
IEEE TRANSACTIONS ON EDUCATION, VOL. 59, NO. 3, AUGUST 2016 233

Guest Editorial
Informatics and Electronics Education:

Some Remarks

I. INTRODUCTION

THIS paper focuses on some vexed issues in the preparation
of computer science (CS) curricula, including the system-

atization of the different areas of the technology, the definition
of topics and subtopics to teach, their distribution across the
various computing courses, and the relationships between them.
It is a common opinion that such didactical difficulties are
caused by the fast evolution of information technology. To
show how this opinion has little ground, a comparison is made
between the methods adopted by educators of informatics and
of electronics; in fact, also the electronic technology advances
at a similarly fast pace. This analysis brings evidence how the
experts in electronics have a well-described theoretical basis
that can be logically mapped and progressively taught to give a
clear understanding of the field. The same cannot be said in CS.
Educators in this field are not aided by underpinning theories in
an effective manner. Experts have a mass of concepts at hand,
but no network of logical connections to order them. This paper
does not present a practical solution to these educational dif-
ficulties, but observes how the missing assistance of computer
theorists may result in unnecessary expenditure of energy and
considerable additional effort.

In the following discussion, the terms “computer science
(CS),” “information and communication technology (ICT),”
“computing,” and “informatics” will be used synonymously.This
simplified terminology will facilitate the discussion in this paper.
Two opening remarks introduce the themes to be examined.

A. First Remark

By the mid-1960s, computer science education (CSE) had
become a very active field. The widespread success of com-
puters in business and organizations led to a high demand for
skilled practitioners. ICT courses made it possible to acquire
the techniques and knowledge necessary to provide vital ICT
services to Western economies. The scientific community began
to tackle the problems arising from that endeavor; as a result,
the amount of contributions in the literature dealing with CSE
is immense, and continues to grow. However, CSE researchers’
myriad of activities does not always provide proportionally
satisfactory outcomes [1].

This paper overlooks the social, motivational, and psy-
chological issues addressed by educators and focuses on the
difficulties that could be broadly termed as content issues.

Digital Object Identifier 10.1109/TE.2016.2528891

Content issues cover the definition of CS subject areas, the
topics and subtopics to be taught, their distribution across the
various computing courses, and the relationships between them.
Content issues draw attention to the need for systematization of
the different areas of ICT, the identification of common ground
between them, and the analysis of the core discipline. This kind
of question arises at any level of the educational process. For
instance, Yehezkel and Haberman believed that the education
programs for majors are inadequate to meet industry needs [2].
The courses presented in many universities lack sufficient em-
phasis on software engineering notions to provide a formative
educational basis for a career as a software practitioner. CSE
researchers work to bridge the gap between the subject matter
taught in institutions of higher education and that required by
the “real world” [3], [4]. Shaw et al. saw software processes and
methods as an important part of software engineering training
that should be more accurately learned [5]. Waychal looked
into some topics at the intersection of software engineering and
human sciences that are usually overlooked in the lessons that
are mostly oriented toward technical arguments [6].

Content issues also emerge in the initial stages of the CS
curricula. Problems encountered in introductory lessons of
informatics are a common concern in many universities, as
evidenced by CSE experts’ discussion in the literature. Some
thinkers provide insights from the intellectual point of view
[7], [8]; experimentalists report from their standpoint [9]; others
search for more effective didactical approaches [10]. A survey
of research studies dealing with introductory courses in CS can
be found in [11]. In conclusion, modern literature reveals CSE
experts’ perception of content issues.

B. Second Remark

Scholars dealing with content issues frequently note that
informatics is a rapidly changing discipline and ascribe the
difficulties they encounter to the rapid growth of the technology
and the digital market. The view that unites the vast community
of ICT educators could be summed up with these terms:

“Informatics is a novel and fast evolving discipline.
Hence, the pedagogy of informatics meets severe
obstacles.” (Statement 1)

The literature exhibits a broad range of positions about this
statement. Some make only glancing reference to the dynamic
evolution of ICT; it is a background element recognized as
the root cause of the problems under discussion. Other writers
place the rate of change of CS at the center of their reflections.
For instance, the book Computer Science Education in the 21st

0018-9359 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

234 IEEE TRANSACTIONS ON EDUCATION, VOL. 59, NO. 3, AUGUST 2016

Century [12] includes 13 chapters, and it may be said that all the
chapters draw inspiration from the rapid and pervasive progress
of computers. To show the prevalence of the view expressed
in the statement earlier, the author of this paper has selected
a sample of papers that treat an assortment of arguments on
CSE from the basis that computing evolves rapidly: Reference
[13] considers the evolution of introductory courses in univer-
sities; reference [14] expresses the need to merge teaching and
research to form a scholarship of computing that is an integrated
and sustainable whole; Tucker suggests innovative strategic di-
rections in CSE [15]; reference [16] makes ten succinct remarks
on computing as an evolving discipline; reference [17] observes
that CS reinvents itself every 5–7 years and educators have
to continually modify the curriculum, either changing existing
courses or introducing new ones. The problems associated with
rapid ICT progress were felt by the Association for Computing
Machinery (ACM) and other professional bodies, who called
for the creation of standardized CS curricula. Their published
guidelines, which will be examined in the following, have the
explicit goal of remaining valid as technology progresses. In
addition, government reports and official documents cite the
evolution of ICT as a source of problems in the education area
and beyond [18], [19].

