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Abstract—With heterogeneousmulti-core platforms being crucial to execute the highly demandingworkloads ofmodern applications,

memory-access predictability remains a key issue for the system’s safety. Many solutions have been proposed over the years, but none has

been applied on a large scale. Nowadays, we are in front of an unprecedented opportunity to have an impact on commercial platforms: the

Memory SystemResource Partitioning andMonitoring (MPAM) specification byArm, which describes differentmemory-access regulation

mechanisms, presenting a valuable industrial attempt to address this issue. However, several points of the specification are described at a high

level only, leaving plenty of room for interpretation to hardwaremanufacturers. This paper takes a close look at thememory-access regulation

mechanisms in theMPAMspecification and provides some detailed instantiations of suchmechanisms. A fine-grainedmemory contention

analysis is presented for each of them to finally enable a comparison of their worst-case performance.

Index Terms—Real-time systems, memory-access predictability, memory-contention analysis, predictability
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1 INTRODUCTION

MEMORY access predictability is a key challenge for mod-
ern heterogeneous platforms. Indeed, with the advent

of always more demanding workloads such as those
required in autonomous driving applications, the usage of
powerful computing platforms equipped with multiple
processing cores and hardware accelerators is becoming a
de-facto requirement for many systems [1]. On the other
hand, many of those applications are grandly critical, thus
calling for a high degree of predictability.

The real-time systems research community is studying
this problem since almost a decade, proposing many clever
solutions to improve the memory access predictability of
different types of memories and shared buses, both when
accessed by CPU cores [2], [3], [4], I/O devices [5], [6], [7],
and hardware accelerators [8], [9], [10]. These solutions
include the usage of performance counters to keep track of
the number of memory accesses [2], the development of
memory-aware execution models [11], [12], and the design
and implementation of custom components as predictable
buses [7], [13] and memory controllers [14], [15], [16].

While these efforts greatly helped understand andmitigate
manymemory-related problems for predictability, they suffer
from a substantial issue: the lack of general applicability and
built-in support from hardware vendors. Indeed, providing
predictable access to shared memories and buses has been
largely under-considered by chip vendors, but they are the
only ones that can ultimately solve the problem on a large
scale by providing predictable hardware support.

Very recently, a unique opportunity has been offered
from the chip vendors landscape: The Memory System
Resource Partitioning and Monitoring (MPAM) [17] specifi-
cation by Arm. After at most a decade in which this problem
is well-known and continuously studied in the research
community, Arm acted from the industry side by providing
a specification with several guidelines to implement mem-
ory-access regulation mechanisms, thus giving an unprece-
dented opportunity to solve the problem on billions of
Arm-based platforms, while providing the needed long-
term support that is difficult to reach with custom solutions.

Interestingly, to date, the number of platforms imple-
menting the MPAM specification is extremely limited, so
there is hopefully still room to provide recommendations to
chip manufacturers implementing MPAM to maximize exe-
cution predictability. Indeed, the MPAM specification pro-
vides quite a high-level description of the regulation
mechanisms, leaving plenty of room for interpretations to
whoever wants to implement it. Slightly different behaviors
of such mechanisms may lead to drastically different worst-
case timing performance, and therefore each detail needs to
be carefully addressed at design time.

When “measuring” the predictability of a system compo-
nent, a key metric is the accuracy that we can achieve in
deriving analytical bounds. Indeed, while other kinds of per-
formance indicators, such as those that can be collected by
running the system in simulation or implementing a proto-
type, are useful and complementary to the analytical charac-
terization of the worst-case latency that can be experienced
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in accessing a memory-system component, the possibility of
deriving accurate latency bounds really makes a system
more or less amenable to certification.

Contribution. In the light of these facts, this paper pro-
poses an analysis-driven evaluation of a set of MPAM
mechanisms. First, we take a close look at the MPAM spec-
ification, and in particular to those mechanisms aimed
at achieving predictability at the level of the Double
Data Rate Synchronous Dynamic Access Memory (DDR
SDRAM) memory. While doing this, we highlight each
step in which the specification is missing relevant informa-
tion to unambiguously specify the behavior of a mecha-
nism. We then propose a number of different lower-level
specifications for the studied mechanisms, providing all
the required elements to enable real-time analysis. This
allows building a memory-contention analysis based on
an optimization problem. Thanks to the modularity of the
approach, mechanism-specific constraints are derived and
independently studied while keeping the overall structure
of the analysis framework unaltered. Finally, an analysis-
driven comparison of the studied mechanisms is pre-
sented, reaching conclusions on their effectiveness in
enabling time predictability.

2 ESSENTIAL BACKGROUND ON DDR DRAMS

A DRAM memory device consists of a set of memory chips
organized into ranks. Each rank is further divided into mul-
tiple banks. A bank consists of a matrix of memory cells, and
it is provided with a row buffer, which behaves similarly as a
cache for the memory bank: multiple consecutive accesses
to the same row result in smaller lateness. To access a spe-
cific memory cell, the content of its row in the matrix needs
to be copied into the row buffer. Since the row buffer can
store at most one row at a time, this operation may involve
copying back the row currently stored in the row buffer. A
memory access targeting a row contained in the row buffer
is said to be a row-hit; otherwise, it is said to be a row-conflict.

When a row-hit occurs, the memory access (either a read
or a write) can be performed by means of the CAS (Column
Access Strobe) DRAM command.

In case of a row-conflict, three commands need to be
issued in sequence. The first one is the PRE (PREcharge) com-
mand, which copies back the content currently stored row-
buffer in the corresponding DRAM row; the second one is
the ACT (ACTivate) command, which copies the data from
the target DRAM row to the row buffer; the last one is the
CAS command, needed to actually perform the operation.

The access to the DRAMmemory is orchestrated by amem-
ory controller (MC), which collects the requests incoming from
the processing elements and routes DRAM commands to the
DRAM chips via the buses that connect them. The memory
controller and the DRAMchips are interconnected bymeans of
two buses, one for data and one for commands. Memory
requests directed to different banks can be handled in parallel
if no contention occurs in the two buses. Thememory controller
is responsible to implement the scheduling logic for memory
requests. The timing constraints to be fulfilled between conse-
cutive transmissions of commands and data on the DRAM
buses are regulated by the JEDEC (Joint Electron Device Engi-
neering Council) standard for DRAM memories, and they can

be coarsely classified into intra-bank constraints, i.e., related to
commands and data targeting the same bank, and inter-bank
constraints, i.e., related to different banks. More details on
the JEDEC timing constraints can be found in the appendix,
available online.

3 SYSTEM MODEL

The system comprises a set P ¼ fp1; . . . ; pPg of P identical
processing elements (i.e., cores or other bus masters). Proc-
essing elements implement the out-of-order execution para-
digm and access a globally-shared memory by means of an
interconnect and a memory controller.

All the processing elements share a global DRAMmemory
G. A crossbar switch allows conflict-free point-to-point com-
munication between each processing element and the DRAM
memory controller. We consider a single-channel [18] and sin-
gle-rankDRAMsubsystem,where theDRAMmemory is com-
posed of one rank divided into a setB ofNB banks.

Following the MPAM specifications, different sources of
memory transactions are identified by partition identifiers
(PARTIDs). This work considers a set R of PARTIDs, where
each individual PARTID ri 2 R is used to determine the
partitioning of memory resources. As extensively discussed
later in Section 4, a PARTID can be, for example, assigned
to a task or a virtual machine.

Memory Controller Model. In this paper, we build on the
memory controller (MC) model used in previous work [19],
which is inspired to realistic designs used both by the
industry [20], [21], [22] and academia [18], [23], [24]. Its
high-level structure is shown in Fig. 1. For each bank by 2 B,
the MC provides a queue to accommodate read requests.
Each of these queues exposes at most one request that is
ready for inter-bank arbitration. An inter-bank scheduler
selects the request to be forwarded to the DRAM memory
among those exposed by the intra-bank queues. Requests
are in general composed of multiple commands (i.e., the
PRE, ACT, and CAS presented in Section 2). The inter-bank
scheduler selects a new request to be scheduled when the
previous one is completed (if any: otherwise the new
request is served upon arrival), i.e., when all its commands
have been issued, and the corresponding JEDEC constraints
are satisfied. Write requests are enqueued separately and
served in batches [18], [19], [24]. This technique is called
write batching and it is typically used in COTS controllers [21]
to improve the throughput (in architectures where writes do
not stall the processing pipeline and can be processed asyn-
chronously) by giving precedence to reads over writes
while avoiding starvation. This memory controller model is

Fig. 1. Illustration of the MC structure.
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used next as a baseline MC in our paper. As this work stud-
ies different alternatives to implement the MPAM specifica-
tions, when required, the MC behavior defined in this
section is either enriched or revised in some of its parts, but
keeping the overall structure unaltered. The behavior of the
baseline MC is formalized by means of a set of rules, which
are classified into three categories: (i) intra-queue arbitra-
tion rules, (ii) inter-queue arbitration rules, and (iii) write
handling rules.

