programming in two
CS programs comparing student performance differences under
three pedagogical approaches. These changes allowed for the
possibility of retrospectively evaluating the relative importance
of two pedagogical choices: the inclusion of a preprogramming
course and the use of a specific type of programming support
tool. As secondary analyses, the collected data provided an
opportunity to compare two student factors: gender and initial
major selection.

This paper is organized as follows: First, the background and
work related to the current study are analyzed in Section II, and
the curricular structure for the university where this study was
carried out is described in Section III. Then, the methodology
employed for this study is described in Section IV, and the
statistical results are shown in Section V. Finally, these results
are discussed in Section VI.

II. BACKGROUND AND RELATED WORK

This section describes a brief review of the literature in learn-
ing programming, covering pedagogical approaches, student
factors, and methodological issues that have a direct impact on
what results are obtained and which kind of inferences can be
drawn. Special attention has been given to studies using robust
research design and analyses.

A. Pedagogical Approaches in Learning Programming

Comprehensive reviews of pedagogical approaches can be
found in the literature. While some reviews focus on the
programming paradigm and the language used to teach intro-
ductory programming [3], [4], others focus on more specific
intervention strategies to support learning [5], such as collab-
orative learning and pair programming.

The literature is mixed, concerning which of the two most
common programming paradigms, i.e., procedural or object-
oriented, is better suited to teach programming. Using results
from actual student performance data, Wiedenbeck et al. [6]
found that procedural programming allows for an easier learn-
ing experience for novice programmers. However, the paradigm

0018-9359 © 2016 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution
requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



SILVA-MACEDA et al.: MORE TIME OR BETTER TOOLS? COMPARISON OF PEDAGOGICAL APPROACHES 275

is closely related to the programming language each institution
selects for instruction, and that evidence is also inconclusive.
While some argue that students should benefit from learning
a programming language that is common within the industry
[7], [8], there is also evidence that languages with a simple
syntax, such as Python or Eiffel, facilitate student learning [9],
[10]. In the context of this study, the language selected by the
institution was C, i.e., a procedural language, and the variations
investigated were whether C was introduced in the first or the
preprogramming course.

Indeed, the introduction of a preprogramming course, which
is sometimes called CS0, has received extensive attention in the
literature [5], [11], [12]. Faux [12] showed that students who
took a preprogramming course teaching problem-solving, algo-
rithm development, pseudocode generation, and diagramming
were able to use pseudocode more consistently than another
cohort. Moreover, a review of various pedagogical approaches
by Vihavainen et al. [5] showed that the addition of a CS0
course, in combination with other strategies, provided one of
the best improvements in pass rates when compared to other
approaches. The evidence from these studies suggests that
adding a preprogramming course may improve the learning
programming process, and a recent survey indicated that a CS0
course is currently a common practice among universities [13].

Another pedagogical approach that has been researched is the
use of programming support tools. Crews and Butterfield [14]
introduced a flowchart simulator software, which was called
FLowchart INTerpreter or FLINT, with the aim of developing
students’ programming skills. Two experiments revealed that:
1) paper flowcharts are useful for novice programmers to ab-
stract problems, as compared to no flowcharts; 2) FLINT was
useful for developing programming logic and coding skills, as
compared to no software use. Because of the research design
of their experiment, this is strong evidence that flowcharts aid
in developing programming skills. Nonetheless, the authors
did not compare the performance measures between paper
flowcharts and FLINT; hence, the question remains whether
software simulators are indeed better for improving student
learning. More recently, Carlisle et al. [15] have evaluated
student performance using a software simulator, which is called
Raptor, against coding. Nevertheless, the evidence was incon-
clusive: For some tasks, the use of Raptor produced better
performance than MATLAB/Ada, while for other tasks it did
not. One of the pedagogical approaches in the present study
employs Raptor in the preprogramming course.

It is interesting to note that most implementations of a pro-
gramming support tool coincide with adding a preprogramming
course [5], which makes it difficult to measure the impact of
each approach on improving students’ learning outcomes. The
way the pedagogical approaches were implemented in the study
reported here provided the opportunity to disentangle the effect
of each of these variables separately.

B. Student Factors in Learning Programming

In addition to the pedagogical approaches, student factors
have also been studied in relation to performance in CS [16],
[17]. Among the student characteristics most examined are

gender, mathematics background, previous programming ex-
perience, and motivation. The present data set permitted an
evaluation of whether gender and a proxy for motivation had
an influence on learning to program.