Statement 1 could be considered as the statement of a the-
orem whose first line is a hypothesis and whose second line
is the thesis. The assumption “Informatics is a novel and fast
evolving discipline” is established on the basis of facts and is
true beyond any doubt. However—to the best of the author’s
knowledge—nobody has substantiated the conclusion “Hence,
the pedagogy of informatics meets severe obstacles,” which
may be shared in certain situations but is not universally true.
No scholar has proved that the end point follows from the
premise everywhere.

Mathematicians teach that while a proof is required to show
a theorem is true, a single example is sufficient to disprove it.
Presently, there are various fast-paced sectors such as nanotech-
nology, environmental science, and genetics, which do not face
great obstacles in their related educational activities. Similarly,
electronics—a field very close to and partially overlapping
computing—demonstrates that Statement 1 has little ground as
a general rule.

II. FAST-EVOLVING ELECTRONICS

Progress in electronics has revolutionized lifestyles and so-
cial structures from a number of standpoints [20]. Electronics
is at the heart of advanced economies, and no field of industry
can function properly without it. A vast range of devices, from
familiar electronic appliances such as mobile phones and digital
TVs to high-end equipment such as robots, medical appliances,
communication satellites, and environmental facilities, depend
on these technologies [21]. Electronics continues to gain impor-
tance in modern society and even drives the advancement of CS.
Despite its rapid growth, electronics courses do not face content
issues such as those discussed earlier in Section I-A. Curricula
begin with the fundamental principles of electronics—for ex-
ample, Faraday’s law, Kirchhoff’s equations, Ohm’s law, and
Maxwell’s formulas—and proceed toward specialized topics

[22]. The literature on electronics education (EE) reveals a
broad consensus about how it ought to be done. The reader
can get an idea of the scarce amount of works dealing with
EE from the following experiment. If one enters “learning
electronics,” the search engine of the IEEE Electronic Library
displays six results; if he enters “learning programming,” the
results are 123 (data accessed January 2016). In electronics,
there is broad agreement on the way to design appropriate
lessons, and no organization has felt the need to promote the
publication of standard curricula and official guidelines similar
to those created for informatics.

As electronics technology advances, teachers update their
lessons in electronics in a rather straightforward manner. A
new discovery does not threaten the overthrow of the entire
educational program. For example, electronic power courses
can be improved following available criteria [23].

The reader perhaps objects that informatics has developed
so much that now it consists of different subdisciplines. How-
ever, even electronic experts have incorporated new areas into
their discipline—such as bioelectronics, microelectronics and
nanoelectronics, photonics, power electronics, quantum elec-
tronics, and medical electronics—whose formal introduction
into EE did not subvert the broader curriculum. New subject
matter replaces obsolete material, or is added to the curriculum
without great discussion [24]. New topics give substance to new
professional figures and do not raise lively debates comparable
to the discussion occurring in CSE [25].

In summary, electronics demonstrates that rapid innovation
in technologies does not necessarily pose heavy pedagogical
difficulties. EE does not experience obstacles greater than those
common to teachers of any traditional discipline. The case of
electronics thus proves that Statement 1 has no ground as a
theorem.

III. THEORIES

The parallel between CSE and EE may be felt to be over-
simplified. It will be useful to explore the features of the two
fields. In 1968, the ACM published an extensive report on
the CS curriculum to help teachers organize CS courses in
the most appropriate manner. That report was subsequently
updated in two further reports issued at approximately 10-
year intervals: Curriculum 78 [26] and Curricula 91 [27].
The Institute of Electrical and Electronic Engineers (IEEE)
Computer Society published an independent curriculum for
CS and engineering in 1983 and subsequently collaborated
with the ACM to write curricula in 1991 and 2001 [28]. In
1998, UNESCO requested that the International Federation for
Information Processing (IFIP) carry out a curriculum project
for different categories of professionals acting or interacting
with informatics [29]. This work may be considered a successor
of an earlier IFIP/UNESCO curriculum delivered in 1994. A
consortium of 11 major companies dealing with computers in
Europe published guidelines for experts who prepare courses
on computing [30]. More recently, Computing Curricula 2005
[31] produced by the ACM, IEEE, and the Association for
Information Systems identified the distinctive features of five
disciplines of computing and laid down the skill set that every

IEEE TRANSACTIONS ON EDUCATION, VOL. 59, NO. 3, AUGUST 2016 235

Fig. 1. Concept map of electronics (partial copy from [34], reprinted with permission).