Intra-queue arbitration rules:

MC1. FCFS: Requests in each per-bank queue are orga-
nized with a first-come-first-served (FCFS) order. FCFS
prioritizes older requests over newer requests.

MC2. FR: In each per-bank queue, row-hits are privileged
over row-conflicts, i.e., the requests causing row-hits
can pass ahead of older requests causing row-con-
flicts. The number of requests that can pass ahead of
any other request, with respect to the FCFS order, is
limited by the constantNthr.

MC3. FR-FCFS: The overall scheduling policy applies, in
order, first ruleMC2 and then ruleMC1.

Inter-queue arbitration rules:

MC4. Round Robin. The inter-bank arbitration employs the
round-robin scheduling algorithm. At most one
request is served at each round-robin turn. No inter-
bank reordering is allowed.

Write handling rules:

MC5. Write Batching. The memory controller enqueues
write requests and serves at least Nwb of them in a
batch as soon as Wthr write requests are enqueued
(referred to as watermarking threshold [24]). The write
batch stops after Nwb writes if there is at least one
pending read, and at least a read request is served
afterwards.

For the write batching, we use the same assumptions as
in prior work [18], [19], [24]. Namely, in our model: (i) the
write buffer has a size Qwrite, (ii) Wthr � Nwb, so that when
the watermark threshold is overtaken there are always at
least Nwb write requests to form a batch, (iii) Qwrite �Nwb <
Wthr, i.e., after issuing a batch the overall number of writes
fall below the watermarking threshold and, (iv) the write
buffer is large enough to allow it never becoming full. Fur-
thermore, it is worth highlighting that if a read request tar-
gets data for which there exists a pending request in the
write buffer, then it is served from the queue without
accessing the DRAM. This is required to guarantee data
causality.

Definitions. We conclude the section by providing some
useful definitions. A request rx issued by ri suffers interfer-
ence from another request ry when ry is served while rx is
pending. Given a request ry, the interference it can cause to
another request rx is either categorized as intra-bank or inter-
bank interference. Namely, ry causes intra-bank interference
to rx if ry and rx target the same bank and rx suffers interfer-
ence from ry. Instead, ry causes inter-bank interference to rx if
rx suffers interference from ry and they target different banks.

The inter-bank interference is further divided into direct
and transitive. A request rx experiences direct inter-bank

interference when it participates to the inter-bank arbitra-
tion (i.e., it is at the top of its intra-bank queue) and suffers
inter-bank interference. On the opposite, a request rx experi-
ences transitive inter-bank when it is not at the top of its
intra-bank queue and suffers inter-bank interference. The
latter phenomenon occurs when rx suffers inter-bank inter-
ference due to other requests causing intra-bank interfer-
ence to it that in turn are suffering inter-bank interference.

A table of symbols is reported in the appendix, available
in the online supplemental material.

4 A CLOSE LOOK AT THE MPAM SPECIFICATION

Next, we proceed in two steps. First, in this section we take
a close look to the official MPAM specification as provided
by Arm [17] for what concerns memory-bandwidth and
memory-priority partitioning. The specification presents
several mechanisms to improve the memory access predict-
ability and isolation, but unfortunately only providing a
high-level and informal descriptions that leave large room
for interpretation to hardware vendors that want to actually
implement such mechanisms.

Later, in Section 5, we propose some possible instantia-
tions of the MPAM specification, with the goal of both
enabling timing analysis and guiding hardware vendors
towards the best design choices to maximize predictability.
In our proposals, to focus on solutions that are practically
viable and that can be integrated with existing architectural
designs with limited efforts, the MPAM mechanisms are
combined with other standard design choices typically
employed in COTS platforms aimed at maximizing aver-
age-case performance and throughput.

Overview. The Memory System Resource Partitioning and
Monitoring (MPAM) [17] specification released by Arm for
Armv8-A is designed for allowing the partitioning of mem-
ory system components (MSCs) shared among different
applications and virtual machines. The specification states
that each MSC, such as caches, interconnects, and DRAM
memory controllers, might support MPAM (page 47
of [17]). The resource partitioning is based on the PARTID,
an identifier that can be assigned, for example, to a VM or a
task (when the MPAM PARTID Virtualization is enabled).
The PARTID is then propagated through the MSCs to allow
resource control and monitoring. When a new memory
request r arrives in an MSC implementing MPAM, the mea-
sured usage of the MSC resources is compared with the con-
trol settings configured for the PARTID to which r is
associated to. The MPAM architecture defines different con-
trol interfaces for MSCs, discussed below.

The MPAM specification provides two main categories of
techniques: those related to caches and those related to
memory bandwidth regulation.

The first category includes cache-portion partitioning, a
mechanism that allows allocating storage portions of the
cache to partitions, and cache maximum-capacity partitioning,
which specifies a capacity limit for the storage used by a
PARTID in the cache. This category is not studied in this
paper. Rather, this work focuses on the second category,
which includes the following memory-access regulation
techniques: memory-bandwidth minimum-maximum partition-
ing, priority partitioning, and memory-bandwidth portion
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partitioning. These three techniques are extensively
reviewed below based on the information provided by the
MPAM specification [17].

4.1 Memory-Bandwidth Min-Max Partitioning

The MPAM reference manual defines an interface for the
management of memory bandwidth by configuring two val-
ues aM

i and am
i for every partition ri. These values respec-

tively represent the maximum and minimum bandwidth to
be assigned to ri (e.g., to a task assigned to ri). They can be
specified by writing in the MPAMCFG_MBW_MAX and
MPAMCFG_MBW_MIN registers, available in every MPAM-
compliant MSC (e.g., a memory controller or an intercon-
nect) that implements this partitioning strategy. Quoting
the MPAM manual “The control parameters for bandwidth par-
titioning schemes are all expressed in a fixed-point fraction of the
available bandwidth”, which means the user can specify, by
means of a percentage, how much of the total bandwidth
can be used by each partition.

Since the MPAM specification does not provide a formal
definition of bandwidth, in compliance with it, we assume
it should be interpreted as the number of memory transac-
tions in a given time interval. The size of such a time inter-
val (for partition ri) is referred to as accounting window and
denoted as wi. Based on these premises, the bandwidth
used by each partition ri can be measured by counting the
number qiðtÞ of transactions served in the current account-
ing window. This value can then be compared with the min-
imum and maximum budget Qm

i and QM
i , derived by the

corresponding bandwidth values am
i and aM

i as Qm
i ¼

am
i � wi

� �
, and QM

i ¼ aM
i � wi

� �
.

To keep track of the bandwidth usage, it is necessary to
define the time interval over which the traffic measurement
is performed. To this end, the MPAM manual proposes two
possible high-level strategies to define a time window: fixed
accounting window and moving accounting window. The
specification also states the vendor is free to implement its
custom accounting window strategy, as long as it is “in line
with the schemes described” above. Since our purpose is to
enable timing analysis, which requires well-defined
accounting windows, this paper considers the fixed
accounting window scheme. Memory traffic is hence mea-
sured by counting the requests issued over a fixed period of
time that periodically repeats. When an accounting window
terminates, a new window begins with no history of the
used bandwidth (i.e., if an accounting starts at t�,
qiðt� þ k � wiÞ ¼ 0; 8ri 2 R; k 2 N). The MPAM specification
offers a configurable register to customize the size of the
window for each PARTID (MPAMCFG_MBW_WINWD),
expressing its length in microseconds.

Next, we provide details on the maximum-minimum
bandwidth partitioning, which may be either jointly or sep-
arately applied by an MPAM implementation.

Memory-Bandwidth Minimum Partitioning (MB-mP).MB-
mP is a bandwidth partitioning strategy based on the design
goal of enforcing a minimum bandwidth to every partition.

When using MB-mP, each PARTID ri is characterized by
a minimum bandwidth am

i . A minimum budget Qm
i is

defined to be compared with the current qiðtÞ value at run-
time. The behavior of MB-mP complies to the following

high-level rules, which have been extracted from the
MPAM specification:

min1 If, during the current accounting window, partition
ri issued less than Qm

i requests (i.e, qiðtÞ � Qm
i ),

requests from PARTID ri are preferentially selected
to be served.

min2 If, during the current accountingwindow, partition ri
already issued at least Qm

i requests (i.e., qiðtÞ > Qm
i ),

“requests from PARTID ri may compete with other
requests, as enabled by other regulation mechanisms
implemented”, if any (e.g., maximum-bandwidth
partitioning).

As one may note, the MPAM specification leaves a lot of
room for interpretation: for example, if qiðtÞ � Qm

i holds for
multiple PARTIDs, it is not specified how their requests
compete with each other. To better specify the behavior of
MB-mP, we later discuss some design choices that we deem
reasonable in Section 5.

