
Fenglin-I: An Open-Source Time-Sensitive
Networking Chip Enabling Agile Customization

Wenwen Fu , Wei Quan , Jinli Yan, and Zhigang Sun

Abstract—Time-Sensitive Networking (TSN) technology is experiencing diverse application requirements and forming a complicated

standard system. It is extremely difficult to design a one-fits-all chip for all TSN applications. Therefore, application-driven TSN chip

customization is inevitable. Generally, chip customization starts from a “clean-slate”. For complicated ASIC chips, that results in significant

development overhead. Inspired by RISC-V chips, an open-source template will significantly reduce the customization complexity. Along

this road, we propose an open-source TSN chip named Fenglin-I. Fenglin-I includes a high-level abstraction to build a relationship between

application requirements and chip implementation, source code of a real chip namedFastTSN to provide reference code for chip

implementation, and software tools to facilitate chip verification. Based on Fenglin-I, we further propose a TSN chip customizationmethod

that provides step-by-step guidance about customizing TSN chips agilely. To verify the effectiveness of Fenglin-I and the proposed

customizationmethod, we use FPGAarrays to prototype and verify FastTSN. The results show that FastTSN achievesmicrosecond-level

transmission jitter for unicast andmulticast time-critical traffic. Additionally, we demonstrate two domain-specific TSN chip customization

cases in which the customized chips reuse at least 84% of FastTSN codewhilemeeting their requirements.

Index Terms—Time-sensitive networking, chip customization, open-source chip, fenglin-I, FastTSN

Ç

1 INTRODUCTION

TIME-SENSITIVE Networking (TSN) augments the native
Ethernet with time-related functionalities, such as time

synchronization and time-aware shaper (TAS), further to
achieve bounded transmission delay and jitter, and inherit
the characteristics of native Ethernet (good compatibility
and high bandwidth). This expands TSN application scenar-
ios to 5G fronthaul networks, automotive industries and avi-
onics, etc [1], [2]. Nowadays, TSN applications exhibit a
large diversity in traffic size, quality of service (QoS) require-
ments, etc. In order to be widely applied in diversified appli-
cations, the TSN task group has proposed 23 standards and
is working on 19 ongoing projects, forming a complicated
standard systemwith thousands of pages of content [3].

As Ethernet chips are already very complex, adding more
TSN functionalities increases development cost and imple-
mentation complexity, and drains more power. It is tough to
integrate all TSN function options onto a single Ethernet
chip. Currently, commercial off-the-shelf (COTS) TSN chips
are designed based on existing Ethernet chips and only sup-
port partial TSN standards [4], [5]. Moreover, the COTS TSN
chips are developed in a bottom-up mode (just realizing the
mainstream functionalities in TSN standards rather than
tackling specific application requirements) [6]. However,
sometimes it is impossible for users to select a COTS chip

that satisfies all their requirements. For instance, limited by
system power consumption, some industrial applications
require chip power to be less than 1W to substitute the origi-
nal Ethernet low-power chip [7]. As COTS TSN chips
installed many unnecessary functionalities for these applica-
tions, there is no COTS chip that satisfies this low-power
requirement, as far as we know. Therefore, customizing a
TSN chip in an application-drivenmode is urgently needed.

For application-driven TSN chip customization, a typical
method starts from a “clean-slate” like other chips. To design
a TSN chip from a “clean-slate”, designers need to first
choose appropriate TSN standards (thousands of pages)
according to the application requirements and then design a
chip architecture considering the TSN functionalities and the
general Ethernet functionalities. For the selected functionali-
ties, implementation details, including logic workflow and
table configuration of each function module, are determined
according to the application requirements. After that, the
most time-consuming parts, coding and verification of the
chip, need to be done. In the verification process, if the
requirements are not satisfied, feedbacks are provided to the
previous two steps for a new round. Normally, a TSN chip
involves tens to hundreds of thousand lines of hardware and
software code [8], [9]. All the steps mentioned above are not
trivial. Therefore, customizing a TSN chip from a “clean-
slate” is complicated and time-consuming.

According to the consensus of academia and industry,
open-source chips share design expertise and source code,
facilitating agile chip customization. Along this road, we pro-
pose the first open-source TSN chip named Fenglin-I. To serve
as a foundation for TSN chip customization, Fenglin-I needs to
satisfy common requirements of TSN applications. TSN appli-
cation requirements comprise functional and performance
requirements. The common functional requirements are to
support mixed-critical traffic and guarantee high-precision

� The authors are with the School of Computer, National Universith of Defense
Technology, Changsha, Hunan 410073, China. E-mail: {fuwenwen94, w.quan,
yanjinli10}@nudt.edu.cn, sunzhigang@263.net.

Manuscript received 1 February 2022; revised 26 May 2022; accepted 26 June
2022. Date of publication 4 July 2022; date of current version 13 December 2022.
(Corresponding author: Wei Quan.)
Recommended for acceptance by D. Mosse, T. Chantem, E. Bini.
This article has supplementary downloadable material available at https://doi.
org/10.1109/TC.2022.3188179, provided by the authors.
Digital Object Identifier no. 10.1109/TC.2022.3188179

140 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 1, JANUARY 2023

© 2022 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-5736-0096
https://orcid.org/0000-0002-5736-0096
https://orcid.org/0000-0002-5736-0096
https://orcid.org/0000-0002-5736-0096
https://orcid.org/0000-0002-5736-0096
https://orcid.org/0000-0002-0934-8324
https://orcid.org/0000-0002-0934-8324
https://orcid.org/0000-0002-0934-8324
https://orcid.org/0000-0002-0934-8324
https://orcid.org/0000-0002-0934-8324
mailto:fuwenwen94@nudt.edu.cn
mailto:w.quan@nudt.edu.cn
mailto:yanjinli10@nudt.edu.cn
mailto:sunzhigang@263.net
https://doi.org/10.1109/TC.2022.3188179
https://doi.org/10.1109/TC.2022.3188179

deterministic transmission delay and jitter for time-critical traf-
fic (time-critical traffic is the scheduled object in TSNnetworks,
so it is called Scheduled Traffic, ST). The common performance
requirements are to reduce chip area andpower.