graduate in each respective discipline should acquire. Various
professional entities brought forth guidelines for CSE cover-
ing topics such as software engineering [32], liberal arts, and
humanities. In 2013, the ACM put forward a draft version
of the Computer Science Curricula [33], which redefined the
knowledge units and provided concrete guidance on curricular
structure and development in a variety of educational contexts.
In summary, it may be said that the authors of curricula focused
on what should be taught, rather than on how. The experts
were deeply involved in solving various content issues, they
arranged the knowledge areas and the themes to be taught.
They also established the relative importance of the various
topics, their sequential and logical relationships, and the targets
to be reached. A typical challenge is the contrasting needs of
students majoring in CS and those just wishing to program or to
use a spreadsheet. The introductory approaches have common-
alities, but they also have key differences. This issue is well
expressed at the beginning of [33]: “An important challenge
for introductory courses, and a key reason the content of such
courses remains a vigorous discussion topic after decades of
debate, is that not everything relevant to a computer scien-
tist (programming, software processes, algorithms, abstraction,
performance, security, professionalism, etc.) can be taught from
day one.” Such heavy efforts and vexed debates on content
issues are practically absent in EE—why?

The answer appears to be self-evident. Electronics has shared
principles that give order to all the topics and subtopics to
be taught, regardless of whether a course is being held in a
high school, a college, or a university. Educators follow a well-
described theoretical basis that can be logically mapped and
progressively taught from beginning to end, having a clear
picture of where the topics fit in the scheme of things. The
strong theoretical underpinning in electronics casts light on the
entire matter and minimizes pedagogic challenges.

By way of illustration, the concept map of electronics (see
Fig. 1) links the various topics both to one another and to the
closely related disciplines of chemistry and physics. This con-
cept map is directly inspired by the theoretical achievements of
electronics—for example, Ampère’s circuital law, Coulomb’s
electrostatic law, the Lorentz force in electromagnetic fields,
Joule’s laws, Kirchhoff’s circuit equations, Maxwell’s equations
of classical electromagnetism, Ohm’s equation for conductors,
and Thévenin’s theorem for resistive circuits—which have the
property of being connected to one another with precision.

The same cannot be said for CS. Published literature shows
an assortment of concept maps of informatics used for edu-
cational purposes—for instance, [35]–[37]—but these do not
derive from the CS theories strictly speaking since the theo-
retical achievements underpinning CS do not offer a consistent
support. Mathematics has infiltrated computing as extensively
as some people consider it to be a branch of CS, but CS has
no unified theoretical scheme. In other words, several theories
certainly underpin informatics, but this wealth of theories does
not make a coherent knowledge base. To discuss this aspect of
informatics, some theoretical frameworks regarded as relevant
references in the literature are discussed here.

Relational algebra was proposed by Codd as a basis for
database query languages [39].

Category theory formalizes mathematical structures in terms
of collections of objects and arrows, also called morphisms.
Categories are currently used to study data types and their
properties [40].

An information theory was developed by Shannon to cal-
culate the limits on reliably communicating data [41]. Fur-
ther applications of this theoretical work include—among
others—lossless and lossy data compression. In addition, many
other information theories have been devised, as will be dis-
cussed in the following.

236 IEEE TRANSACTIONS ON EDUCATION, VOL. 59, NO. 3, AUGUST 2016

Fig. 2. Concept map of the theory of computation (partial copy from [38]).

Lambda calculus or λ-calculus, which was first formulated
by Alonzo Church, is a formal system in mathematical logic
for expressing computation based on functions using variable
binding and substitution [42].

Theory of computation deals with how efficiently a problem
can be solved using an algorithm [43]. This construction in-
cludes the computability theory, also called recursion theory.
Recursive methods of computation play the major role in
this field, as well as explore the possibility of calculating a
complicated function by means of a mechanical process [44].
Computational complexity theory, which is associated with
this framework, focuses on classifying computational problems
according to their inherent difficulty and then relating these
classifications [45]. EXPTIME and NPSPACE are examples of
significantly complex classes (see Fig. 2).

Propositional calculus, also called propositional logic or
sentential calculus, deals with the study of compound proposi-
tions formed with the use of logical connectives such as “and,”
“or,” and “not” [46].

Combinatorics is a field of mathematics that studies count-
able discrete structures [47]. It includes several subfields such as
design theory, partition theory, order theory, and graph theory.

Semiotics treats signs and their meanings [48] and is of-
ten divided into three branches: semantics, which studies the
relations between signs and the things to which they refer;
syntactics, which inquires the relationships between signs in
formal structures; and pragmatics, which studies the relations
between signs and sign-using agents or interpreters.

The laws of software evolution, which have been formulated
by Lehman and Belady starting in 1974 [49], describe a balance
between forces that drive changes in programs, as well as forces
that slow down software evolution.

Cryptography is heavily based on mathematical computa-
tions and schemes that demonstrate if and when a secret code
can be broken [50].