Women are notoriously underrepresented in science fields
[2]. Specifically for CS, it has been documented that they are
not only underrepresented, but also more likely to leave their
CS program than their male peers [18]. Indeed, in a study
of attrition [19], women leaving the CS program were more
likely than men to feel that they did not belong. Even when
underrepresented and more likely to leave, most of the evidence
suggests that, when comparing performance using grades, there
is no gender gap between women and men in CS courses [17],
[20]. Although scarcer, evidence for gender differences in CS
courses does exist [16].

Most of the evidence for the lack of discrepancy between
female and male CS students comes from studies carried out
in industrialized countries, such as the United States, whose
Gender Development Index (GDI) places it on the first of five
group rankings in terms of parity in life expectancy, education,
and standard of living [21]. However, it is reasonable to expect
gender differences in countries placed third among the GDI
rankings, such as Mexico.

In regard to motivation, this construct could not be derived
directly from any variable in the data set, but the records con-
tained a variable that could function as a proxy for motivation:
whether the student had chosen CS as their major, therefore
being admitted in the first admissions phase, or if it was their
second choice and they were admitted in the second phase.
Studies examining the relationship between admission phase
and achievement are scarce. The faculty’s perception, at the
institution examined in the present study, was that low mo-
tivation in second-phase students led to a lower performance
in learning programming. The data set studied here provided
an opportunity to examine whether the assumed performance
differences existed.

C. Methodological Issues

The inferences derived from the studies mentioned earlier
depend on the quality of the research design and analyses.
Previous reviews [4] have identified the relatively small pro-
portion of studies in the area of learning programming that use
quantitative methods and, among those that do, the even smaller
proportion where data are analyzed using inferential statistics.

Methodologically sound studies in learning programming
mainly fall into one of two categories: experimental or longitu-
dinal. Experimental studies involve the creation of two groups
where members have been randomly assigned. The experimen-
tal group receives the manipulation of one independent variable
to measure its effect on another dependent variable, while the
control group does not [22]. It is usually considered that the
experimental design produces the best evidence for inferring
causality [23]. Although there are some experiments in intro-
ductory programming changing specific strategies [14], exper-
iment designs addressing more complex questions are more
difficult to carry out in a university context, due to ethical and
logistical issues regarding random assignments.



276 IEEE TRANSACTIONS ON EDUCATION, VOL. 59, NO. 4, NOVEMBER 2016

Longitudinal studies follow the same students, for some time,
and try to predict performance either from initial student factors
[16], [17] or from pedagogical interventions that vary across
different cohorts [9], [15], [24]. The second group aims to
compare the end-of-term performance of different successive
cohorts after changing one or several factors at a time. Although
valuable insights can be gained from this method, these partic-
ular studies changed not only the pedagogical intervention, but
also the programming language or tool used in the course (from
Java to Python [9], from MATLAB to Raptor [15] or from C
to Python [24]). Therefore, it can be argued that these studies
changed the substance of the assessment used as an outcome
measure, which makes the inferences derived from these analy-
ses less robust. The present study maintains the same learning
objectives in the same language as the outcome measure for all
cohorts at the end of three programming courses.

Beyond the changes in outcome measures, a potential threat to
the validity of any study is the presence of confounding variables.
These variables are those that are not measured in the study but
can still have an effect on the outcome [22]. In the education
field, one of the main confounding variables is the student’s
initial ability level, which in the higher education context is
generally measured by entrance examinations [25]. For exam-
ple, the SAT and the ACT in the United States have been found
to be significantly correlated to grade point average (GPA) [26].

An important consideration when analyzing performance
data, particularly when different cohorts were taught with dif-
ferent approaches, is that it is quite possible for these genera-
tions to have differing initial ability; this makes any inference
about the causes of better performance inconclusive because
it is not possible to ensure that variations are coming from
the pedagogical strategies. The CS studies reviewed here either
assume that students in different cohorts are similar [9] or do not
consider this variable [15], [24]. Although variation in student
initial ability levels cannot be changed, a way to address this
issue is to statistically control for this factor. The inclusion of
initial ability as a means to control the cohort variability is at
the core of the present study.

The curricular changes undertaken for the purpose of in-
creasing student performance in this study are described in
Section III.