Similar to RISC-V chips [10], Fenglin-I is composed of a
high-level abstraction, source code of a real chip following
the Fenglin-I high-level abstraction specification, and
related software tools. Since the high-level abstraction is
described with tables, same as the mainstream description
of network device abstraction [11], [12], we name the high-
level abstraction as Fenglin-I TTP (table type pattern). It is
used to define a TSN chip that satisfies the common applica-
tion requirements. In detail, Fenglin-I TTP abstracts a TSN
chip into multiple function chains and a table map. Each
function chain defines the processing path in the TSN chip
for a specific traffic class (such as ST traffic). These function
chains build a relationship between the common functional
requirements and chip function options. Different from a
typical Ethernet function chain, Fenglin-I TTP includes a
function chain for ST traffic to achieve bounded transmis-
sion delay and jitter. This function chain is designed based
on a novel deterministic forwarding model that delivers a
high-precision determinism service and greatly reduces the
traffic planning complexity. Moreover, the table map gath-
ers the table format in all functionalities, building a relation-
ship between the common performance requirements and
table implementation details. Based on Fenglin-I, users can
re-utilize and extend Fenglin-I TTP for a new application-
specific TSN chip, which significantly reduces the complex-
ity of defining a TSN chip.

Currently, we have implemented the first real chip
(FastTSN) following the Fenglin-I TTP specification to pro-
vide “wheels” for the Fenglin-I based chips. FastTSN code
is shown at.1 Software tools are necessary components for
both verifying a customized TSN chip and building a real
TSN system. Thus, we provide Fenglin-I software tools at 2

to facilitate chip verification.
Based on Fenglin-I, we propose an agile TSN chip cus-

tomization method, namely ATC (Agile TSN chip Customi-
zation). With this method, for an application-driven TSN
chip customiztion, designers only need to customize new
function chains by extending or pruning the FastTSN func-
tion chains, configure table size for the FastTSN table map,
design table format and configure table size for the
extended functionalities, and verify the custom chips by
using the Fenglin-I software tools. Compared with custom-
izing a TSN chip from a “clean-slate”, ATC method signifi-
cantly decreases the workload of chip architecture design,
function and table customization, chip implementation, and
the implementation of software tools.

In order to demonstrate the effectiveness of Fenglin-I, we
extensively verify FastTSN on FPGA arrays. In a 6-nodes
ring network whose transmission rate is 1Gbps (aircraft net-
works adopt this topology [13]), FastTSN achieves better
than 120ns transmission jitter for unicast ST traffic. In a 3-
nodes linear network whose transmission rate is 1Gbps,

which is adopted in industrial control scenarios [14],
FastTSN achieves transmission jitter better than 1ms for
multicast ST traffic. Based on Fenglin-I, we verify the ATC
customization method with the following two use cases.
ðiÞ Use case in an industrial control network. We customize

an ASIC chip named HX-DS09 for an industrial control net-
work that requires less than 1W chip power and 2ms end-to-
end transmission jitter for multicast ST traffic. The HX-DS09
achieves ultra-low power (0.5W) under the 130nm process
and 1.2ms jitter. In this use case, only 15.9% additional hard-
ware code is required to achieve the design goal. ðiiÞ Use case
in an aircraft network. A third party customizes an FPGA-
based chip named TZ-TS01 for an aircraft network that
requires the single-hop delay should keep less than 200ms
under 100Mbps physical interface, and end-to-end trans-
mission jitter should be less than 100ms. As FastTSN satis-
fies these requirements, the designers of TZ-TS01 only
configure table size in FastTSN without developing new
function modules.

The main contributions of this paper are:

� We propose, as far as we know, the first open-
source TSN chip (Fenglin-I) and provide its high-
level abstraction, software tools, and source code
of a Fenglin-I instance (FastTSN) to facilitate chip
customization.

� In Fenglin-I, we implement a novel deterministic for-
warding model that delivers high-precision determin-
ism service and reduces traffic planning complexity.

� Based on Fenglin-I, we propose the ATC method to
provide step-by-step guidance about customizing a
TSN chip.

� We prototype and verify FastTSN on FPGA arrays,
and the results show that FastTSN satisfies the com-
mon requirements of TSN applications.

� Two real TSN chips, HX-DS09 for an industrial con-
trol network and TZ-TS01 for an aircraft network,
are demonstrated using the ATC method.

2 MOTIVATION AND CHALLENGE

2.1 Background and Motivation

As mentioned in the introduction, TSN can be applied in
many application domains. However, the requirements of
different TSN applications vary widely. For instance, the
applications like power grid systems in the automotive
industry have stringent determinism requirements, e.g.,
only a few microseconds [17], while others (such as telesur-
gery and haptic feedback) have more relaxed determinism
requirements up to a few milliseconds [16]. The reliability of
a high voltage distribution network is three orders of magni-
tude higher than that of a medium-voltage distribution net-
work [8]. Moreover, the traffic size of augmented and virtual
reality (AR/VR) applications is thousands of times larger
than that of industrial control applications [15], [17].