The reader can note how these constructions focus on spe-
cialized arguments that appear as narrow questions with respect
to the broad scenario addressed by the authors of curricula.

Each framework deals with a limited theme, whereas informat-
ics education experts take a 360◦ view of the domain. Com-
puting theories do not offer a real epistemological contribution
because of their partial range of vision. Each construction was
designed with a different goal in mind and does not contribute
to establishing the globally consistent frame needed. Some
sections of the listed theories may be logically connected, for
example, one can relate the subtopics within the theory of
computation (see Fig. 2), but this arrangement might merely
help specialist education programs.

The partial results accomplished by Ohm, Lorentz, Kirchhoff,
Maxwell, and others have the virtue of offsetting mutual de-
ficiencies. The various equations of electronics are similar to
the pieces of a jigsaw. As an image can be achieved by as-
sembling the jigsaw, so scientists can achieve an understanding
of electronics. The partial theories of CS, however, do not
offer a similar benefit; they do not—nor can they—provide the
needed assistance to the educators. This is not simply a question
of shared concepts or engendering a spirit of cooperation;
significant incongruities emerge in the published works.

Theories that treat the same topic may not be connected ei-
ther logically or causally, or by shared characteristics. As a case
in point, the theory of computation gives support to imperative
programming [51]; λ-calculus is able to explain functional pro-
gramming [52]; relational algebra sustains database languages,
and a special model formalizes object-oriented programming.
All these theoretical frameworks refer to programming, but do
not make a consistent corpus of equations and explanations.

Two or more theories may deal with a single topic, but pursue
different targets. For instance, over 30 theories of information
have been put forward to illustrate the prismatic nature of
information [53]. These diverge in many respects, such as the
approach they follow, the starting points of the enquiries, the
purposes of the authors, or the relation with technology; a
shared criterion for selecting them has not been established, and
the concept of information still remains puzzling.

Several researchers develop very abstract frameworks; that
is to say, the intended tenets have a weak relationship with
reality and appear somewhat unmanageable to practitioners.
For example, the following abstract models of computation
coexist with the Turing machine: the μ-recursive functions,
Markov algorithms, the register machine, and the P ′′ ma-
chine [54]. There are evident links between combinatorics and
digital techniques—for example, cryptography and Shannon’s
theory—but a rigorous justification of digital and analog signals
is missing [53].

Some theoretical frameworks contradict each other. For
Turing, the program is the solution to a mathematical problem.
By definition, a correct mathematical solution is eternal, and
thus, a software program should never change. In contrast,
Lehman addresses the problem of software evolution and fixes
the laws that regulate this phenomenon. Semioticians investi-
gate the meanings of signs in a systematic manner, but Shannon
openly rejects semantics and claims it is “irrelevant to the
engineering problem” [41].

Some CS theories seem intriguing as they cross various
disciplines. For example, λ-calculus has applications in mathe-
matics, philosophy, and linguistics, as well as in computing, but

IEEE TRANSACTIONS ON EDUCATION, VOL. 59, NO. 3, AUGUST 2016 237

these do not contribute to setting up the exhaustive knowledge
framework of informatics.

In conclusion, neither a single theory nor the ensemble of
theories underpinning computing leads to the comprehensive
framework that should help educators to prepare curricula and
resolve the concerns of those who have examined computing
theories since the inception of the field. Writers soon became
aware that theoretical inquiries constitute the weak side of
informatics [55]. Hartmanis made some remarks about the
nature of theoretical CS and the research conducted in this
area [56]. Demeyer observed how computing is a field deeply
rooted in mathematics; this leads to abstract theories, but the
field’s extensive involvement engineering results in a dualism
that tends to compound the problem of CS identity [57]. Tedre
pointed out that, despite the short history of computing, there is a
great variety of different approaches, definitions, and outlooks
on computing as a discipline; he developed an insight into the
scientific status of CS after the contribution of various thinkers
[58]. Other scholars quarrel about computing theories with a
special feeling for educational needs. Barnes et al. argued about
the interplay between CS constructions and the CS curricula
[35]. Hoare guessed that the cultures of science and engi-
neering, which dominate the digital domain, should cooperate
toward a common target, such as a grand unified theory of
programming [59]. Denning, who is an active advocate of
computing as a domain of science on par with the traditional
physical and social sciences, has recently relaunched the idea
of unifying CS under the umbrella of general principles [60].

Other educators decide to follow the guidance of modern
theories on computing and conclude with some critical remarks
upon those experiences [61], [62].

The shortage of suitable theoretical support has nontrivial
consequences; the following paragraph comments on the work
of educators who prepared computing curricula and wrestled
with demanding content issues. They achieved a noteworthy
job in several stages, but the results do not appear to be fully
satisfactory. Van Veen et al. and Atlee et al. argued on the effec-
tiveness of the curricula lately delivered [63], [64]. The Ameri-
can National Science Foundation recently notes: “Despite the
deep and pervasive impact of computing and the creative
efforts of individuals in academic institutions, undergraduate
computing education today often looks much as it did several
decades ago” [65].