Memory-Bandwidth Maximum Partitioning (MB-MP).MB-
MP is a bandwidth partitioning strategy based on the
design goal of enforcing a maximum bandwidth to every

partition. When MB-MP is enabled, each partition ri is

characterized by a maximum bandwidth aM
i assigned to

it. Furthermore, for each PARTID, a boolean flag hi 2
fT; Fg can be configured to control how requests are han-

dled when the current bandwidth consumption is above

the maximum. In the MPAM specification, this flag corre-

sponds to the HARDLIM bit of the MPAMCFG_MBW_MAX

register.
A maximum budget QM

i is defined to be compared with
the current qiðtÞ value at run time. The behavior of MB-MP
complies to the following high-level rules (extracted from
the MPAM specification):

MAX1 If, during the current accounting window, partition
ri issued an amount of memory requests between
Qm

i and QM
i (i.e., Qm

i � qiðtÞ < QM
i ), requests from ri

are served when “there are no competing minimum
bandwidth requests to serve”. Requests for PARTIDs rj
such that Qm

j � qjðtÞ < QM
j compete with each other

to use bandwidth, as allowed by the other imple-
mented MPAM regulation mechanisms.

MAX2 If, during the current accounting window, partition
ri already issued at least QM

i memory requests (i.e.,
qiðtÞ � QM

i ) and hi ¼ F , requests from ri “compete
with other requests to use bandwidth only when there are
no competing requests” to serve for PARTIDs rj 6¼ ri
such that qjðtÞ < QM

j .

MAX3 If, during the current accounting window, partition
ri already issued at least than QM

i memory requests
(i.e., qiðtÞ � QM

i ) and hi ¼ T , requests from ri are not
served and saved for later service, namely, until t2 >
twhen qiðt2Þ < QM

i .

When minimum bandwidth partitioning is not imple-
mented, the rules above still apply considering Qm

i ¼ 0.
Again: these rules are not precise enough in defining the

behavior of MPAM to allow hardware vendors to directly
implement them. To this end, additional design choices
need to be considered, which are crucial to achieve a truly
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predictable behavior. Therefore, later in the paper we dis-
cuss different alternatives to implement the specification.

4.2 Priority Partitioning

The MPAM reference manual defines an interface for the
management of memory requests via the configuration of a
fixed priority for the traffic generated by a specific partition.

To model this strategy, a priority pi is defined to each
partition ri. In MPAM, this priority can actually be assigned
to the PARTID by writing in the INTPRI field of the
MPAMCFG_PRI register of the MSC. In this paper, since the
reference manual describes it as an implementation-defined
behaviour, we assume that higher values of pi correspond
to higher priorities.

4.3 Memory-Bandwidth Portion Partitioning

The MPAM reference manual describes a bandwidth parti-
tioning strategy based on the division of the total available
bandwidth into portions. Portions are not properly defined
by the MPAM specification (it just says that “a portion is a
quantum of the bandwidth”), and every vendor is free to
implement a different strategy to enforce it.

Overall, this mechanism is unfortunately largely unspec-
ified by the standard: Section 9.3.3 of the MPAMmanual [17]
describes it in just five lines (plus a few other lines in
Appendix A.3 to describe the bitmap register, available in
the online supplemental material).

Discussion. MPAM provides very general and flexible
mechanisms that can be applied to different types of
MSCs. Nevertheless, the implementation of the MPAM
specification by hardware vendors requires exploring sev-
eral design choices to be carefully evaluated. To better
understand how to implement the MPAM specification to
maximize predictability and providing recommendations
to hardware vendors, we next explore some possible
implementations of MPAM at the level of the DRAM mem-
ory. Then, we derive a memory contention analysis for
each of them, which is finally used in the evaluation to
compare different design alternatives. In this paper, we
focus on the memory bandwidth maximum-minimum par-
titioning and the priority partitioning. Furthermore, we
considered the first policy only for the case in which the
HARDLIM bit is not set, so that there is no hard limitation
of the maximum number of memory transactions that can
be issued in an accounting window. This is because such a
behavior would introduce a stall for the PARTID under
analysis that requires complex analysis techniques and an
even richer notation that we cannot fit in this paper. For
the same reason, and given its very vague specification
in [17], we leave as a future work the consideration of the
portion partitioning strategy.

5 MODELING MPAM MECHANISMS

Next, we model in detail some solutions to actually imple-
ment MPAM for controlling the contention at the DRAM
level. We start with the MB-mp/MP partitioning scheme.

5.1 MB-mp/MP Partitioning in the MC

The first design choice for implementing this policy consists
in deciding whether to implement it inside the MC, i.e., as

part of its scheduling policy, or outside the MC, making
MPAM acting as a filter for requests arriving at the MC. In
our proposal, we consider the former solution: indeed, the
min-max policy involves a dynamic prioritization of
requests from different PARTIDs that, if implemented out-
side the MC, would be superseded by the internal schedul-
ing policy of the MC.

To study a practical choice from a hardware vendor point
of view, it is highly advisable to integrate MB-mp/MP parti-
tioning with the standard mechanisms that can be found
within a COTS MC, where requests causing row-hits (also
called open-requests, as they target a row that is already
open, i.e., loaded in the row-buffer) are privileged because
they result in a shorter latency and hence maximize
throughput. In the baseline memory controller presented in
Section 3, this typical design choice is specified by Rule
MC2 (FR).

The baseline memory controller model has to be
enriched to cope with the behavior of MPAM’s MB-mP/

MP mechanisms specified by Rules min1, min2, MAX1,

MAX2, and MAX3. We note that such a behavior can be

modeled as an MPAM-related dynamic priority attributed

to memory requests issued by each PARTID ri. The pri-

ority to be assigned to new requests changes over time,

over three classes (i.e., three dynamic priority levels),

depending on whether qiðtÞ < Qm
i , Q

m
i � qiðtÞ < QM

i , or

qiðtÞ � QM
i , as three different priority levels that can be

attributed to memory requests. The three conditions cor-

respond to the priority levels oi ¼ 3 (maximum-priority),
oi ¼ 2 (medium-priority), and oi ¼ 1 (low-priority). Once a

request is assigned a priority, it remains unchanged dur-

ing its entire lifetime.
To proceed, we need to define a set of accurate rules to

describe how the dynamic priority of the MPAM min-max
partitioning changes over time, and how the budget of
transactions is managed:

mM1 Counter reset.At the system startup and every wi time
units since then, the counter qiðtÞ is set to 0.

mM2 Dynamic priority. If qiðtÞ < Qm
i , memory requests

from ri arriving at the MC are assigned with priority
oi ¼ 3; If Qm

i � qiðtÞ < QM
i requests from ri are

assigned with priority oi ¼ 2; If qiðtÞ � QM
i requests

from ri are assigned with a priority oi ¼ 1; once a
request is assigned to a priority, its priority does not
change.

mM3 Counter increment. Every time a memory request
from ri enters the MC, qiðtÞ is incremented by one.

Building on these priority classes, the intra-bank arbitra-
tion behavior is summarized by the rules that refine Rules
MC1 andMC2 of the baselinememory controller (Section 3).

mM4. MINMAX. Each per-bank queue is ordered by
MPAM-related dynamic priority. FCFS tie-breaking
is used for requests with the same priority.

mM5. FR-MINMAX. The overall intra-bank scheduling pol-
icy applies, in order, first rule MC2 and then rule
mM4.

The resulting intra-queue scheduling behavior privi-
leges, in order, (i) row-hits over row-conflicts, and (ii)
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requests with a higher MPAM-related dynamic priority
over requests with a lower priority.

Finally, we left both the inter-bank arbitration (Rule
MC4) and write batching (Rule MC5) policies unaltered
with respect to the baseline memory controller of Section 3.

Indeed, implementing the MB-mp/MP partitioning at
the inter-bank level would privilege accesses to certain
banks, possibly causing long delays to requests targeting
such banks. For this reason, we deem a reasonable solu-
tion to keep the fair round-robin policy at the inter-bank
level. Second, the considered baseline meta-memory con-
troller handles write requests in batches, i.e., in a
delayed fashion with respect to when they are issued.
Since instead the dynamic priority of the MB-mp/MP
policy changes over time, using it in a delayed fashion
may make little sense.

5.2 Priority Partitioning in the MC

As discussed in Section 4.2, under priority partitioning each
PARTID ri 2 R is assigned to a static priority pi. Therefore,
for each ri 2 R we define the sets of PARTIDs rj 2 R n ri
with higher, equal and lower priorities as hpi, epi, and lpi,
respectively. Requests inherit the priority of the issuing
PARTID. The priority assigned to each PARTID has an
effect in defining the intra-bank scheduling policy. Combin-
ing it with the prioritization of row-hits over row-conflicts
typically used in COTS memory controllers, we consider
two different possible variants for the intra-bank behavior of
priority partitioning. The first, called PP-FR, retains the pri-
oritization of requests directed to open rows and is specified
by the following rules:

PP1. Priority Partitioning. Requests in each per-bank
queue are ordered according to the priority assigned
to the corresponding PARTID. FCFS tie-breaking is
used for requests with the same priority.

PP2. The overall intra-bank scheduling policy applies, in
order, first ruleMC2 (Section 3) and then rule PP1.