III. CURRICULAR MODIFICATIONS

In order to improve student pass rates, curricular modifica-
tions were carried out in a large public university in Central
Mexico. Students enrolled with the Computer Science Depart-
ment at the School of Engineering majored in either computer
engineering or a degree that is a mixture of computer science
and information systems (informatics engineering). Although
students are required to learn to program in more than one lan-
guage and use both programming paradigms throughout their
programs, the curricular changes described here only applied to
the introductory programming courses.

The grading system at this university is based on a scale from
0 to 100. A passing grade for each course is equal to 60 or above.
The final grade is usually an average of the marks obtained in
tests given regularly during the course. Students who cannot

TABLE I
CURRICULAR MODIFICATIONS

obtain a final passing grade in a regular course can take two
extraordinary written tests in a further attempt to pass. In the
context of this study, passing means that a student was able to
obtain 60 or more, regardless of when this grade was obtained,
whether during a regular course examination or any of the two
extraordinary tests.

Students at this institution are required to master procedural
programming and data structures. Two courses have been em-
ployed to teach both aspects of programming: Data Structures
and Algorithms A (DSA) and Data Structures and Algorithms B
(DSB). Throughout the curricular changes, DSB has remained
mostly unmodified. Moreover, faculty members teaching this
course have expressed that the learning objectives and course
content have remained the same. It must be noted that, although
an ideal assessment would have consisted of having the same
final exam for all groups and for all cohorts, in practice, each
faculty member created his own exams. DSB covers the fol-
lowing topics using the C programming language: pointers,
linked lists, basic graph representation, and trees. Hence, stu-
dents are considered to have mastered basic programming skills
once they have passed this course. Therefore, all programming
courses leading to and including DSB will be referred to here
as the programming block.

Three different pedagogical approaches were used that varied
either the length or the support tool for teaching programming
in the first course. Section III-A–C describe the curricular
changes taken to implement these approaches in the program-
ming block.

A. Two Courses With C

The original curriculum taught data structures and C lan-
guage at the same time in two semesters (DSA and DSB).
Students who passed DSB were considered ready to move to
the next level, i.e., object-oriented programming with C++. This
strategy is labeled as 2&C, and three cohorts are included under
this approach for this study (see Table I).

The learning objective of the DSA course, with this strat-
egy, is to be an introduction to C and basic data structures.
Therefore, the following topics were included: introduction to
the C language and its control commands (if, for, while, etc.),
arrays, Structs, stacks and queues, recursion, basic sorting and
searching algorithms, and types of files.

B. Three Courses With C

Since the first pedagogical approach was not considered
successful by the faculty, the next approach tried to help stu-
dents’ learning process by adding a preprogramming course
whose learning objective was only to use the C language and



SILVA-MACEDA et al.: MORE TIME OR BETTER TOOLS? COMPARISON OF PEDAGOGICAL APPROACHES 277

its control commands; this course was named Introduction
to Programming (IP). Data structures and pointers were not
included in this course.

DSA’s learning objective changed to teaching how to employ
static data structures and pointers, while DSB was left almost
unchanged. This second approach is labeled as 3&C and was
implemented in the Fall of 2008. Three cohorts were included
under this approach.

Although many students passed the new IP course, the over-
all faculty impression was that this strategy was not working as
expected; hence, a third approach was developed.

C. Raptor and Two Courses With C

This approach stemmed from the idea that students would
find it easier to learn programming skills from a graphic support
tool than they would by being taught a programming language.
After some research [27], Raptor was selected as the most ap-
propriate tool for teaching algorithmic thinking. Raptor [15] is a
programming support tool, which allows students to build their
own graphical algorithms, test them, and verify if they work as
intended. This tool does not use a programming language; in-
stead, it has a user-friendly interface, which displays algorithm
simulations.

Under this approach, the learning objective of IP changed
to introduce the algorithmic thinking needed to learn program-
ming. The DSA course would again introduce C language and
its control commands; the expectation was that this would
facilitate students’ comprehension of the topics after taking the
new IP course. This new approach is labeled 3&Raptor, and it
was implemented in Fall 2011.

IV. METHODOLOGY

This study compared three pedagogical approaches, by ap-
plying statistical analyses to retrospective data of several CS
student cohorts followed longitudinally, in order to address the
following research questions:

1) Is student performance improved by having a prepro-
gramming course?