In response to this criticism, various researchers try to untan-
gle the content issues of informatics, to improve the knowledge
organization of this discipline and facilitate the preparation of
curricula [66]. Others clarify the representation of the topic
areas pertaining to CS curricula and their interrelationships
[67]. Some scholars have observed how the use of the same
language in different topic contexts compounds the content
issues. The Computing Ontology Project has been sponsored
by the ACM to establish a common language for educational
cooperation across the breadth and depth of computing-related
domains [68].

The conventional framework for the CS body of knowledge
has been updated in ACM/IEEE Curriculum 2013 [34]; this
includes 18 modules that are all key computing technologies.
In other words, the lack of shared fundamentals yields curricula

strongly orientated to practical services, such as coding a pro-
gram, using spreadsheets, or emailing a message. It is natural
for teachers—lacking a robust theoretical support—to commit
themselves to “service-orientated activity.” Technical themes
guide the lessons, even in introductory courses [69], [70]. It
is evident how this didactical style seriously circumscribes the
depth of the discourses on computing. Denning complained
that computing is still widely perceived as the typical program-
mer’s field [71]. Ben-Ari argued that the common difficulties
experienced by novices could be explained by CSE being
heavily weighted on the side of bricolage and a too early
use of the computer [72]. Finally, a teaching process, even
when optimized and updated, turns out to be provisional if
it is based on specialist subjects because specialist solutions
change with time. The selection of topics and the preparation
of a curriculum become particularly stressful when educators
are required to update a significant lesson. An example of this
would be the dispute about the substitution of the language
Pascal with Java or C++. The objects-first vs. procedures-
first debate has lasted over a decade, and still renders little
guidance on what would be an appropriate way to introduce
programming [73].

IV. CONCLUSION

This paper does not intend to establish the superiority of one
discipline over another, nor to develop an abstract discussion
around the common myth expressed in Statement 1. Rather,
the author means to show how some CSE experts, influenced
by this belief, meet various difficulties. In particular, schol-
ars attack the demanding content issues of curricula without
sufficient theoretical assistance and overlook the role of the
underpinning principles of informatics. In practice, they have
a mass of concepts, but lack an effective network of logical
connections to order them. The CS educators who deal with
the breadth and depth of computing must undertake ponderous
additional work that the colleagues of other rapid evolving
sectors omit or are far less involved in.

This paper has been written with the goal of helping to
mature a realistic vision on the part of the scientific community.
The author’s goal was to illustrate the impact of the theories
on CSE researchers’ output and to show how inexact ideas
lead scholars to lose energies and to double efforts beyond
an individual’s will and skill. Finally, the author of this paper
expects that a research project will be undertaken to carry out
a comprehensive study of computing. This innovative initiative
would benefit several scientific sectors.

PAOLO ROCCHI

IBM
00144 Rome, Italy

Research Center on Information Systems (CeRSI)
LUISS Guido Carli University
00197 Rome, Italy
(e-mail: procchi@luiss.it)

238 IEEE TRANSACTIONS ON EDUCATION, VOL. 59, NO. 3, AUGUST 2016

REFERENCES

[1] N. Wirth, “Computing science education: The road not taken,” in Proc.
Conf. Innov. Technol. Comput. Sci. Educ., Aarhus, Denmark, 2002,
pp. 1–3.

[2] C. Yehezkel and B. Haberman, “Bridging the gap between school com-
puting and the ‘real world’,” in Proc. Int. Conf. Inf. Secondary Schools,
Evol. Perspectives, Vilnius, Lithuania, 2006, pp. 38–47.

[3] T. Clear, “Software engineering and the academy: Uncomfortable
bedfellows?” SIGCSE Bull., vol. 36, no. 2, pp. 14–15, Jun. 2004.

[4] P. Runeson, “A new software engineering program-structure and initial
experiences,” in Proc. 13th Conf. Softw. Eng. Educ. Training, Austin, TX,
USA, 2000, pp. 223–232.

[5] M. Shaw, J. Herbsleb, I. Ozkaya, and D. Root, “Deciding what to design:
Closing a gap in software engineering education,” in Proc. Int. Softw. Eng.
Educ. Modern Age, St. Louis, MO, USA, 2005, pp. 28–58.

[6] P. Waychal, “The calling of the third dimension,” in Proc. 7th Int. Work-
shop Coop. Human Aspects Softw. Eng., 2014, pp. 123–126.

[7] B. Stroustrup, “What should we teach new software developers? Why?”
Commun. ACM, vol. 53, no. 1, pp. 40–42, Jan. 2010.

[8] M. Guzdial, “What’s the best way to teach computer science to begin-
ners?” Commun. ACM, vol. 58, no. 2, pp. 12–13, Feb. 2015.