The second variant, called FR-PP, privileges requests
directed to open rows only when there is a tie in priority,
and is specified by Rule PP1 and the following one:

PP3. The overall intra-bank scheduling policy applies, in
order, first rule PP1 and then ruleMC2.

As for the previous case, we leave the inter-bank arbitra-
tion policy (Rule MC4) unaltered with respect to Section 3,
to avoid privileging accesses to certain banks. Similarly, we
leave the write batching rule un-altered with respect to the
baseline MC (Rule MC5), as writes are handled asynchro-
nously in MCs with write batching.

6 CONTENTION ANALYSIS: PRELIMINARIES

The analysis approach used in this paper is based on a
linear programming formulation. Given an arbitrary
schedule S and an arbitrary time window of length D, we
define a set of variables and constraints to bound the
memory contention experienced by read requests in the
time window. As detailed in the appendix, available in
the online supplemental material, the memory contention
analysis can be then integrated with a response-time

analysis to compute memory-aware response-time
bounds [19], [25].

As noted in prior work [19], when deriving a response-
time bound, only the contention due to reads actually
delays the task under analysis. Indeed, writes do not stall
the processing pipeline and can be handled asynchronously
by the MC (if the write buffer is large enough, as assumed
in Section 3).

The proposed optimization problem maximizes the
delays experienced by memory transactions. Constraints
to exclude impossible contention scenarios are enforced
so that the solution of the optimization problem yields a
safe memory-related delay bound. This approach is
highly compositional: each constraint can be proved in
isolation (i.e., with local reasoning) and reused whenever
the property encoded by the constraint holds in the ana-
lyzed setting.

In this work we extensively benefit of this analysis
approach: given that the scope of this work is to analyze
several different MPAM mechanisms, it is possible to inde-
pendently study each mechanism, derive the corresponding
constraints, and finally plug them in the optimization prob-
lem together with those of the baseline MC.

Before proceeding, we introduce some additional nota-
tion that is required for the analysis. As in prior work [18],
[24], we further introduce the architectural constantNpend >
1 that defines the maximum number of outstanding read
requests in the memory controller1.

The proposed analysis is general enough to be applied
under different circumstances: for this reason, we do not
tie our analysis to a specific task model. Nevertheless, as
an example, in the appendix, available in the online sup-
plemental material, we show how to analyze the mem-
ory contention of sporadic real-time tasks under fixed-
priority partitioned scheduling, also providing specific
definitions of the following functions. We consider each
PARTID to be associated with a sequential computa-
tional activity that issues memory transactions over time
that are modeled as follows. Functions RDj;uðDÞ and
WRj;uðDÞ bound the maximum number of read and write
requests, respectively, issued from rj to a bank bu 2 B in
any interval of length D. These functions must include
all the requests issued in the considered system. Func-
tions RDjðDÞ and WRjðDÞ are defined for the same pur-
pose, but considering all requests irrespectively of the
target bank. Similarly, RIj;uðDÞ and WIj;uðDÞ bound the
number of reads and writes from rj 2 R to bank bu 2 B
in any interval of time D that are issued by rj when it is
the PARTID under analysis. RIjðDÞ and WIjðDÞ bound
the same quantities but irrespectively of the target bank.
When clear from the context, the dependency on D is
hereafter omitted for brevity.

1. For example, in [24] this constant is given by the size of the Miss
Status Handling Register (MSHR) of the shared last level cache, as in
architectures with caches accesses to the DRAM are generated only in
correspondence of a cache miss. Therefore, the size of this register
determines the maximum number of cache misses that can be handled
simultaneously, and consequently the maximum number of outstand-
ing requests in the memory controller.

ZINI ETAL.: ANALYZING ARM’S MPAM FROM THE PERSPECTIVE OF TIME PREDICTABILITY 173



7 BASELINE ANALYSIS FRAMEWORK

This section presents the baseline analysis framework. In
particular, we introduce the modeling variables and the
delay bounds that are common to all settings to be analyzed
for MPAM. While we liberally take inspiration from the
analysis framework of [19], the analysis proposed in this
paper is fundamentally different. Indeed, [19] makes use of
a different model for the cores and tasks. It assumes at most
one pending read at a time from each core, tasks leveraging
a three-phase execution model, and non-preemptive execu-
tion. Furthermore, it does not consider any bandwidth regu-
lation technology. Conversely, this paper proposes a more
general setting where multiple outstanding requests can be
in the MC at the same time from different processing ele-
ments, as MPAM is designed for Armv8-A processors that
leverage the out-of-order execution paradigm, and makes
less stringent assumptions on the execution model.

We focus on the contention experienced by read requests.
Indeed, in both our setting and in [19] writes do not stall the
processing pipeline and the write buffer in the MC is
assumed to never become full. Consequently, contention on
writes issued by ri do not delay ri. Overall, the delay expe-
rienced by read requests is composed of (i) the contention
due to other read requests, and (ii) the contention due to
other write requests. Similarly to [19], we provide an opti-
mization-based approach for bounding the maximum con-
tention due to reads, and a closed form bound for the
contention due to writes. Later, we use the baseline analysis
as the capstone to analyze MPAM.

Therefore, we define four different classes of variables of
the optimization problem to model contention in an arbi-
trary schedule S and in an arbitrary time interval ½t; tþ DÞ,
for each pair of bank by 2 B, PARTID rj 2 R, and requests
from ri to bu. Each class considers a different type of mem-
ory contention:

� XIP
n;j;u 2 f0; 1g: (IP: intra-bank promoted) indicates

whether the n-th request issued by rj 2 R to bank
bu 2 B causes intra-bank interference to any request
of PARTID ri by being promoted by the FR policy.

� XINP
n;j;u 2 f0; 1g: (INP: intra-bank not promoted) indicates

whether the n-th request issued by rj 2 R to bank
bu 2 B causes intra-bank interference to any request
of PARTID ri not because of the FR policy.

� XCP
n;j;u 2 f0; 1g: (CP: cross-bank promoted) indicates

whether the n-th request issued by rj 2 R to bank
bu 2 B causes inter-bank interference to any request
of ri by interfering with a request promoted by the
FR policy.

� XCNP
n;j;u 2 f0; 1g: (CNP: cross-bank not promoted) indi-

cates whether the n-th request issued by rj 2 R to
bank bu 2 B causes inter-bank interference to any
request of ri by interfering with a request that was
not promoted by the FR policy.

For all variable definitions, n 2 f0; . . . ;RDj;uðDÞ � 1g.
To ease the notation, we further define XI

n;j;u;X
C
n;j;u 2

f0; 1; 2g, such thatXI
n;j;u ¼ XIP

n;j;u þXINP
n;j;u and XC

n;j;u ¼ XCP
n;j;uþ

XCNP
n;j;u , to denote the entire intra-bank and inter-bank interfer-

ence, respectively. Note that a request rn can interfere with

different pending requests from ri under analysis in different
ways.

The objective function maximizes the overall memory
contention and it is defined as follows:

max f ¼
X

rj2Rnri

X
bu2B

XRDj;u�1

n¼0

maxT2T �T ðXT
n;j;uÞ

n o
; (1)

where T ¼ fIP; INP;CP;CNPg and �T ðxÞ denotes the conten-
tion delay implied by x requests that generate type-T conten-
tion2. These functions have been established in prior
works [18], [19] and are recalled in the appendix, available in
the online supplementalmaterial, for the sake of completeness.

First, note that the first summation of the objective func-
tion excludes the requests from ri. This is necessary because
these requests cannot be a source of interference for ri (e.g., if
ri is associated to a task, their duration is already taken into
account in the task’s WCET). However, they must be
included in the analysis, given that their presence may allow
additional interference by requests from other PARTIDs.
Second, note that the objective function considers the maxi-
mum among all possible types of contention an arbitrary
interfering request rn may cause to ri. This is because, while
rn can simultaneously interfere in different ways with multi-
ple pending requests issued by ri, the time spent by ri wait-
ing for the memory controller to serve rn simultaneously
elapses for each request that is interfered and it cannot be
longer than the overall time required to serve rn (e.g., think
of a case in which rn interferes with both a request of ri in the
same per-bank queue of rn andwith one in another queue).

7.1 Constraints of Baseline MC

We present several sets of constraints: each of them acts
from a different angle to exclude impossible schedules and
hence improving the accuracy of the analysis. The proofs
are available in Section 3 of the appendix, available in the
online supplemental material.

The first constraint bounds the intra-bank interference
due to requests promoted by FR scheduling.

Constraint 1. For each bank bu 2 B:

X
rj2R

XRDj;u�1

n¼0

XIP
n;j;u � Nthr � RIi;uðDÞ:

The next constraint bounds the inter-bank interference.

Constraint 2. For each bank bu 2 B:

X
rj2R

XRDj;u�1

n¼0

XC
n;j;u �

X
by2Bnbu

 
RIi;y þ

X
rj2Rnri

XRDj;y�1

n¼0

XI
n;j;y

!
:

Constraint 3 bounds the inter-bank interference due to
promoted requests.