2) Is student performance improved by using a program-
ming support tool instead of a programming language?

3) Are two student characteristics, i.e., gender and initial
major selection, predictive of student performance in
learning programming?

4) Do any of the differences in pedagogical approaches or
student characteristics remain once accounting for differ-
ences in initial ability levels?

A. Database

The database contained information for seven cohorts of
students admitted in each successive year from 2005 to 2011.
Every cohort was followed for up to three and a half years to
complete the programming block. The original database in-
cluded students who did not attend any of the first-semester
courses that they registered for. Only students attending at
least half of their courses in their first semester were included
in the study. The final record contained full information for

1168 registered students (22.3% female and 77.7% male). Each
cohort received one of the three pedagogical approaches shown
in Table I, which shows that each subsequent approach only
implemented one change: either it varied the length of the
programming block by adding a preprogramming course, or it
varied the programming tool used in the first course.

The admission process at this institution asks students to
list the programs to which they want to be admitted to, in
order of preference. Those who did not get into their preferred
program in the first admission round have the choice of entering
an alternative one in a second round if there are still places
available. More than a tenth of the students in the final record
were admitted in the second round (13.6%).

The database contained information about entrance examina-
tion scores, attendance, gender, grades, admission phase (first
or second), and passing or not passing DSB.

B. Predictor Variables

Four variables were selected as predictors of student perfor-
mance. The first was the pedagogical approach used, which
varied the duration of the programming block or the initial pro-
gramming tool used. Two variables, i.e., gender and admission
phase, were also used as predictors.

In addition, one of the examination scores was selected using
a statistical analysis as the initial ability indicator, to be used
as a control variable. The statistical analysis in Section V-A
describes how this fourth predictor variable was obtained.

C. Outcome Variables

The main outcome variable was a categorical variable indi-
cating passing or not passing the final course of the program-
ming block (DSB). It must be noted that not passing included
those failing as well as those who dropped out before com-
pleting the programming block, either because they moved to
a different department within the university or because they
dropped out of the university altogether. Unfortunately, the dis-
tinction between students who moved and those who actually
left could not be made due to how the information from the
registry was recorded since different schools have independent
registry departments.

For the preliminary analysis to select an initial ability level
variable, the first-semester GPA was the outcome variable. Only
the first-semester GPA was considered for this analysis because
this is the only semester when all students of the same cohort
are evaluated on the exact same courses. After the first semester,
student variation on the courses that they registered for de-
pended on how many courses they failed in their first semester
(i.e., how many repeat courses they subsequently had to take);
hence, the following semesters’ GPA would not be equivalent
within the same cohort. Furthermore, a three-semester average
GPA was not considered since some students took longer than
others to complete the introductory programming block.

V. RESULTS

This section is divided into three parts. The first describes the
preliminary analysis carried out to select the best indicator for



278 IEEE TRANSACTIONS ON EDUCATION, VOL. 59, NO. 4, NOVEMBER 2016

TABLE II
PEARSON CORRELATIONS FOR ENTRANCE EXAMINATIONS

AND FIRST-SEMESTER GPA

initial ability levels, which was then used as a control variable in
the main analyses. The second describes the main analyses eval-
uating the differences among the three pedagogical approaches
and offers a statistical analysis of these differences controlling
for initial ability levels. The third presents the results of the
secondary analyses comparing student performance by gender
and admission phase.

A. Preliminary Analysis: Selection of the Initial
Ability Variable

As described in Section IV, an initial ability indicator had
to be selected. A correlation analysis was undertaken to ex-
amine how four entrance examination scores (three tests and
a composite) were associated with the students’ first-semester
performance in all courses.

Table II shows the Pearson correlation values linking the
entrance examinations to first-semester GPA.

The four entrance examination scores represent three exams
and the composite score: 1) an SAT-type test called EXANI-II;
2) a knowledge test designed by the School of Engineering; 3) a
reasoning skills exam; and 4) a global score encompassing the
previous three exams with the weights of 40%, 45%, and 15%,
respectively. All correlations were positive, indicating that a
higher score on any of the tests or the composite was associated
with a higher first-semester GPA. The highest correlation was
for the global score; therefore, this was chosen as the initial
ability variable.