[9] I. Miliszewska and G. Tan, “Befriending computer programming: A pro-
posed approach to teaching introductory programming,” in Proc. Inf. Sci.
Inf. Technol., vol. 4, 2007, pp. 277–289.

[10] A. E. Tew, W. M. McCracken, and M. Guzdial, “Impact of alterna-
tive introductory courses on programming concept understanding,” in
Proc. 1st Int. Workshop Comput. Educ. Res., Seattle, WA, USA, 2005,
pp. 25–35.

[11] A. Pears et al., “A survey of literature on the teaching of introduc-
tory programming,” ACM SIGCSE Bull., vol. 39, no. 4, pp. 204–223,
Dec. 2007.

[12] T. Greening, Ed., Computer Science Education in the 21st Century.
New York, NY, USA: Springer-Verlag, 2000.

[13] A. T. Chamillard and L. D. Merkle, “Evolution of an introductory com-
puter science course: The long haul,” J. Comput. Sci. Colleges, vol. 18,
no. 1, pp. 144–153, Oct. 2002.

[14] R. Lister, “After the gold rush: Toward sustainable scholarship in com-
puting,” in Proc. 10th Australasian Comput. Educ. Conf., Darlinghurst,
NSW, Australia, 2008, pp. 3–18.

[15] A. B. Tucker, “Strategic directions in computer science education,” ACM
Comput. Surveys, vol. 28, no. 4, pp. 836–845, Dec. 1996.

[16] J. Liu, “Computing as an evolving discipline: 10 observations,” Computer,
vol. 40, no. 5, pp. 112–111, May 2007.

[17] A. N. Kumar, R. K. Shumba, B. Ramamurthy, and L. D’Antonio, “Emerg-
ing areas in computer science education,” in Proc. 36th SIGCSE Tech.
Symp. Comput. Sci. Educ., St. Louis, MO, USA, 2005, pp. 453–454.

[18] House of Commons, “Harmful content on the Internet and in video
games,” Culture, Media and Sport Committee, Tenth Report of Session
2007–08, vol. 2, London, U.K.: Blackwell, 2007.

[19] United States Congress House, “Improving management and acquisi-
tion of information technology systems in the Department of Defense,”
Committee on Armed Services, Subcommittee on Emerging Threats and
Capabilities, U.S. Government Printing Office, 2011.

[20] F. Clifton, Inventing the Future: How Sciences and Technology Transform
our World. Westchester, CA, USA: Hughes Aircraft Co., 1993.

[21] D. L. Morton and J. Gabriel, Electronics: The Life Story of a Technology.
Baltimore, MD, USA: Johns Hopkins Univ. Press, 2007.

[22] D. Crecraft and D. Gorham, Electronics. Boca Raton, FL, USA: CRC
Press.

[23] L. Zhao and F. Mak, “Building learning bridges among undergraduate
courses of electronics, power electronics and electric drives lab,” in Proc.
Frontiers Educ. Conf., Las Vegas, NV, USA, 2010, pp. F2F.1–F2F.5.

[24] E. A. Mc Shane, M. Trivedi, and K. Shenai, “An improved ap-
proach to application-specific power electronics education: Curricu-
lum development,” IEEE Trans. Educ., vol. 44, no. 3, pp. 282–288,
Aug. 2001.

[25] UNESCO, “UNESCO ICT Competency Framework for Teachers,” 2011.
[Online]. Available: http://unesdoc.unesco.org/images/0021/002134/
213475e.pdf

[26] R. H. Austing, B. H. Barnes, T. Della Bonnette, G. L. Engel, and
G. Stokes, “Curriculum’78: Recommendations for the undergraduate pro-
gram in computer science: A report of the ACM curriculum committee
on computer science,” Commun. ACM, vol. 22, no. 3, pp. 147–166,
Mar. 1979.

[27] ACM/IEEE-CS Joint Curriculum Task Force, “Computing Curricula
1991,” IEEE Computer Society Publication, 1991.

[28] The Joint Task Force on Computing Curricula ACM-IEEE, “Computing
Curricula 2001 Final Report,” 2001. [Online]. Available: http://www.
computer.org/education/cc2001/

[29] F. Mulder and T. van Weert, “ICF/2000 Informatics Curriculum Frame-
work 2000 for Higher Education,” UNESCO/IFIP, 2000.

[30] Career Space, “Curriculum Development Guidelines/New ICT Curricula
for the 21st Century: Designing Tomorrow’s Education,” Office for Offi-
cial Publications of Computing/ICT, 2001.

[31] The Joint Task Force on Computing Curricula, “Computing Curricula
2005: An Overview Report,” 2005. [Online]. Available: http://www.acm.
org/education/curric_vols/CC2005-March06Final.pdf

[32] The Joint Task Force on Computing Curricula IEEE-ACM, “Software
Engineering 2004: Curriculum Guidelines for Undergraduate Degree
Programs in Software Engineering.” Computing Curricula Series, 2004.
[Online]. Available: http://www.sites.computer.org/ccse/SE2004Volume.
pdf

[33] The ACM/IEEE-CS Task Force, “Computing Curricula 2013,” 2013.
[Online]. Available: http://www.acm.org/education/CS2013-final-report.
pdf.