2. The maximum term can be linearized using standard techniques
that leverage auxiliary variables and the so-called big-Mmethod [26].
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Constraint 3. For each bank bu 2 B:

X
rj2R

XRDj;u�1

n¼0

XCP
n;j;u �

X
by2Bnbu

X
rj2R

XRDj;y�1

n¼0

XIP
n;j;y:

Finally, the last constraint leverages the constantNpend.

Constraint 4. For each bank bu 2 B:

X
rj2R

XRDj;u�1

n¼0

XINP
n;j;u � ðNpend � 1Þ � RIi;uðDÞ:

7.2 Contention Due to Writes in the Baseline MC

Finally, read transactions can also be delayed by write trans-
actions. Lemma 1 introduces a closed-form bound to the
delay suffered by the read requests of a ri under analysis
due to write requests (Proof in Section 3 of the appendix,
available in the online supplemental material).

Lemma 1. The overall interference suffered by read requests
issued by PARTID ri 2 R due to write requests in any time
interval of length D is bounded by

MCwr
i ðDÞ ¼ �WR �min NRðDÞ �Nwb; NWðDÞ þQwritef g;

(2)
where

NRðDÞ ¼
P

bu2BðRIi;uðDÞ þ
P

rj2Rnri RDj;uðDÞÞ;
NWðDÞ ¼

P
bu2B WIi;uðDÞ þ

P
rj2Rnri WRj;uðDÞ; and �WR

is the maximum delay generated by a write request (defined in
the appendix, available in the online supplemental material).

8 PRIORITY PARTITIONING

Priority partition inherits the same variable definitions,
objective function, and constraints from the baseline analy-
sis of Section 7. To start, we recall that the sets of PARTIDs
rj 2 R (including ri itself) with higher, equal, and lower
priorities are denoted with hpi, epi, and lpi, respectively. In
Section 5.2, two variants of priority partitioning have been
defined: FR-PP and PP-FR, depending on whether the FR
policy prevails on the priority ordering.

We introduce next a constraint, which is common to both
FR-PP and PP-FR, to leverage the priority partitioning for
limiting the interfering requests due to other PARTIDs.

Constraint 5. Under both PP-FR and FR-PP, for each bank bu 2
B,
P

rj2lpi
PRDj;u�1

n¼0 XINP
n;j;u � RIi;uðDÞ:

Proof. The LHS counts the number of reads from rj 2 lpi to
bu that generate intra-bank interference to ri’s requests
not because of the FR policy. By Rule PP1, reads from rj 2
lpi cannot be placed ahead to those issued by ri in the
queue of bu. However, since requests are served non-pre-
emptively, each read r from ri can be delayed by at most
one request from rj 2 lpi that may have started to be
served before r enters the MC. Since ri can issue at most
RIi;uðDÞ requests to bank bu, the constraint follows. tu

Next, we distinguish between the FR-PP and PP-FR.
Under FR-PP, the FR policy is applied before priority

partitioning (Rule PP2). Therefore, Constraint 1 of the base-
line analysis suffices to encode the FR part of the policy.

Conversely, under PP-FR, the priority partitioning policy
prevails over the FR one. This information is used next to
derive an accurate constraint on variablesXIP

n;j;u.

Constraint 6. Under PP-FR, for each bank bu 2 B,P
rj2Rnepi

PRDj;u�1

n¼0 XIP
n;j;u � 0:

Proof. Due to Rule PP3, the priority partitioning policy is
applied before the first-ready policy. Therefore, the
requests promoted due to the FR policy must have the
same priority of those of ri. The constraint follows. tu

The interference due to write requests is bounded as in
Section 7, as this feature of the baseline MC is left unaltered
by the priority partitioning policy.

9 MB-MP/MP PARTITIONING ANALYSIS

Next, we show how to extend the baseline analysis frame-
work to work under the MB-mp/MP policy of MPAM (Sec-
tion 5.1). Aiming at bounding the contention experienced
by a PARTID ri 2 R under analysis, we start providing
some bounds that are useful to formulate fine-grained con-
straints to limit the memory contention.

9.1 Bounds on the Number of Interfering Requests

We first derive two bounds for the requests issued by every
PARTID rj that can be served at a given dynamic priority
oj 2 f3; 2g in any interval of length D. The bounds can be
obtained by considering that, in an arbitrary time interval
½t; tþ DÞ, each PARTID can issue a limited number of
requests before its priority class is changed (rules mM1-
mM3). This is caused by the fact that when rj crosses the
thresholds of Qm

j or QM
j transactions in the accounting win-

dow wj, its priority is decreased by MPAM.

Lemma 2. The number of transactions at priority oj 2 f3; 2g of a
PARTID rj 2 R in any time interval ½t; tþ DÞ is bounded by
I3j ðDÞ :¼ ð D=wj

� �
þ 1Þ �Qm

j and I2j ðDÞ :¼ ð D=wj

� �
þ 1Þ �

ðQM
j �Qm

j Þ respectively.

Proof. We discuss the two bounds separately.
I3j ðDÞ : At priority oi ¼ 3, the PARTID can issue at

most Qm
j transactions for each accounting window before

its priority is decreased to 2 (rulesmM1-mM3).
I2j ðDÞ : Similarly, at priority oi ¼ 2, the PARTID can

issue at most QM
j �Qm

j transactions for each window
before its priority is decreased to 1 (rulesmM1-mM3).

The lemma follows by noting that the number of
requests that can be issued at each priority level during
½t; tþ DÞ is composed of: (i) at most D=wj

� �
�Qm

j and
D=wj

� �
� ðQM

j �Qm
j Þ transactions, respectively, for the

accounting windows starting within ½t; tþ DÞ , and (ii) at
most Qm

j and QM
j �Qm

j transactions, respectively, for a
carry-in accounting window started before time t and
completing in ½t; tþ DÞ. tu

9.2 Bounding the Memory Contention

Consider the PARTID ri 2 R under analysis. With respect
to the case of Section 7, the MB-mp/MP memory controller
analysis needs to re-define variables XINP

n;j;y, as they leverage
rule MC1 that is superseded by Rule mM4. Furthermore,
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we need to introduce some new variables to model the
behaviors that are specific to the MB-mp/MP policy.

Therefore, for each partition rj 2 R, for each memory
bank bu 2 B, and for each pair of MB-mp/MP priorities
oi; oj 2 f1; 2; 3g, we define:

� X
INP;oi;oj
n;j;u 2 f0; 1g indicates whether the n-th request

issued by rj to bank bu is served at dynamic priority
oj and causes intra-bank interference to at least one
request from ri assigned to dynamic priority oi
because of the MB-mp/MP or the FCFS policies.

The objective function is the same used in Section 7, pro-
vided that we redefineXINP

n;j;y ¼ maxoi;oj2f1;2;3gfX
INP;oi;oj
n;j;y g.

The maximum is required because, even though a
request rn can simultaneously interfere with multiple pend-
ing requests from ri having different dynamic priorities, the
time spent by ri waiting for the memory controller to serve
rn simultaneously elapses for each interfered request.

We start introducing bounds for the newly defined varia-
bles. Constraint 7 enforces that, given a priority oi 2
f1; 2; 3g, an interfering request can have only one priority.

Constraint 7. For each PARTID rj 2 R, for each bu 2 B, for

each n 2 ½0;RDj;u � 1�, for each oi 2 f1; 2; 3g:P3
oj¼1 X

INP;oi;oj
n;j;u � 1:

Proof. By contradiction, if the constraint does not hold, i.e.,
more than one variables X

INP;oi;oj
n;j;u is equal to 1 for a given

request, then there exists at least one request that inter-
fered with ri while having more than one priority. This is
impossible by rule mM2, which states that the dynamic
priority of any request cannot change over time. tu

However, Constraint 7 does not prevent to the same (arbi-
trary) request rn from rj to interfere, by taking more than one
dynamic priority oj, with multiple requests of the PARTID
under analysis ri assigned to different priorities (e.g., oi and
another one in f1; 2; 3g n oi). Again, this is clearly impossible
because the dynamic priority of rn does not change over time
due to rulemM2. Constraint 8 excludes this impossible case.

Constraint 8. For each PARTID rj 2 R, for each bu 2 B, for
each n 2 ½0;RDj;u � 1�, for each oj 2 f1; 2; 3g, for each oi 2
f1; 2; 3g, for each oh 2 f1; 2; 3g n oi:

X
INP;oi;oj
n;j;u � 1� P

oh;oj
n;j;u ;

where P
oh;oj
n;j;u ¼

X
ok2f1;2;3gnoj

X
INP;oh;ok
n;j;u ;

Proof. First note that, due to Constraint 7, P
oh;oj
n;j;u can be

either equal to 0 or 1. Observe that P
oh;oj
n;j;u indicates

whether (=1) or not (=0) any request by ri at priority oh 2
f1; 2; 3g n oi is interfered by the n-th request of rj to bank
bu with a priority ok 6¼ oj. If P

oh;oj
n;j;u ¼ 0, it means that rn

does not interfere with a priority ok 6¼ oj. In this case the
constraint has no effect as it simply enforcesX

INP;oi;oj
n;j;u � 1.