Each application requirement has a direct impact on
defining a TSN chip. Here we take determinism, reliability,
and traffic size requirements as examples. In order to
deliver the high-precision determinism required by power
grid systems, TSN chips generally integrate time synchroni-
zation functionality [23] and time-aware shaper [21]. As for

1. https://github.com/fast-codesign/OpenTSN2.0/tree/distrib-
uted/Hardware/code

2. https://github.com/fast-codesign/OpenTSN2.0/tree/distrib-
uted/Software

FU ETAL.: FENGLIN-I: AN OPEN-SOURCE TIME-SENSITIVE NETWORKING CHIP ENABLING AGILE CUSTOMIZATION 141

the loose determinism required by telesurgery and haptic
feedback, TSN chips tend to integrate asynchronous traffic
shaper (ATS) [20]. Moreover, the per-stream filtering and
policing functionalities [19], frame replication and elimina-
tion functionalities [18] are urgently needed to improve reli-
ability for high voltage distribution networks. In addition,
the traffic size correlates with the values of memory
resource parameters, such as table size. In order to save pre-
cious memory resources, the traffic size of the target appli-
cation is an important constraint when allocating memory
resource parameters.

In order to satisfy the diverse application requirements, the
TSN working group has proposed 23 standards and is work-
ing on 19 projects, forming a complex TSN standard system
with thousands of pages of content. Designers need to inte-
grate a large number of TSN functionalities and allocate huge
memory resources to design a TSN chip that satisfies all appli-
cation requirements. This is practically not feasible due to
implementation complexity, power consumption, and cost
limits. Therefore, the application-driven TSN chip customization
will be a better choice for most TSN application scenarios.

Typical chip customization starts from a “clean-slate”.
Since a TSN chip generally involves tens to hundreds of
thousand lines of hardware code, it will take a massive
amount of time and labor to customize a TSN chip using this
typical model. Fortunately, the customization method based
on an open-source template, which RISC-V chips adopt, has
proven to be excellent for reducing the development work-
load. Consequently, our work is dedicated to contributing an
open-source TSN chip that other designers can reuse.

2.2 Challenges

There are lots of challenges for designing and implementing
an open-source TSN chip. In this paper, we mainly focus on
the most important challenges.

Challenge I: providing a description to build a the relationship
between the target application requirements and chip implementa-
tion. During the customization process, mapping target
application requirements onto an underlying chip becomes
unwieldy. Specifically, the requirements of TSN applications
can be divided into functional and performance require-
ments. The functional requirements mainly indicate traffic
requirements, such as determinism and reliability require-
ments. The performance requirements of a TSN application
are proposed to adapt to network, device and traffic features,
including traffic size, network topology, chip power and
area, etc.

To satisfy the functional requirements of the target applica-
tion, designers need to have a deep understanding of function
descriptions in the TSN standards, which is hard and time-
consuming since the TSN standards cover thousands of
pages. Moreover, satisfying the target performance require-
ments is also extremely difficult. This requires designers to
clearly understand the reasons for every design detail, such
as table format, resource settings, implementation trade-offs,
etc. In order to simplify the above work, an open-source TSN
chip is recommended to provide a description template that
builds a relationship between basic TSN application require-
ments and chip implementation. By doing this, designers can
re-utilize and extend it with other application requirements.
Specifically, an open-source TSN chip is recommended to

provide an appropriate function description to show the rela-
tionship between functional requirements and function
options, and a detailed description (such as a table format
description) to bridge performance requirements and corre-
sponding design details.

Challenge II: designing a high-precision deterministic forward-
ing model with low traffic planning complexity. The determin-
istic forwarding models for ST traffic provided in the
current TSN standards mainly include Cyclic Queuing and
Forwarding (CQF) and TAS. As illustrated in Fig. 1a, CQF
deploys the time-controlled gate for two queues to perform
en-queue and de-queue operations cyclically. The time
interval between adjacent en-queue and de-queue opera-
tions called time-slot is fixed. In the CQF mechanism, an ST
packet received at a time-slot must be sent at the next time-
slot in a switch. Differently, TAS (as shown in Fig. 1b) uses
the flow-dispatch table before the queues to allocate queue-
ID. Moreover, TAS adopts a time-controlled gate after each
queue, which enables controlling sending time-point for
each ST packet by fine-grained gate state configuration.

Since an ST packet may be sent at any time point in the
pre-planned time-slot, the deterministic accuracy achieved
by CQF is consistent with a time-slot, which is generally con-
figured to hundreds of microseconds or tens of microsec-
onds [22], [25]. This determinism precision is unacceptable
for many real-time applications that require strict transmis-
sion determinism [1]. In order to improve determinismpreci-
sion, TAS supports planning gate states at time-point
granularity (sub-microsecond or few microseconds). This
dramatically increases the calculation complexity and delay,
making it hard to meet the requirement of online planning
for calculation delay in many TSN scenarios [26]. Thus, it is
urgently needed to design a high-precision deterministic for-
wardingmodel with low traffic planning complexity.

3 FENGLIN-I OVERVIEW

In order to easily understand Fenglin-I, we compare Fen-
glin-I with another famous open-source chip (RISC-V). As

Fig. 1. TAS and CQF control the sending time of packets through GCL
(gate control list). GCL records the gate states and duration of each
state. When the gate state is open, the packets in the corresponding
queue are allowed to be scheduled. Otherwise, the packets are for-
bidden from being scheduled. The time unit of gate state duration in
CQF is time-slot, which is much larger than the time-point in TAS.