B. Comparison of Pedagogical Approaches

After selecting the control variable, the three pedagogical ap-
proaches were compared in terms of passing rate percentages:
First, the comparison was performed without controls and then
controlling for initial ability. Fig. 1 illustrates the raw pass rates
for each approach. The highest performance was for 3&Raptor
with a 28.8% pass rate, which was followed closely by 3&C
with 26.4% and then by 2&C with 12.1%.

These differences were found to be statistically significant
(χ2 = 40.4, df = 2, p < 0.001). According to this analysis,
there was a statistically significant association between the
kind of pedagogical approach received and the passing or not-
passing rate. To examine individual effects, χ2 standardized
residuals were examined [28]. These residuals indicated that
the greater rate of not passing 2&C was statistically different
(z = 2.1, p < 0.05) from the rest. Also significant were the
greater rates of passing for both 3&C and 3&Raptor (z = 3.1,
p < 0.001 and z = 2.4, p < 0.01, respectively). Finally, the

Fig. 1. Rates of passing and not passing for each approach.

TABLE III
LOGISTIC REGRESSION TO PREDICT PASSING FROM GLOBAL SCORE

lower rate of passing under 2&C was highly significant (z =
−4.1, p < 0.001). Taken together, these individual effects show
that the approaches spread into three courses were significantly
better for increasing the pass rate than the two-course approach.

Having already selected the global score as a measure of
initial ability levels, a logistic regression was carried out to
examine how much variability was predicted by initial ability
on its own for all 1168 students, regardless of the pedagogical
approach received. Table III shows that the global score coef-
ficient (b = 0.14, p < 0.001) was significant, which confirms
that initial ability is a significant predictor for passing. In
addition, this analysis found that this model accounts for a 26%
variability in the pass rate.

Then, a model was performed, predicting the probability
of passing from the three pedagogical approaches, this time
accounting for initial ability. This process compares two of the
variables to one reference; in this case, the first approach 2&C
was chosen as the reference. Results from this analysis, as
shown in Table IV, show that, even after controlling for initial
ability, being a student under the approach 3&C was statisti-
cally different compared to the reference (b = 0.95, p < 0.001).
It also shows that being a student under the approach 3&Raptor
was statistically different, in terms of passing, when compared
to 2&C (b = 0.79, p < 0.01). In other words, both approaches
of the introductory programming block in three courses were
statistically better at predicting pass rates than the two-course
approach.



SILVA-MACEDA et al.: MORE TIME OR BETTER TOOLS? COMPARISON OF PEDAGOGICAL APPROACHES 279

TABLE IV
LOGISTIC REGRESSION TO PREDICT PASSING FROM PEDAGOGICAL

APPROACH, CONTROLLING FOR GLOBAL SCORE

TABLE V
LOGISTIC REGRESSION TO PREDICT PASSING 3&C VERSUS 3&RAPTOR,

CONTROLLING FOR GLOBAL SCORE (N = 618)

Table IV also shows odds ratios of 2.58 and 2.21 for 3&C and
3&Raptor, respectively, compared to the reference 2&C. This
means that, with initial ability levels being equal, a student who
was taught in 3&C was 2.58 times more likely to pass than a
student taught in 2&C. Likewise, with initial ability levels being
equal, a student under 3&Raptor was 2.21 times more likely to
pass than a student in 2&C. This new model with both initial abil-
ity and pedagogical approaches accounts for 29% of variance.

The previous model was only able to make two comparisons
against the chosen reference (2&C). It remained to be seen how
3&C and 3&Raptor would compare against each other. For that
purpose, a new logistic regression model was conducted exclu-
sively with the 3&C and 3&Raptor cohorts (new N = 618).
In this analysis, 3&C functions as a reference and 3&Raptor
is compared against it. This new model, as shown in Table V,
shows that being a student under the 3&Raptor approach was
not statistically different compared to the reference (b = −0.16,
p > 0.05) when controlling for initial ability levels.

C. Gender and Admission Phase Differences

Raw gender differences are shown in Fig. 2. These percent-
ages show that men have a higher pass rate than women. How-

Fig. 2. Rates of passing and not passing by gender.

Fig. 3. Rates of passing and not passing per admission round.

ever, these differences were not statistically significant (χ2 =
2.11, df = 1, p = 0.14). Given the lack of statistical signifi-
cance, it was not necessary to examine these differences further
with controls.