Since multiple outstanding requests are allowed by
the MC, ri can have simultaneously pending requests
assigned to dynamic priorities 1, 2, and 3. By contradic-
tion, assume there exists a request rn from rj to bank bu
such that rn takes two different priorities oj and ok 6¼ oj
over time. Assume also that rn interferes with multiple

requests of the PARTID ri under analysis with priorities
oi and oh 6¼ oi. It hence means that X

INP;oi;oj
n;j;u ¼ 1 and that

P
oh;oj
n;j;u ¼ 1. Therefore, the constraint reduces to 1 � 0,

which is impossible, reaching a contradiction. tu

Constraint 9 leverages the bounds of Lemma 2 to limit
the number of interfering requests.

Constraint 9. For each PARTID rj 2 R, for each oj 2 f2; 3g,
for each oi 2 f1; 2; 3g:P

bu2B
PRDj;u�1

n¼0 X
INP;oi;oj
n;j;u � I

oj
j ðDÞ

Proof. The LHS counts all the requests of PARTID rj at pri-
ority oj interfering with requests from ri at priority oi. As
stated by Lemma 2, the number of requests that can be
emitted by rj at priority oj is bounded by the RHS. Hence
the constraints follows. tu

Next, we impose Constraint 10 to limit the interference
due to requests at a lower dynamic priority.

Constraint 10. For each bank bu 2 B, for each oi 2 f2; 3g:P
rj2R

PRDj;u�1

n¼0

Poi�1
oj¼1 X

INP;oi;oj
n;j;u � RIi;uðDÞ

Proof. The LHS of the inequality counts all the requests
issued with a priority oj < oi. Due to Rule mM4, no
request from rj can cause intra-bank interference at a pri-
ority oj < oi if there are pending requests from ri at pri-
ority oi. However, since requests are served non-
preemptively, for each request r from ri, at most a single
request may contribute to the LHS of the inequality
because it is started before r is enqueued. Since ri can
issue at most RIi;uðDÞ requests to bank bu, the constraint
follows. tu

The following constraint leverages the constant Npend to
limit the maximum number of interfering requests at the
same priority (FCFS tie-breaking).

Constraint 11. For each o ¼ oi ¼ oj 2 f2; 3g:P
rj2R

P
bu2B

PRDj;u�1

n¼0 XINP;o;o
n;j;u � ðNpend � 1Þ � Ioi ðDÞ:

Proof. First note that requests from PARTID rj 2 R served
at priority o ¼ oi ¼ oj and producing intra-bank interfer-
ence to pending requests from ri at the same priority
need to be issued before those of ri due to FCFS tie-break-
ing (Rule mM4). Whenever a request r with priority o is
issued by ri, there can be at most other Npend � 1 requests
that are pending in the MC with priority o, which can
interfere with r because they were issued before.

The LHS counts the overall amount of requests by rj
interfering because of the FCFS policy at priority o. These
requests are no more than Npend � 1 for each request
issued at priority o by ri. The constraint follows by not-
ing that the number of requests issued by ri at priority o
in the analysis window is bounded by Ioi ðDÞ (see
Lemma 2). tu

9.3 Interference to Requests with Dynamic Priority 1

We now focus on the interference to requests with priority
1. Note that such requests are not addressed by Con-
straints 10, and 11, while bounding the interference they
suffer is of the utmost importance.
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Indeed, it may happen that ri starts its execution with the
budget of higher priority requests already exhausted, and
all its requests enter the MC during this first accounting
window. In this case, all of them would have priority 1. By
using the previously discussed constraints only, it would be
legal for interfering PARTIDs that all their requests enter
the MC just a moment before ri and, by consequence, ri
would suffer all the possible interference due to the FCFS
policy, as if the MPAM’s MB-mp/MP policy is not present.
Ultimately, this would result in making the MB-mp/MP
strategy useless, since the XINP;1;1

n;j;u variable would not be
bounded by any MB-mp/MP specific constraint.

To address this issue, we need to introduce a mapping
between interfering requests and the window in which they
enter the MC. In this way, we allow the optimizer to decide
howmany requests from ri enter the MC in each accounting
window, and to match them with interfering requests. To
this end, we leverage a typical property of function
RDj;uðDÞ. Indeed, RDj;uðDÞ, as shown in the appendix, avail-
able in the online supplemental material, is a monotonic
non-decreasing function, most commonly in a step-wise
periodic fashion. Therefore, not all interfering requests are
available in all windows (e.g., think of the case in which the
PARTID is assigned to a periodic task).

Bounding the interference that can be suffered by
requests with the lowest priority is not trivial, and requires
introducing additional notation.

For each bu 2 B, for each accounting window with index
z 2 Wi ¼ f0; . . . ; D=wid eg, we define the variables:

� Yu;z 2 N denotes the number of requests by the PAR-
TID under analysis ri to bank bu that enter the MC
during the z-th window elapsed in the interval ½t; tþ
DÞ.

We start dividing the total number of requests based on
the accounting window they enter the MC.

Constraint 12. For each bu 2 B:
P

z2Wi
Yu;z � RIi;uðDÞ.

Proof. By definition, Yu;z counts the number of requests
issued by ri to bank bu during the z-th accounting win-
dow. Provided that Wi contains all the windows elapsed
during the time period D, since the windows are not over-
lapped, it is straightforward that their sum must not be
larger than the total number of requests issued by ri to
bank bu. tu

A bound on the requests that may be issued at priority 1
can now be derived in a specific constraint, which also intro-
duces the auxiliary termH1

i;uðDÞ.

Constraint 13. The maximum number of requests by ri to bank
bu that can enter the MC at priority 1 in the analysis window
½t; tþ DÞ are bounded by:

H1
i;uðDÞ ¼ RIi;uðDÞ �

P
z2Winf0g minfQM

i ; Yu;zg

Proof. The total number of requests issued by ri to bank bu
in the analysis window of interest is bounded by RIi;uðDÞ,
irrespectively of their dynamic priority. Among such
requests, for each accounting window with index z > 0,
by Rule mM2, QM

i requests have to be issued at dynamic
priorities 3 and 2 before issuing requests at priority 1. Fur-
thermore, by definition of variables Yu;z, no less than

minfQM
i ; Yu;zg requests can anyway be issued at dynamic

priorities 2 and 3. The same cannot be argued for the first
accounting window (z ¼ 0) because it may have started
outside the analysis window of interest, i.e., before time t.
Hence,

P
z2Winf0g minfQM

i ; Yu;zg requests of the RIi;uðDÞ
ones cannot surely enter the MC at dynamic priority 1.
The constraint follows. tu

Thanks to the auxiliary term H1
i;uðDÞ introduced by Con-

straint 13, we can derive Constraint 14, which is analogous
to Constraint 11 but considering requests at dynamic prior-
ity 1. The proof is analogous and thus is omitted.

Constraint 14. For each bank bu 2 B,
P

rj2R
PRDj;u�1

n¼0

XINP;1;1
n;j;u � ðNpend � 1Þ �H1

i;uðDÞ:

9.4 Bounding the Number of Transactions per
Window

Lastly, we need a constraint that prevents requests that are
available only after a specific offset in the analysis interval
(e.g., which are due to jobs that did not start yet if PARTIDs
are associated with periodic tasks), from being accounted
for in an accounting window that already ended.

We start by bounding the number of requests by ri that
can enter the MC at priorities 1 and 2, but only starting from
a certain accounting window with index z0.

Constraint 15. LetWiðz0Þ ¼ Wi n f0; . . . ; z0 � 1g, if z0 � 1, or
Wiðz0Þ ¼ Wi otherwise. For each bank bu 2 B, for each z0 2
Wi, the number of requests by ri that enter the MC after or at
the z0-th window with priority 1 is bounded by:

B1;z0 ¼
P

z2Wiðz0Þ B
�
1;z0

; if z0 6¼ 0

Yu;0 þ
P

z2Wiðz0Þnf0g B
�
1;z0

; if z0 ¼ 0;

(

with B�
1;z0

¼ maxf0; Yu;z �QM
i g. Similarly, those with prior-

ity 2 are bounded by:

B2;z0 ¼
P

z2sWiðz0Þ B
�
2;z0

; if z0 6¼ 0

minfYu;0; Q
M
i �Qm

i g þ
P

z2Wiðz0Þnf0g B
�
2;z0

; if z0 ¼ 0

(

with B�
2;z0

¼ maxf0;minfYu;z �Qm
i ;Q

M
i �Qm

i gg.