142 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 1, JANUARY 2023

shown in Table 1, both RISC-V and Fenglin-I chips include
high-level abstraction, software tools, and source code of
real chips following the high-level abstraction (the correla-
tions among Fenglin-I components are shown in Fig. 2).
Since RISC-V chips are used as CPUs, the RISC-V instruc-
tion set architecture (ISA) accurately describes chip capabili-
ties and is used as the high-level abstraction for hardware
and software development. Differently, Fenglin-I is used in
switches. Similar to CPU ISA, Table Type Pattern (TTP) can
serve as the high-level abstraction of switch chips. The con-
cept of TTP originates from OpenFlow switches [11]. It is
used to describe specific switch forwarding behaviors for
switches. The OpenFlow TTP is beneficial for improving
and clarifying product interoperability, simplifying imple-
mentation, and improving resource utilization [12]. Inspired
by the OpenFlow switch, we use Fenglin-I TTP as the high-
level abstraction to describe a Fenglin-I based chip.

To serve as a foundation for TSN chip customization, Fen-
glin-I needs to satisfy the common requirements of TSN
applications. Specifically, to satisfy the common functional
requirement of supporting mixed-critical traffic, Fenglin-I
TTP is divided into Best-Effort TTP, Rate-Constrained TTP,
and Time-Sensitive TTP, as shown in Table 1 and Fig. 2. Each
TTP describes a function chain. A function chain defines the
processing path in the TSN chip for a specific traffic class.
Specifically, the Best-Effort, Rate-Constrained, and Time-
Sensitive TTP respectively describe the function chain for
best-effort traffic (BE, which represents the traffic in tradi-
tional Ethernet), rate-constrained traffic (RC, which mainly
represents audio and video traffic), and ST traffic. In order to
satisfy the common functional requirement of guaranteeing
high-precision deterministic transmission delay and jitter for
ST traffic, the function chain for ST traffic is designed based
on a novel deterministic forwarding model that delivers a
high-precision deterministic transmission service and
reduces traffic planning complexity, solving the challenge II.
Moreover, in order to satisfy the common performance
requirement of reducing chip area and power, we meticu-
lously design each table format of Fenglin-I. Fenglin-I TTP
gathers all table format of Fenglin-I to form an overall table
map. Therefore, Fenglin-I TTP abstracts a TSN chip intomul-
tiple function chains and a table map to show the relation-
ship between the target application requirements and chip
implementation, solving the challenge I.

Moreover, verifying whether the custom chip satisfies
the target application requirements is a necessary process
for customizing a TSN chip, which requires building a TSN
system. Normally, a TSN system contains multiple TSN

chips forming a target network and software tools. Design-
ing software tools requires designers to be clear on the
implementation details of the TSN chip. For example, in
order to configure a table entry, the designers of software
tools are required to clearly understand the table format
and the memory address of each table entry. Therefore,
designing software tools is complicated and time-consum-
ing for designers. In order to enable agile verification, we
provide Fenglin-I software tools containing a planner, a
controller, a builder, and software development kits (SDK).

The TSN planner mainly allocates spatial-temporal
resources by a planning algorithm and dispatches the plan-
ning results to the builder and controller. The planning
algorithm only focus on the planning object (such as gate
states and the transmission paths of ST flows), without con-
sidering chip implementation details. Thus, the planning
algorithm can be flexibly selected. The controller mainly col-
lects application requirements for the TSN planner, and
generates table information to configure the Best-Effort and
Rate-Constrained tables based on the planned spatial
results. The builder mainly submits the table sizes in Time-
Sensitive TTP to the TSN planner and encapsulates the
planned temporal results according to the format of Time-
Sensitive TTP tables. The SDK receives the table entries
from the builder and controller, then encapsulates them
into hardware-identifiable packets according to the low-
level abstraction.

Currently, we have implemented the first real chip
(FastTSN) following the Fenglin-I TTP specification to pro-
vide “wheels” for the Fenglin-I based chips. The low-level
abstraction of FastTSN is closely related to the chip imple-
mentation. It records interface signals of each function mod-
ule, state machines, interface connection relationship
between modules, etc. Sometimes, in order to satisfy specific
application requirements, designers may choose a different
operating system or coding language to redevelop the SDK.
Thus, we provide the low-level abstraction at 3 to simplify
SDK redevelopment.

Due to paper size limitations, we focus on the design and
implementation of Fenglin-I TTP in this paper, which
clearly reflects the design idea of Fenglin-I hardware.

TABLE 1
Comparison Between RISC-V and Fenglin-I Chips

RISC-V Fenglin-I

Base ISA, Best-Effort TTP,
High-level Standard extended ISA, Rate-Constrained TTP,
abstraction Non-standard extended ISA, Time-Sensitive TTP,

(Instruction Set Architecture) (Table Type Pattern)

Software Compiler, Debugger, Planner, Builder,

tool Simulator Controller, SDK

Real chip Hummingbrid, Rocket, etc. FastTSN

Fig. 2. Shows the correlations among Fenglin-I components and low-
level abstraction of real chips. The low-level abstraction describes chip
implementation details.

3. https://github.com/fast-codesign/OpenTSN2.0/tree/distrib-
uted/Hardware/doc

FU ETAL.: FENGLIN-I: AN OPEN-SOURCE TIME-SENSITIVE NETWORKING CHIP ENABLING AGILE CUSTOMIZATION 143

4 FEGNLIN-I TTP

In this section, we introduce Fenglin-I TTP in details includ-
ing function chains and a table map.

4.1 Fucntion Chains in Fegnlin-I TTP

The function chains describe the processing paths for all
traffic class of data packets.4 In order to satisfy the common
functional requirements, supporting mixed-critical traffic
and guaranteeing high-precision deterministic transmission
delay and jitter for ST traffic, we design the following func-
tion chains.