Of the students in the sample, 937 had chosen one of the
two CS programs as their first choice and were admitted in
the first admission round, while 148 got into computing in the
second admission round. Raw differences in performance were
examined between first and second rounds (new N = 1085).
The newN value excluded some students who transferred to the
program from another school within the university or another
university.

Fig. 3 shows that the pass rate for first-round students was
higher (21.3%) than for second round (14.2%). These differ-
ences were statistically significant (χ2 = 4.03, df = 1, p <
0.05). However, an examination of standardized residuals re-
vealed that none of the individual effects were significant (all
p > 0.05). The discrepancy between the χ2 results and the
individual effects suggests generalized small differences, rather
than a single effect.

Nonetheless, a logistic regression analysis was conducted
to see whether these differences remained after controlling



280 IEEE TRANSACTIONS ON EDUCATION, VOL. 59, NO. 4, NOVEMBER 2016

TABLE VI
LOGISTIC REGRESSION TO PREDICT PASSING FROM ADMISSION ROUND,

CONTROLLING FOR GLOBAL SCORE AND PEDAGOGICAL

APPROACH (N = 1085)

for both initial ability and pedagogical approach since they
influence the rate of passing the programming block. This new
model, as shown in Table VI, reveals that being admitted in the
second round was not statistically different from being admitted
in the first round (b = −0.07, p > 0.05).

VI. DISCUSSION

The longitudinal retrospective study described here includes
some of the desirable research characteristics proposed by
Pears et al. [4] in the field of teaching introductory programming:
1) it is a large-scale study, based on empirical results; 2) it
is systematic in the sense that the one single change intro-
duced in each variation of a pedagogical approach made it
possible to disentangle the effects of extending the course
duration and of changing the initial programming tool used; and
3) it is systematic in how the data were analyzed, using inferen-
tial statistics. In addition, a contribution of this study has been
to control for one of the main confounding variables in any
teaching and learning study, i.e., initial ability levels.

The curricular changes undertaken at this university allowed
for a comparison of pedagogical approaches that varied either in
the length of the introductory programming block or in the tool
used. Pass rates demonstrated that both pedagogical approaches
extended over three courses were more effective than the con-
densed two-course approach and, when considering the initial
ability levels, these results were statistically significant. This
same analysis showed that the 3&Raptor pedagogical approach
was slightly more successful in increasing the passing rate
than the 3&C approach. However, once taking into account the
initial ability levels, the differences between these approaches
were not significant.

Taken together, both sets of results seem to suggest that,
rather than the specific tool to introduce programming, the key
variable increasing the pass rate is the extended duration of the
introductory programming block. This finding is consistent with

existing evidence [5], [12] that a CS0 course increases per-
formance. The results also quantified the benefit of adding
a precourse, which can substantially increase the pass rate
(see Table IV).

However, the nonsignificant findings reported here on the use
of flowchart simulators were inconsistent with a previous study
suggesting a statistically significant improvement with the use
of flowchart software simulators for both Raptor [15] and
FLINT [14]. Still, it must be noted that the Raptor cohort had
a slight increase in the pass rate, but this was not statistically
significant, even less so after controlling for initial ability; with
these statistical controls, it could be argued that the present
analysis shows the most robust findings.

Another finding of this study was that it was able to quantify
the contribution of initial ability, as measured by entrance
exams, to performance in learning programming. Indeed, initial
ability was able to predict 25% of the variability in the pass rate
for the introductory programming block at this institution. In
other words, previous education matters, but it is not a determin-
ing factor since there is still 75% of variance unexplained.
The finding that the pedagogical approach used can explain an
additional 3% of variability might seem minimal in the context
of all factors influencing learning, but is still encouraging, par-
ticularly if only pedagogical approaches are considered, given
that it can substantially increase the passing rate, as described
earlier.

In regard to gender, the analysis revealed that, even if female
students in these CS majors were underrepresented (22%) and
studying in a country with wider gender gaps, they were as
successful as their male counterparts. This evidence converges
with findings in other countries, which have found no statistical
differences in success by gender [17], [20], and contrasts to
others that have found them [16].

Finally, the proxy measure for motivation used in the present
study, being admitted in the first or second round, was not
significantly different once accounting for initial ability and
pedagogical approach received. This suggests that initial major
selection is not important for acquiring programming skills, a
finding that stands in contrast to faculty expectations.