Proof. First consider requests at priority 1. We distinguish
two cases: (i) z0 6¼ 0, and (ii) z0 ¼ 0. Case (i). The account-
ing windows with indexes inWiðz0Þmust all have started
in the analysis interval ½t; tþ DÞ. By Rule mM2, to issue
requests at priority 1 in one of the accounting windows
with index in Wiðz0Þ, ri must have before issued QM

i

requests with priorities > 1 in the same. By recalling the
definition of Yu;z, the number of requests with priority 1
in such accounting windows is hence bounded

P
z2sWiðz0Þ

maxf0; Yu;z �QM
i g. Case (ii). The first accounting window

(z ¼ 0) may have started before the beginning of the anal-
ysis interval ½t; tþ DÞ. Irrespectively of their priority, no
more than Yu;0 requests can be issued in the first account-
ing window. The same reasoning of case (i) applies to the
next accounting windows with index in Wiðz0Þ n f0g.
Hence the constraint for term B1;z0 holds.

Consider now requests at priority 2 and let us distin-
guish the same two cases as above. Case (i). By Rule
mM2, no more than QM

i �Qm
i requests with priority 2
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can be issued in each accounting window. Furthermore,
for the same reasons discussed for requests at priority 1,
to issue requests at priority 2 in one of the accounting
windows with index in Wiðz0Þ, ri must have before
issued Qm

i requests with priority 3 in the same. Hence,
Yu;z �Qm

i also yields a safe bound for the number of
requests at priority 2 issued in the z-th interval, with z >
0. Therefore, the total number of requests with priority 2
in such accounting windows is bounded by

P
z2sWiðz0Þ

maxf0;minfYu;z �Qm
i ;Q

M
i �Qm

i g. Case (ii). The same rea-
soning used for case (ii) related to requests with priority
1 can be used after nothing that minfYu;0; Q

M
i g bounds

the number of requests with priority 2 in the first
accounting window. Hence the constraint for term B2;z0

holds. tu

With Constraint 15 in place, we can bound the interfer-
ence produced by the requests from rj that entered the MC
during the z0-th accounting window or later. Due to the
FCFS policy, these requests can only produce interference
to requests from ri that are enqueued after the beginning of
the z0-th accounting window.

Constraint 16. LetWiðz0Þ ¼ Wi n f0; . . . ; z0 � 1g, if z0 � 1, or
Wiðz0Þ ¼ Wi otherwise. Let t0 ¼ z0 � wi. For each bank bu in
B, for each z0 2 Wi:

aÞ
X
rj2R

XRDj;uðDÞ�1

n¼RDj;uðt0Þ

X3
o¼1

XINP;o;o
n;j;u � ðNpend � 1Þ �

X
z2Wiðz0Þ

Yu;z

bÞ
X
rj2R

XRDj;uðDÞ�1

n¼RDj;uðt0Þ
XINP;1;1

n;j;u � ðNpend � 1Þ �B1;z0

cÞ
X
rj2R

XRDj;uðDÞ�1

n¼RDj;uðt0Þ
XINP;2;2

n;j;u � ðNpend � 1Þ �B2;z0 ;

where B1;z0 and B2;z0 are defined by Constraint 15.

The proof is available in Section 3 of the appendix, avail-
able in the online supplemental material.

The contention due to writes is bounded analogously as
for the baseline MC, as this feature is left unaltered by the
min-max policy.

Relaxation. Differently from other problems that require
the value of specific variables (e.g., as in decision problems
such as task partitioning), the expected output of the opti-
mization problem is only the (maximized) value of the
objective function. Therefore, from a practical point of view,
the problem was implemented by relaxing all the binary
variables representing the interfering requests as real varia-
bles in the interval [0,1]. This action does not affect the cor-
rectness of the computed response-time bound since, by
relaxing the variables, the search space available to the opti-
mizer is enlarged. Therefore, the maximum of the objective
function of the relaxed problem can only be higher than or
equal to the maximum of the original problem. Hence, the
upper bound is still safe. Furthermore, to evaluate the dif-
ference between the two models, we performed a set of tests
by running the same problem instance with and without

relaxation (based on some configurations used in our evalu-
ation, presented in Section 10). In all the tested cases, the
optimal solution did not change.

10 EXPERIMENTAL EVALUATION

This section reports on experimental evaluation we per-
formed to test the effectiveness of the MPAM mechanisms.
To this end, we implemented the memory-aware response-
time analysis in the case in which a PARTID is a sporadic
real-time task (see the appendix for more details, available in
the online supplemental material). The proposed optimiza-
tion problems have been implemented with IBMCPLEX on a
machine with 128GB of memory and two Intel Xeon(R) CPU
E5-2640 v4 @ 2.40GHz, with 40 cores in total. The evaluation
focuses on a case study derived from the task set proposed by
Bosch for the WATERS 2019 Industrial Challenge [27], which
includes nine tasks (task 0� 8). The taskmapping is based on
the challenge solution of [28]. Additional details about the
tasks and the number of memory requests are available in
Table 2 in Appendix, available in the online supplemental
material. When considering memory contention in bounding
the worst-case response time, most tasks were actually not
schedulable with the original setting. We introduced two
additional parameters �R; �W 2 ½0; 1�, to scale the number of
reads and write requests, respectively. In the evaluation, we
explored a vast range of values for �R and �W to evaluate dif-
ferent trade-offs. We considered the JEDEC timing con-
straints for a DDR3 MC running at 1333 Mhz, which are
reported in the appendix, available in the online supplemen-
tal material, for the sake of completeness. We configured the
MC parameters as in prior work [19], [24], namely,Nthr ¼ 18,
Nwb ¼ 18, Qwrite ¼ 64, and Npend ¼ 24. We consider a DRAM
memorywithNB ¼ 4 banks.

In our experiments, we compare the memory contention
under different configurations: (i) baseline: the baseline
MC without any MPAM mechanism; (ii) priority partition-
ing with FR-PP; (iii) priority partitioning with PP-FR; and
(iv) MB-mp/MP: the MB-mp/MPMPAMmechanism.

The first three charts focus on the comparison between
the two variants of the priority partitioning strategy and the
baseline system. To this end, we explore three different
priority assignment configurations: (i) max improvement,
which independently considers the case in which each task
is assigned the maximum MPAM priority, while the other
tasks are all assigned the same lower priority; (ii) rate

monotonic, which assigns the priority inversely propor-
tional to the tasks’ period; (iii) request monotonic,
which assigns the priority inversely proportional to the
number of requests per job of each task.

All the values on the y-axis represent the overall memory
interference, as a percentage of the memory interference
obtained when using the baseline configuration (i.e.,
when MPAM is disabled). Fig. 2 reports on a comparison of
the FR-PP and PP-FR policies under three different priority
assignment strategies. The requests’ scaling factors are �R ¼
0:35 and �W ¼ 0:05. The same experiments were also carried
out with other scaling factors and the results are presented
in Appendix, available in the online supplemental material.
Fig. 2a shows that FR-PP and PP-FR allows achieving a
maximum improvement of up to 21% and 27% to the
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baseline, respectively. Furthermore, it highlights that PP-FR
generally performs better than FR-PP in reducing the mem-
ory interference delay suffered by the highest-priority task.
This is attributed to the fact that under PP-FR the prioritiza-
tion prevails over requests targeting open rows, which
allows posing additional constraints on the intra-bank inter-
ference. Thus, increasing the priority has a larger effect
when using PP-FR. In each configuration, all other tasks
(which have been assigned to the same low priority in this
case) showed no improvement.

In Fig. 2b, instead, tasks are assigned priorities according
to rate monotonic. In this case, tasks with shorter periods
(e.g., tasks 1� 4) achieve a more significant improvement
(up to a 24% reduction with task 1 and PP-FR), while tasks
with a longer period (e.g., tasks 5� 8) have a very small
improvement because they are assigned to lower priorities.

In Fig. 2c, priorities are assigned proportionally to the
number of requests per job of each task. In this case, task 6
achieves the most remarkable improvement of 19%.

The next three plots consider the improvement that can
be granted to the most memory-intensive task of the bench-
mark (i.e., t6) while varying the parameters of the MB-mp/

MP strategy. An additional hybrid task set (details available
in the Appendix, Table 3, available in the online supplemen-
tal material) was synthesized for these specific experiments,
still starting from the WATERS 2019 one. This was deemed
necessary to show some relevant configurations where the
MB-mp/MP strategy provides some benefits from a worst-
case analysis point of view, where in most configurations
we observed very few improvements over the baseline. For
the sake of completeness, other experiments that use the
original task set are available in Appendix, available in the
online supplemental material.