Function Chain for BE Traffic. As BE traffic only requires a
best effort service, a basic Layer 2 forwarding function chain
can satisfy its requirements. Therefore, the function chain for
BE traffic integrates the functionalities connected by blue
and orange lines in Fig. 3. The first functionality processing
BE traffic is the FL-tag Encapsulation functionality. It directly
forward BE packets to the L2 Forwarding functionality. The
L2 Forwarding functionality figures out the forwarding
mode (namely broadcast, multicast and unicast) of each
packet and forward the packet to the corresponding for-
warding functionality (namely broadcast, multicast, and uni-
cast functionality). These forwarding functionalities acquire
output ports and then forward packets to the Dequeue GCL
functionality at the corresponding output port logic. The
Dequeue GCL functionality controls whether the BE traffic is
allowed to be dispatched, which eliminates interference with
ST transmission time by forbidding BE packet dispatching
when the planned transmission time of an ST packet arrives.

Function Chain for RC Traffic. RC traffic requires loose
transmission delay and jitter. In order to achieve this goal,
the function chain for RC traffic integrates the functionalities
connected by green and orange lines in Fig. 3. Specifically,

except for the basic layer 2 forwarding functionalities, this
function chain integrates the Per-stream Meter and FL-tag
Decapsulation functionalities. The Per-stream Meter func-
tionality ensures that there will be a minimum inter-frame
gap between any adjacent packets of a RC flow. Moreover,
the FL-tag Encapsulation and Decapsulation functionalities
in this function chain are used to implement a multi-seman-
tic flow label mechanism. This mechanism proposes a cus-
tom tag named FL-tag (the FL-tag contents are shown in the
FL-tag Encapsulation table, Section 4.2) to carry essential
control information in the packet header. It can reduce the
overhead of table look-ups along the processing path of a
packet. Specifically, the FL-tag Encapsulation functionality
overwrites the DMAC field with FL-tag at the first hop,
which is reverted by the FL-tag Decapsulation functionality
at the last hop to ensure end-to-end reachability.

Function Chain for ST Traffic. ST traffic requires high-pre-
cision deterministic transmission delay and jitter. In order
to achieve this goal, this function chain integrates the func-
tionalities connected by purple and orange lines in Fig. 3.
Specifically, excepting the basic layer 2 forwarding func-
tionalities and the multi-semantic flow label mechanism,
this function chain integrates the Injection Control, Enqueue
GCL, and Submission Control functionalities. The Enqueue
GCL functionality detects whether ST packets arrive within
the expected time windows. If an ST packet does not arrive
within the planned time window, it will be discarded. That
prevents erroneous ST packets from preempting the spatial-
temporal resources of other ST packets.

The Injection Control, Dequeue GCL, and Submission
Control functionalities are core contents of the Fenglin-I for-
warding model (as shown in Fig. 4), which aims to deliver
high-precision transmission determinism with low-com-
plexity traffic planning. The Injection Control functionality
controls the time-slot when ST packets are injected from the
first hop, and the Submission Control functionality controls
the time-slot when ST packets are submitted from the last
hop. When multiple ST packets are planned to be injected
(submitted) in the same time-slot, the Injection (Submission)

Fig. 3. Fenglin-I TTP describes a function chain for each traffic class and an overall table map. It is worth noting that Fenglin-I TTP follows the group
table in OpenFlow abstraction to describe the forwarding behavior. Specifically, the Flood, L2 Mcast and Egress Port Entries are entries of the Fen-
glin-I group table, respectively recording the output ports of broadcast, multicast and unicast traffic.

4. AS for the processing path for control packets, which is designed
to achieve basic configuration and clock synchronization functionali-
ties, we recommend not to modify them when customizing a TSN chip
based on Fenglin-I.

144 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 1, JANUARY 2023

Control functionality controls the injection (submission)
order. Moreover, The Dequeue GCL functionality roughly
controls the sending time-slot of each ST packet in all mid-
dle hops to ensure that the ST packets can reach the last hop
node before the submission time-slot.

Different from the CQF model, the Fenglin-I forwarding
model supports assigning the injection (submission) order,
further controlling the fine-grained injection (submission)
time-point at the first (last) hop. By doing this, Fenglin-I sig-
nificantly improves deterministic accuracy. Moreover, com-
pared with planning a time-point for each ST packet in
recommended TAS-adapted planning algorithm [27], the
Fenglin-I forwarding model supports planning a time-slot
(much larger than a time-point) for each ST packet. As the
calculation complexity and delay of a planning algorithm
are positively related to the time granularity, the Fenglin-I
forwarding model is able to reduce calculation complexity
and delay significantly. The fine-grained theoretical analysis
and practical proof are shown in Appendix A, available
online.

4.2 Table Map in Fenglin-I TTP

In order to satisfy the common performance requirements,
reducing chip area and power, we meticulously design
queue structures, buffer structures, and table format. Since
modifying the structure of queues and buffers requires
designers to deeply understand the chip implementation
details (such as the access logic of queues and buffers),
which is hard work. We recommend designers not to mod-
ify the queue and buffer structures. Moreover, since tables
are objects of software planning and configuration, we
introduce the following table format in this subsection. Each
table entry is a key-value pair. The key is the matching field,
and the value defines a action. For instance, a port ID
implies forwarding the matched packet to that port.

FL-tag Encapsulation Table. The FL-tag Encapsulation
functionality mainly converts the 5-tuples in an IP-packet
header to an FL-tag. Thus, the key of this table is 5-tuples,
and the value is an FL-tag. the FL-tag contains streamID, flow-
priority, injection-address, submission-address, stored in the
DMAC field. The streamID is used to differentiate flows.
The flow-priority is used to map a flow to the right queue.
The injection-address/submission-address represents the
memory addresses at the first/last hop for ST flows. Based
on FL-tag, it is unnecessary to perform additional look-ups

and keep the memory address for this control information,
which significantly reduces chip area and power.