Although the large scale of the data set and the gradual
curricular modifications allowed for an optimal comparison of
pedagogical approaches, these were applied to different cohorts
of students, and the analysis was done retrospectively. Although
care was taken to control for initial ability levels, it is still pos-
sible that other differences in cohorts not considered here might
be responsible for the variations in performance. For example,
changes in faculty members, variations in the difficulty level
of evaluations, and cohort differences in prior exposure to
programming could all have played a role in the changes in
performance observed here. Among these possible confounding
factors, variations among teachers, in particular, could have a
substantial impact on students’ learning [29].

Although faculty attempted to ensure consistency of teaching
and assessment methods, these could not be controlled for in
the statistical analyses since they were not documented. Such
is the drawback of a retrospective study, and any future study
designed prospectively should ensure that these are documented
for inclusion in further analyses.



SILVA-MACEDA et al.: MORE TIME OR BETTER TOOLS? COMPARISON OF PEDAGOGICAL APPROACHES 281

VII. CONCLUSION

The implication for curriculum design from the comparison
of pedagogical approaches is that extending the instructional
time allocated to learn programming, rather than changing the
initial programming tool used, will result in higher pass rates
for learning introductory programming skills. Evidently, this
finding needs to be replicated at other institutions in other
countries before a definitive conclusion can be made.

The implications of this study for performance in regard to
student factors are that initial ability levels are important, while
being female or being admitted in a second round of admission
is not. Since differences existed when looking at raw data, but
these were not significant once they were evaluated using infer-
ential statistics, it is necessary that studies comparing student
performance go beyond stating differences in descriptive terms.
In particular, given that initial ability is such an important per-
formance predictor, it becomes necessary to take this variable
into account in any analysis comparing different populations.

Finally, for CS faculty members and administrators, the
results from this study highlight the need to measure the impact
of curricular changes in order to support an evidence-based
decision-making process conducive to substantive student per-
formance improvements.

ACKNOWLEDGMENT

The authors would like to thank S. Nava-Muñoz and
A. Ramos-Blanco, for kindly providing records from the reg-
istry; Robert Bryce, for editing suggestions; and the anonymous
reviewers, for their valuable comments.

REFERENCES

[1] C. Watson and F. W. B. Li, “Failure rates in introductory programming
revisited,” in Proc. Conf. ITiCSE, 2004, pp. 39–44.

[2] “Science and engineering indicators 2012,” Nat. Sci. Found. (NSF),
Arlington, VA, USA. [Online]. Available: http://www.nsf.gov/statistics/
seind12/start.htm

[3] A. Robins, J. Rountree, and N. Rountree, “Learning and teaching pro-
gramming: A review and discussion,” Comput. Sci. Educ., vol. 13, no. 2,
pp. 137–172, 2003.

[4] A. Pears et al., “A survey of literature on the teaching of introductory
programming,” SIGCSE Bull., vol. 39, no. 4, pp. 204–223, Dec. 2007.

[5] A. Vihavainen, J. Airaksinen, and C. Watson, “A systematic review of
approaches for teaching introductory programming and their influence on
success,” in Proc. ICER, 2014, pp. 19–26.

[6] S. Wiedenbeck, V. Ramalingam, S. Sarasamma, and C. L. Corritore,
“A comparison of the comprehension of object-oriented and procedural
programs by novice programmers,” Interacting Comput., vol. 11, no. 3,
pp. 255–282, Jan. 1999.

[7] M. de Raadt, R. Watson, and M. Toleman, “Introductory programming:
What’s happening today and will there be any students to teach tomor-
row?” in Proc. Aust. Conf. Comput. Educ., 2004, pp. 277–282.

[8] A. Dingle and C. Zander, “Assessing the ripple effect of CS1 language
choice,” J. Comput. Sci. Colleges, vol. 16, no. 2, pp. 85–93, Jan. 2000.

[9] T. Koulouri, S. Lauria, and R. D. Macredie, “Teaching introductory
programming: A quantitative evaluation of different approaches,” ACM
Trans. Comput. Educ., vol. 14, no. 4, pp. 1–28, Feb. 2014.

[10] L. Mannila and M. de Raadt, “An objective comparison of languages for
teaching introductory programming,” in Proc. Baltic Sea Conf. Comput.
Educ. Res., 2006, pp. 32–37.