In the following, the number of read requests per job for
a task tj is denoted as rdj ¼

P
bu2B rdj;u, the ratio between

Qm
j and QM

j of tj as gmM
j ¼ Qm

j=Q
M
j , the ratio between QM

j

and rdj as bM
j ¼ QM

j =rdj. In Fig. 3a, we show the effects of
the variation of parameter bMj for each interfering task tj 6¼
t6 (the same value of bMj is used for all interfering tasks).
The plot reports three curves each corresponding to a repre-
sentative configuration we selected by varying the ratio
gmM
j . All the other parameters were assigned as follows:

Qm
6 ¼ QM

6 ¼ rdj; w6 ¼ 0:03 � T6; wj ¼ Tj, for j 6¼ 6. The values
of wi were carefully selected after running a large number of
experiments to allow Constraints 12, 13, 14, 15, and 16 to
have a remarkable effect in reducing the memory interfer-
ence suffered by t6 itself, thanks to a large number of
accounting windows, and hence high-priority requests, for
t6 compared to the other tasks. Indeed, the MB-mp/MP

strategy resulted hard to properly configure to achieve a
substantial effect in reducing memory-contention delays,
with little improvement under considerably different values
of wi. Fig. 3a shows that t6 has a considerable improvement
(about 15%) with respect to the baseline MC only when
bMj ¼ 0, which implies QM

j ¼ 0. Indeed, it can be noted from
the figure how an increase of bM

j causes a rapid reduction of
the improvement. The only exception is for the case with
gmM
j ¼ 0, where MPAM is able to provide a 12% gain with

respect to the baseline configuration for t6 also for larger
values of bM

j . Note that in this case Qm
j ¼ 0: hence interfer-

ing tasks cannot release any request with maximum
priority.

Fig. 3b shows the effect of the variation of gmM
j for the

interfering tasks. The plot reports three curves, for three
representative configurations we selected by varying the
ratio bM

j . The results confirm how an increase of the maxi-
mum budget causes an up to 12% reduction of memory
interference for the task under analysis. It is also interesting
to notice how the improvement reaches 0% as soon as
gmM
j ¼ 0:3. This indicates that is necessary to keep the num-

ber of higher priority requests from interfering task really
low to allow the MB-mp/MP strategy having a positive effect
for t6 in the worst-case scenario.

Fig. 3c investigates on how changing the total number of
read requests of the interfered tasks (indicated as a percent-
age of the base case) affects the memory interference limita-
tion provided by the MB-mp/MP. In this case, task 6 has
been assigned QM

6 ¼ Qm
6 ¼ rd6, and the other tasks have

gmM
j ¼ 0:2. Three representative configurations are reported,

corresponding to bMj 2 f0; 0:2; 0:4g. It is interesting to notice
how the interference is very close to the baseline when
the number of requests is at the two extremes of the tested
interval, while they are more distant in the middle (up to a
16% improvement). First, to understand this behavior,
please note that, since Qm

6 ¼ rd6, no other PARTID can issue
request at priority higher than r6. We then need to take into
account the fact that non-promoted intra-bank interfering
requests (i.e., those due to variables X

INP;oi;oj
n;j;u that are

affected by MB-mp/MP) with lower or equal priority can
interfere for two reasons: (i) they can have a lower priority
than the interfered request and thus cause a delay due to
the non-preemptive service of requests; or (ii) they can have
an equal priority, and thus interfere because of the FCFS
policy. Case (i) causes one interfered request to match at
most one interfering request (see Constraint 10), while case
(ii) causes each interfered request to be matched with at
mostNpend interfering requests (Constraints 11 and 16).

When the interfered (i.e., task 6) has a low number of
requests, the number of requests due to interfering tasks tj 6

Fig. 2. Memory interference obtained using the FR-PP and PP-FR strategies under different priority assignments, as a percentage of the memory
interference obtained with the baselineMC. The scaling factors are �R ¼ 35% and �W ¼ 5%.
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¼ t6, i.e., the number of interfering requests available at the
beginning of the interval (due to functions RDjðDÞ) are
enough to interfere with most of the task 6’s requests
because of the FCFS policy during the first accounting win-
dow (case (i)), and the solver does not need to move
requests of the interfered tasks in subsequent windows to
match more interfering requests. Thus, in this case Con-
straints 12, 13, 14, 15, and 16 have no effect and the MB-mp/
MP policy results in being ineffective.

This case does not improve the situation to the base-

line, which always matches each interfered request with
Npend interfering requests (Constraint 4). When task 6’s
requests increases (rd6 between 20% and 80%), the solver
moves some interfered requests to other accounting win-
dows to increase the interference (due to Constraint 12, 13,
14, 15, and 16), forcing the presence of more requests of t6 at
high priority, which instead can be interfered with at most 1
interfering requests each (due to case (i) only), instead of
Npend. In this way, the interference decreases. However,
when task 6’s requests grow further (rd6 over 80%), the
interference gets again closer to the baseline case. For
example, if bM

6 ¼ 0:4, this is because the number of inter-
fered requests approaches the number of interfering
requests, making it irrelevant whether they are matched in
a one-to-one or one-to-Npend fashion because the number of
interfered requests is anyway enough to match all the inter-
fering ones. In all the configurations in Fig. 3, all other tasks
except t6 showed no improvement over the baseline.

Another aspect we investigated is the scalability of the
proposed optimization problem with respect to the total
amount of memory requests issued by the tasks. To better
understand its run-time performance, we collected the exe-
cution times of the entire response-time analysis. The exper-
iment was repeated by applying five different scaling
factors �R; �W 2 f0:2; 0:4; 0:6; 0:8; 1g, with �R ¼ �W , to the
number of requests of the original task set. As previously
stated, with a high number of requests the task set is actu-
ally not schedulable; however, during this test, this aspect

was taken into consideration. Fig. 4 reports the results,
which show how the optimization problem is significantly
slower when using the MB-mp/MP strategy (up to 102 hours
of execution). On the other hand, both the FR-PP and the
PP-FR priority partitioning techniques have total running
times similar to the baseline approach (up to about 2.5
hours), which is compatible with standard design activities
that take place off-line.

11 RELATED WORK

The literature on memory bandwidth reservation mecha-
nisms and methods to control and analyze contention is too
vast to be exhaustively discussed within the space limits:
therefore, a selection of the most closely related works is
reported next.

One of the first proposals to regulate the memory band-
width is due to Yun et al. [2] who implemented a per-core
regulator called MemGuard, using performance counters
to implement a budgeting mechanism. Farshchi et al. [29]
proposed a custom hardware component, called BRU, to
regulate the memory bandwidth of multiple cores at the
same time. Sohal et al. [4] implemented a framework for
analyzing the memory demand and to predict the timing
of real-time workloads on CPUs and hardware accelera-
tors. Several memory-bandwidth regulations mechanisms
have been proposed also for hardware accelerators, such
as GPUs or FPGAs [8], [9], [10]. Several techniques have
been also proposed to improve predictability of cache
memories: the interested reader can refer to the survey by
Gracioli et al. [30]. Other authors [23], [31] proposed meth-
ods to reduce contention by adopting bank-aware memory
allocations.

Several efforts have been spent in realizing custom mem-
ory controller designs to enhance predictability [14], [16],
[32], [33], [34]. While being advisable designs in the context
of real-time systems, they are not present in COTS plat-
forms, thus strongly limiting their adoption. On the con-
trary, the MPAM specification has the potential of being
present in all Arm platforms, and hence in billions of
devices.

Another way of enhancing memory-access predictability
is to enforce predictable executionmodels [11], [12], [35], [36]
However, these schemes requires either hardware, OS, or
compiler-level support, whichmay be not always available.

Finally, other works focused on bounding the memory
delays in the presence of contention. The most close to our
work are those considering DDR memories, i.e., those due
to Kim et al. [23], Hassan et al. [18], [37], and Casini et al. [19].

Fig. 3. Memory interference experienced by task t6 obtained using the MB-mp/MP strategy under different parameters configurations, as a percent-
age of the memory interference obtained with the baselineMC.

Fig. 4. Running times of the analyses when varying the scaling factors �R
and �W , with �R ¼ �W .
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Overall, no previous work studied the effects of the
MPAMmechanisms on memory contention.

12 CONCLUSION

With Arm proposing the MPAM specification, COTS plat-
forms have an unprecedented opportunity to improve their
predictability on a large scale. In this paper, we deeply stud-
ied the MPAM specification by Arm, highlighting many
points inwhich it is underspecified and leaves room for ambi-
guities. Then, we explored some possible instantiations of the
specification at the level of the DRAMmemory controller. For
each of them, we derived a memory-contention analysis that
has been used to compare different design alternatives.

Lesson Learned. From the extensive experimental evalua-
tion we performed, it resulted in being easy to find configu-
rations of the priority partitioning FR-PP and PP-FR

configurations to foster predictability by reducing the mem-
ory contention delays, with improvements up to 41% to the
baseline configuration. Conversely, it was hard to achieve
reasonable improvements using the much more complex
MB-mp/MP strategy, with improvements limited to 16% for
very specific configurations. As it is common in real-time
systems, this showed that simpler is better for predictability:
MB-mp/MP exhibits a higher degree of dynamicity and more
parameters to be properly configured, which unavoidably
leads to a much more complex analysis and a more pessi-
mistic analysis that arise from the consideration of a larger
set of corner cases that cannot be excluded a priori. Never-
theless, we do not exclude the MB-mp/MP might lead to
improvements in terms of average-case behavior. To assess
this, future work will implement this policy into a state-of-
the-art DRAM simulator, e.g., [38].

Other possible research directions include the consider-
ation of the HARDLIM configuration of MB-mp/MP and the
portion partitioning strategy.
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