Per-stream Meter Table. This table is used to perform rate-
based metering for each RC flow. The key of this table is
streamID living in FL-tag, and its value is the maximum
flow rate allowed for the corresponding RC flow. Directly
mapping from streamID to rate does not require recording
status information, such as the status of ST traffic in another
meter for RC traffic (credit-based shaper [24]), which helps
to save logic resources. Since the packet length is recorded
after receiving the first packet, the minimum interval of
sending time between any two adjacent packets can be cal-
culated by the

intervalmin ¼ lengthpkt

ratemax
� lengthpkt

bandwidth
: (1)

The intervalmin is the minimal interval allowed for the RC
flow, the lengthpkt is the length of the RC packet, the ratemax

is the maximal transmission rate acquired by looking up
this table, and the bandwidth represents the bandwidth of
the link. The Per-stream Meter functionality guarantees that
the actual time interval of any adjacent packets of the RC
flow is not less than the intervalmin.

Injection Control Table. The Injection Control table is used
to control the injection time-slot of each ST packet at the first
hop. The key of this table is a sequence number of time-slot,
and the value is the injection address. To be specific, at the
beginning of each time-slot, the Injection Control functional-
ity uses the current time-slot as the key to match this table
for acquiring the injection address, and then dispatches the
packet according to the injection address. The streamID of
the packets living in the injection address is recorded in the
streamID field of the FL-tag.

L2 Forwarding and Group Tables. These tables are used to
acquire the output ports. The key of the L2 Forwarding table
is the DMAC, and the value is the entry sequence number of
the group table. Each entry of the group table records opera-
tion type and instructions. For example, a group table entry
for a BE multicast packet records operation type: All, Instruc-
tions: (Output port: 1, Go to Dequeue GCL; Output port: 2, Go to
Dequeue GCL; Output port: 3, Go to Dequeue GCL), which
means the packet should be copied three times, and each
copy will be output from port 1, port 2 and port 3, respec-
tively. See more details about the group table at [11]. In
order to unify the operations for broadcast, multicast and
unicast traffic, we combine the two tables into one table to
save resources. The key is the DMAC, and the value is the
output ports that is encoded in the form of a bitmap. For
example, if the output ports obtained by matching this table
is 4’b1101, it means that the output ports of the flow at this
node are port0, port2, and port3.

Enqueue and Dequeue GCLs. The key of Enqueue
(Dequeue) GCL is a sequence number of time-slot, and the
value is gate states. The processing logic obtains the
enqueue (dequeue) gate state of each time-slot by matching
the Enqueue (Dequeue) GCL. Compared with the GCL for-
mat in TSN standard [21], these GCLs replace the duration
field of each gate state with the time-slot field. The duration
is encoded in 4 octets as a 32-bit unsigned integer, repre-
senting a number of nanoseconds. The time-slot field takes

Fig. 4. Fenglin-I forwarding model. Specifically, the Injection (Submis-
sion) Control functionality controls injection (submission) time-point of
each ST packet at the first (last) hop, which is achieved by planning the
injection (submission) time-slot and the packet injection (submission)
order in each injection (submission) time-slot.The Dequeue GCL func-
tionality controls the sending time-slot at each middle hop.

FU ETAL.: FENGLIN-I: AN OPEN-SOURCE TIME-SENSITIVE NETWORKING CHIP ENABLING AGILE CUSTOMIZATION 145

10 bits, generally representing a number of hundreds or tens
of microseconds. Therefore, replacing the duration field
with the time-slot field saves table resources.

Submission Control Table. The submission Control func-
tionality is used to control the submission time-slot of each
ST packet at the last hop. The key of this table is a time-slot,
and its value is the submission address. Similar to the injec-
tion Control table, this table is used to control submitting an
ST packet of the specified flow at a predetermined time-
point.

FL-tag Decapsulation Table. The key of this table is the
streamID, and its value is the DMAC. The FL-tag Decapsu-
lation functionality acquires the DMAC by looking up this
table with the streamID, and replaces the FL-tag occupying
the DMAC field with the acquired DMAC.

5 ATC METHOD

Based on Fenglin-I, we propose an agile TSN chip customi-
zation method named ATC. Using this method to customize
a TSN chip requires the following five steps, as illustrated in
Fig. 5.

Step 1: Design Function Chains. At this step, designers first
collect the functional requirements of the target application.
By comparing the functional requirements that Fenglin-I
satisfies and the ones of the target application, designers
will extract the same functional requirements between
them. Then, designers can re-utilize the Fenglin-I function
chains targeting these same functional requirements. As for
the functional requirements that Fenglin-I does not satisfy,
designers extract adaptive functionalities from the TSN
standards. Based on the Fenglin-I function chains and the
extracted functionalities, designers can customize new func-
tion chains by extending or pruning the Fenglin-I function
chains.

For instance, as Fenglin-I does not provide high reliability,
it is advisable to extend frame replication and elimination
functionalities according to 802.1 CB [18] for those applica-
tions which require high reliability, such as a high-voltage
distribution network. When designing new function chains

based on Fenglin-I function chains, it is crucial to find appro-
priate locations in the Fenglin-I function chains to insert the
extended functionalities. Since the frame replication and
elimination functionalities are recommended to deploy after
traffic convergence [18], we insert it after FL-tag Encapsula-
tion functionality. As for inserting a functionality outside of
the TSN standards, designers need to figure out the traffic
class handled by the functionality and then insert this func-
tionality into the corresponding function chain.