[34] P. Mathys, “Analog electronic concept map,” Univ. of Colorado,
2014. [Online]. Available: http://ecee.colorado.edu/~mathys/ecen1400/
ConceptMaps/ElectricCircuits1.html

[35] B. H. Barnes, G. I. Davida, R. A. Demillo, and L. Landweber, “Theory in
the computer science and engineering curriculum: Why, what, when, and
where,” Computer, vol. 10, no. 12, pp. 106–108, Dec. 1977.

[36] J. B. Gammack, V. Hobbs, and D. Pigott, The Book of Informatics.
Melbourne, Vic., Australia: Cengage Learning, 2011.

[37] A. Mühling, P. Hubwieser, and M. Berges, “Dimensions of programming
knowledge,” in Proc. 8th Int. Conf. Inf. Schools, Situation, Evol., Perspec-
tives, Ljubljana, Slovenia, 2015, pp. 32–44.

[38] Wikis, “Computational complexity theory,” 2015. [Online]. Available:
http://www.thefullwiki.org/Computational_complexity_theory

[39] E. F. Codd, “A relational model of data for large shared data banks,”
Commun. ACM, vol. 13, no. 6, pp. 377–387, Jun. 1970.

[40] M. Bar and C. Wells, Category Theory for Computing Science.
Englewood Cliffs, NJ, USA: Prentice-Hall, 1995.

[41] C. E. Shannon, “A mathematical theory of communication,” Bell Syst.
Tech. J., vol. 27, no. 3, pp. 379–423, Jul. 1948.

[42] J. R. Hindley and P. S. Jonathan, Lambda-Calculus and Combinators: An
Introduction, 2nd ed. Cambridge, MA, USA: Cambridge Univ. Press,
2008.

[43] M. Sipser, Introduction to the Theory of Computation, 3rd ed. Boston,
MA, USA: Cengage Learning, 2013.

[44] S. B. Cooper, Computability Theory. Dordrecht, The Netherlands:
Chapman & Hall, 2004.

[45] S. Arora and B. Barak, Computational Complexity: A Modern Approach.
Cambridge, U.K.: Cambridge Univ. Press, 2009.

[46] A. Prior, Formal Logic, 2nd ed. Oxford, U.K.: Oxford Univ. Press,
1990.

[47] M. Bóna, A Walk Through Combinatorics, 3rd ed. Singapore: World
Scientific, 2011.

[48] U. Eco, Semiotics and the Philosophy of Language. Bloomington, IN,
USA: Indiana Univ. Press, 1986.

[49] I. Herraiz, D. Rodriguez, G. Robles, and J. M. Gonzalez-Barahona, “The
evolution of the laws of software evolution,” ACM Comput. Surveys,
vol. 46, no. 2, pp. 1–28, Nov. 2013.

[50] G. Baumslag, B. Fine, and M. Kreuzer, A Course in Mathematical
Cryptography. Berlin, Germany: De Gruyter, 2015.

[51] D. A. Z. Zuhud, “From programming sequential machines to par-
allel smart mobile devices: Bringing back the imperative paradigm
to today’s perspective,” in Proc. Int. Conf. Inf. Technol. Asia, 2013,
pp. 1–7.

[52] B. J. MacLennan, Functional Programming: Practice and Theory.
Boston, MA, USA: Addison-Wesley, 1990.

[53] P. Rocchi, Logic of Analog and Digital Machines, 2nd ed. Huntington,
NY, USA: Nova, 2012.

[54] F. Maribel, Models of Computation: An Introduction to Computability
Theory. New York, NY, USA: Springer-Verlag, 2009.

[55] R. T. Boute, “On the shortcomings of the axiomatic approach as presently
used in computer science,” in Proc. Conf. Des., Concepts, Methods Tools,
1988, pp. 184–193.

[56] J. Hartmanis, “Observations about the development of theoretical com-
puter science,” in Proc. 20th Annu. Symp. Found. Comput. Sci., 1979,
pp. 224–233.

[57] S. Demeyer, “Research methods in computer science,” in Proc. 27th IEEE
Int. Conf. Softw. Maintenance, 2011, p. 600.

http://unesdoc.unesco.org/images/0021/002134/213475e.pdf
http://unesdoc.unesco.org/images/0021/002134/213475e.pdf
http://www.computer.org/education/cc2001/
http://www.computer.org/education/cc2001/
http://www.acm.org/education/curric_vols/CC2005-March06Final.pdf
http://www.acm.org/education/curric_vols/CC2005-March06Final.pdf
http://www.sites.computer.org/ccse/SE2004Volume.pdf
http://www.sites.computer.org/ccse/SE2004Volume.pdf
http://www.acm.org/education/CS2013-final-report.pdf
http://www.acm.org/education/CS2013-final-report.pdf
http://ecee.colorado.edu/~mathys/ecen1400/ConceptMaps/ElectricCircuits1.html
http://ecee.colorado.edu/~mathys/ecen1400/ConceptMaps/ElectricCircuits1.html
http://www.thefullwiki.org/Computational_complexity_theory

IEEE TRANSACTIONS ON EDUCATION, VOL. 59, NO. 3, AUGUST 2016 239

[58] M. Tedre, “Computing as a science: A survey of competing viewpoints,”
Minds Mach., no. 21, pp. 361–387, Aug. 2011.