[11] M. Rizvi, T. Humphries, D. Major, M. Jones, and H. Lauzun, “A CS0
course using Scratch,” J. Comput. Sci. Colleges, vol. 26, no. 3, pp. 19–27,
Jan. 2011.

[12] R. Faux, “Impact of preprogramming course curriculum on learning in the
first programming course,” IEEE Trans. Educ., vol. 49, no. 1, pp. 11–15,
Feb. 2006.

[13] S. Davies, J. A. Polack-Wahl, and K. Anewalt, “A snapshot of current
practices in teaching the introductory programming sequence,” in Proc.
ACM Tech. Symp. Comput. Sci. Educ., 2011, pp. 625–630.

[14] T. Crews and J. Butterfield, “Using technology to bring abstract concepts
into focus: A programming case study,” J. Comput. Higher Educ., vol. 13,
no. 2, pp. 25–50, Mar. 2002.

[15] M. C. Carlisle, T. A. Wilson, J. W. Humphries, and S. M. Hadfield, “Rap-
tor: A visual programming environment for teaching algorithmic problem
solving,” SIGCSE Bull., vol. 37, no. 1, pp. 176–180, Feb. 2005.

[16] S. Bergin and R. Reilly, “Programming: Factors that influence success,”
SIGCSE Bull., vol. 37, no. 1, pp. 411–415, Feb. 2005.

[17] B. C. Wilson and S. Shrock, “Contributing to success in an introduc-
tory computer science course: A study of twelve factors,” SIGCSE Bull.,
vol. 33, no. 1, pp. 184–188, Feb. 2001.

[18] J. M. Cohoon, “Toward improving female retention in the computer sci-
ence major,” Commun. ACM, vol. 44, no. 5, pp. 108–114, May 2001.

[19] M. Biggers, A. Brauer, and T. Yilmaz, “Student perceptions of computer
science: A retention study comparing graduating seniors v.s. CS leavers,”
SIGCSE Bull., vol. 40, no. 1, pp. 402–406, Mar. 2008.

[20] S. Beyer, “Predictors of female and male computer science students’
grades,” J. Women Minorities Sci. Eng., vol. 14, no. 4, pp. 377–409,
2008.

[21] “Human development report,” United Nations Develop. Programme,
New York, NY, USA, 2015. [Online]. Available: http://hdr.undp.org/en/
composite/GDI

[22] G. M. Breakwell, J. A. Smith, and D. B. Wright, Research Methods in
Psychology, 4th ed. London, U.K.: SAGE, 2012.

[23] B. G. Tabachnick and L. S. Fidell, Using Multivariate Statistics, 5th ed.
London, U.K.: Pearson, 2007.

[24] U. Nikula, O. Gotel, and J. Kasurinen “A motivation guided holistic reha-
bilitation of the first programming course,” ACM Trans. Comput. Educ.,
vol. 11, no. 4, pp. 24:1–24:38, Nov. 2011.

[25] T. R. Coyle and D. R. Pillow, “SAT and ACT predict college GPA after
removing g,” Intelligence, vol. 36, no. 6, pp. 719–729, Nov. 2008.

[26] J. L. Kobrin, B. F. Patterson, E. J. Shaw, K. D. Mattern, and S. M. Barbuti,
“Validity of the SAT for predicting first-year college grade point average,”
The College Board, New York, NY, USA, Rep. 2008-5, 2008.

[27] F. E. Castillo-Barrera, P. D. Arjona-Villicaña, C. A. Ramírez-Gámez,
F. E. Hernández-Castro, and M. Sadjadi, “Turtles, robots, sheep, cats,
languages, what is the next to teach programming: A future developer’s
crisis,” in Proc. Int. Conf. FECS, 2013, pp. 248–253.

[28] A. Field, Discovering Statistics Using IBM SPSS Statistics, 4th ed.
London, U.K.: SAGE, 2013.

[29] H. McBer, “Research into teacher effectiveness: A model of teacher effec-
tiveness,” Dept. Educ. Employment, Nottingham, U.K., Res. Rep. 216,
2000. [Online]. Available: http://www.education.gov.uk/publications/
eorderingdownload/rr216.pdf

Gabriela Silva-Maceda, biography not available at the time of publication.

P. David Arjona-Villicaña (M’15), biography not available at the time of
publication.

F. Edgar Castillo-Barrera (M’08), biography not available at the time of
publication.