Step 2: Renew Table Map. After designing the function
chains, designers need to determine the table format for
each functionality. Fenglin-I already provides its table for-
mat. Since the Fenglin-I table format is designed to satisfy
the common performance requirements (reducing chip
power and area), and modifying the table format requires a
deep understanding of the implementation details, which is
a hard challenge for designers, the Fenglin-I table format is
recommended not to modify. Designers only focus on the
table format in incremental functionalities. For instance, the
table format in the frame replication and elimination func-
tionalities is a key-value pair. The key is the streamID, and
the value is the sequence number of the latest received
packet. To reduce the lookup time, designers can directly
use the streamID as the corresponding table address.

Step 3: Configure Table Size. At this step, designers config-
ure the table size of both incremental modules and FastTSN
modules. The primary goal of configuring these parameters
is to save as many resources as possible while meeting the
performance requirements of the target application. For
instance, as for the table for recording the sequence number
of the latest received packet in the frame replication and
elimination functionalities, each ST flow consumes a table
entry. The table size should be larger than the maximum
number of ST flows that each switch or host may load.

Step 4: Develop Function Chains. At this step, designers
focus on developing incremental functionalities. In the
developing process, designers only cares about the interfa-
ces of adjacent function modules without figuring out the
implementation details of adjacent modules. For instance,
when inserting the frame replication and elimination

Fig. 5. ATC method. The TPs.txt file is the configuration file of table parameters in functionality s, and the Fn.v file is the code file of functionality n.

146 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 1, JANUARY 2023

module after the FL-tag Encapsulation module, the input
interfaces of this module should be consistent with the out-
put interfaces of the FL-tag Encapsulation module. In order
to simplify the Interface adaptation, FastTSN uses FIFO as
the interface between modules. The content transferred
betweenmodules is the packet descriptor which contains the
required data information (such as FL-tag and partial header
information) for packet processing in function chains or the
packet carryingwith FL-tag.

Step 5: Verify Customized Chip. At this step, designers ver-
ify whether the customized chip satisfies the functional and
performance requirements of the target TSN application. To
achieve this goal, designers first use the customized chips to
build a network required in the target TSN application, and
adopt the software tools to configure these underlying
chips. The work of each software tool is shown in section 3.
At run time, designers collect critical status information
such as timestamps. After that, comparing the actual col-
lected parameter values with the theoretical parameter val-
ues analyzed based on the forwarding model and planning
results, if they are not consistent, feedback is provided to
step 1 for a new round.

Compared with customizing from a “clean-slate”, cus-
tomizing a TSN chip based on Fenglin-I eliminates the
workload of designing function chains and Fenglin-I table
format, implementing FastTSN modules and software tools.

6 FASTTSN IMPLEMENTATION AND EVALUATION

Based on Fenglin-I TTP, we implement a real chip named
FastTSN. In this section, we introduce FastTSN from the
implementation architecture and processingworkflow.More-
over, we extensively evaluate it on FPGA arrays.

6.1 Implementation Architecture

FastTSN implementation architecture contains many design
details, as shown in Fig. 6. We mainly introduce how to map
the function chains in Fenglin-I TTP into this implementation

architecture. Before introducing the mapping relationship, it
is necessary to introduce the interfaces that FastTSN integra-
tes, namely the Local CPU (LCPU) interface and switching
(SW) interface. Both the LCPU and SW interfaces follow the
standard Ethernet interface format. Between them, the
LCPU interface connects the Fl-tag Encapsulation and
Decapsulation modules with other modules. By doing this, it
is beneficial for users to flexibly choose a platform (such as
ASIC, FPGA, and CPU) to develop the FL-tag Encapsulation
and Decapsulation modules. Moreover, FastTSN can be
used as an L2-Switching Ethernet chip without deploying
the FL-tag Encapsulation and Decapsulation modules. Dif-
ferently, the SW interface is used to connect a host or a
switch.

When a BE packet enters from an SW interface, it goes
through the L2 Forwarding module and the Dequeue GCL
module in the egress pipeline connecting with the SW inter-
face. The Forwarding module is used to acquire output
ports. The Dequeue GCL module is used to eliminate inter-
ference with ST transmission time by controlling whether
the BE traffic is allowed to be dispatched. The above proc-
essing path for BE traffic is accorded with the BE function
chain described in Section 4.1.

As for an RC packet or an ST packet, the actions in the L2
Forwarding module and the Dequeue GCL module are the
same as those for a BE packet. However, other actions for an
RC packet or an ST packet are different when the FastTSN
chip is deployed in a different location, namely the first
hop, a middle hop, and the last hop. Specifically, in the
FastTSN deployed as the first hop, the FL-tag Encapsulation
module replaces the DMAC with an FL-tag for each RC
packet. In the FastTSN deployed as a middle hop, the Per-
stream Meter module in the ingress pipeline connecting
with an SW interface limits the transmission rate of each RC
flow. In the FastTSN deployed as the last hop, the FL-tag
Decapsulation module replaces the FL-tag with the DMAC.
The above processing path for RC traffic is accorded with
the ones of the RC function chain described in Section 4.1.

Fig. 6. FastTSN implementation framework. The red line indicates the direction of packet transmission, and the blue line indicates the direction of
descriptor transmission.

FU ETAL.: FENGLIN-I: AN OPEN-SOURCE TIME-SENSITIVE NETWORKING CHIP ENABLING AGILE CUSTOMIZATION 147

Moreover, the actions in the L2 Forwarding module, the
Dequeue GCL module, the FL-tag Encapsulation, and the
Decapsulation modules for an ST packet are the same as
those for an RC packet. Additionally, in the FastTSN
deployed as the first hop, the Injection Control Module in
the ingress pipeline connecting with the LCPU interface
controls the injection time-point of each ST packet. In the
FastTSN deployed as a middle hop, the Enqueue GCL mod-
ule in the egress pipeline connecting with the SW interface
discards the ST packets that do not arrive within the
planned time window. In the FastTSN deployed as the last
hop, the Submission Control module in the egress pipeline
connecting with the LCPU interface controls the submission
time-point of each ST packet. The above processing path for
an ST packet is accorded with the ST function chain
described in Section 4.1.