[59] T. Hoare, “Science and engineering: A collusion of cultures,” in Proc. Int.
Conf. Dependable Syst. Netw., 2007, pp. 2–9.

[60] P. J. Denning and C. H. Martell, Great Principles of Computing. Boston,
MA, USA: MIT Press, 2015.

[61] V. Y. Shen, S. D. Conte, and H. E. Dunsmore, “Software sci-
ence revisited: A critical analysis of the theory and its empirical
support,” IEEE Trans. Softw. Eng., vol. SE-9, no. 2, pp. 155–165,
Mar. 1983.

[62] R. L. Constable, “Experience using type theory as a foundation for com-
puter science,” in Proc. 10th Annu. IEEE Symp. Logic Comput. Sci., 1995,
pp. 266–279.

[63] M. Van Veen, F. Mulder, and K. Lemmen, “What is lacking in curriculum
schemes for computing/informatics?” ACM SIGCSE Bull., vol. 36, no. 3,
pp. 186–190, Sep. 2004.

[64] J. M. Atlee, R. J. LeBlanc, T. C. Lethbridge, A. Sobel, and J. B. Thompson,
“Reflections on software engineering 2004: The ACM/IEEE-CS guide-
lines for undergraduate programs in software engineering,” in Proc. Int.
Conf. Softw. Eng. Educ. Modern Age, 2004, pp. 11–27.

[65] NSF, “NSF provides funding to transform computing education,”
Press Release 07-131, Oct. 2007. [Online]. Available: https://www.nsf.
gov/news/news_summ.jsp?cntn_id=110158

[66] R. Kamali, L. Cassel, and R. LeBlanc, “Keeping family of computing
related disciplines together,” in Proc. 5th Conf. Inf. Technol. Educ., 2004,
pp. 241–243.

[67] L. N. Cassel et al., “A synthesis of computing concepts,” SIGCSE Bull.,
vol. 37, no. 4, pp. 162–172, Dec. 2005.

[68] L. N. Cassel, G. Davies, R. LeBlanc, L. Snyder, and H. Topi, “Using
a computing ontology as a foundation for curriculum development,”
in Proc. 6th Int. Workshop Ontol. Semantic Web E-Learning, 2008,
pp. 21–29.

[69] K. P. Bruce, “Controversy on how to teach CS1: A discussion on the
SIGCSE-members mailing list,” SIGCSE Bull., vol. 36, no. 4, pp. 29–34,
Dec. 2005.

[70] M. Piteira and C. Costa, “Computer programming and novice program-
mers,” in Proc. Workshop Inf. Syst. Des. Commun., Lisboa, Portugal,
2012, pp. 51–53.

[71] P. J. Denning, “Great principles in computing curricula,” in Proc. 35th
SIGCSE Tech. Symp. Comput. Sci. Educ., Norfolk, East Anglia, 2004,
pp. 336–341.

[72] M. Ben-Ari, “Constructivism in computer science education,” J. Comput.
Math. Sci. Teaching, vol. 20, no. 1, pp. 45–73, Mar. 2001.

[73] H. Abelson, K. Bruce, A. van Dam, A. Tucker, and P. Wegner, “The
first-course conundrum,” Commun. ACM, vol. 38, no. 6, pp. 116–117,
Jun. 1995.

Paolo Rocchi (A’11–M’12) received the degree in physics from the University of Rome, Rome, Italy, in 1969.
He has been an Assistant Lecturer with the Institute of Physics, University of Rome. In 1970, he joined IBM, Rome, as a Docent

and a Researcher. Upon retirement in 2010, he was recognized as an Emeritus Docent at IBM for his achievements in basic and
applied research. He is also currently an Adjunct Professor with LUISS Guido Carli University, Rome. He has written over
120 works, including a dozen books. He has carried out research, and is still active, in various fields of computing, including soft-
ware evolution, computer security, education, information theory, fundamentals of computer science, and software engineering.
In addition, he has conducted inquiries into probability theory, reliability theory, and theoretical biology.

Prof. Rocchi is a member of various scientific societies and has received recognition even beyond the scientific community, in
the mass media.

https://www.nsf.gov/news/news_summ.jsp?cntn_id{=}110158
https://www.nsf.gov/news/news_summ.jsp?cntn_id{=}110158

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