6.2 Processing Workflow

In this section, we introduce the overall processing work-
flows of FastTSN from the processing workflows at the first
hop, at a middle hop, and at the last hop.

Algorithm 1. Processing Workflows at the First Hop

Input: pktx, FL-tag Encapsulation table (FE) and Injection
Control table (IC)

1: for a 0 to FEvalid depth do
2: if pktx:5 tuples ¼¼ SG½a�:5 tuples then
3: pktx.FL_tag = FE[a].FL_tag;
4: if pktx:FL tag:flow priority 2 ST then
5: pktx.inject_addr = pktx.FL_tag.inject_addr;
6: store pktx according to the injection_addr;
7: for b 0 to ICvalid depth do
8: if pktx:inject addr ¼¼ IC½b�:inject addr then
9: pktx.inject_time = IC[b].inject_time;
10: while pktx:inject time ¼¼ current time do
11: read pktx from pktx.inject_addr and injects it;

Processing workflows at the first hop. This process is shown
in Algorithm 1. First, when a packet (pktx) reaches the first
hop, and pktx belongs to ST or RC traffic, the FL-tag Encap-
sulation module replaces the pktx DMAC with a corre-
sponding FL-tag, which is acquired by looking up the FL-
tag Encapsulation table (lines 1-3), then forwards pktx to the
LCPU interface. If pktx is a BE packet, the FL-tag Encapsula-
tion module directly forwards it to the LCPU interface.
After the actions of the FL-tag Encapsulation module, if
pktx belongs to an ST packet, the Injection Control module
looks up the FL-tag to acquire the injection address (lines 4-
5) and then pushes pktx into the buffer according to the
injection address (line 6). When the current time reaches the
injection time-slot of pktx, acquired by looking up the Injec-
tion Control table, the Injection Control module fetches pktx
according to its injection address, then injects it to the next
hop as soon as possible (lines 7-11).

Processing Workflows at a Middle Hop. The process is shown
in Algorithm 2. When a packet (pktx) reaches a middle hop,
the Per-stream Meter module checks whether the packet
belongs to anRCflow. The Per-streamMetermodule acquires
the maximum transmission rate by looking up the Per-stream
Meter table for RC packets (lines 1-4) and then keeps the
actual flow rate less than the maximum transmission rate. If

pktx is not an RC packet, it will not go through the Per-stream
Meter module. After that, the L2 Forwarding module looks
up the Forwarding table to acquire the output ports regard-
less of the traffic type of pktx, then forwards the packet to the
corresponding egress pipeline according to the acquired out-
put ports (lines 5-8). If pktx is an ST packet, the Enqueue GCL
module in the egress pipeline acquires the queue-id of pktx
according to the flow-priority attached in the FL-tag (line 9),
and inquires the en-queue gate state of the corresponding
queue at the current time-slot by looking up the Enqueue
GCL. If the en-queue gate state is open, put pktx into the corre-
sponding queue. Otherwise, pktx will be discarded (lines 9-
15). If pktx is not an ST packet, it will not go through the
Enqueue GCLmodule. Next, the scheduler in the egress pipe-
line dispatches the packets in the queues whose de-queue
gate states are open according to the strict priority policy (ST
traffic has the highest priority, RC traffic has the medium pri-
ority, and the priority of BE traffic is the lowest). The packets
in the same queue are scheduled in first-in-first-out order
(lines 16-19).

Algorithm 2. Processing Workflows at a Middle Hop

Input: pktx, Per-streamMeter table (PM), Forwarding table
(Fwd), Enqueue GCL (EG), Dequeue GCL (DG)

1: if pktx:FL tag:flow priority 2 RC then
2: for c 0 to PMvalid depth do
3: if pktx:stream id ¼ PM ½c�:stream id then
4: RC[pktx.stream_id].rate=PM[b].rate;
5: pktx.outports = Fwd[pktx.stream_id].outports;
6: for d 0 to portnum do
7: if pktx:outports½d� ¼ 1 then
8: forward pktx to port d;
9: pktx.queue_id = pktx.FL_tag.flow_priority;
10: if pktx:FL tag:flow priority 2 ST then
11: gate_states = EG[cur_timeslot].gate_states;
12: if queue id:gate state ¼ 1 &&

queue id:used depth 6¼ Full then
13: put pktx into queue_id;
14: else
15: discard pktx;
16: for queue id 0 to ðqueuenum � 1Þ do
17: gate_states = GCL[current_timeslot].gate_states;
18: if queue id:gate state ¼ 1 && queue id:empty ¼ 0 then
19: allow scheduling packets from queue_id;

Processing Workflows at the Last Hop. The process is shown
in Algorithm 3. When pktx arrives at the last hop, the Sub-
mission Control module inquires about the packet priority
of pktx. If pktx is an ST packet, the Submission Control mod-
ule looks up the FL-tag to acquire the submission address
(line 1-2) and then pushes pktx into the memory according
to the submission address (line 3). When the current time
reaches the submission time of pktx acquired by looking up
the Submission Control table, the Submission Control mod-
ule fetches pktx according to its submission address, then
submits it to the FL-tag Decapsulation module (lines 4-8). If
pktx is an RC packet, it will directly enter the FL-tag Decap-
sulation module without going through the Submission
Control module. After that, the FL-tag Decapsulation mod-
ule looks up the FL-tag Decapsulation table to acquire the
pktx DMAC and fills the pktx DMAC back to the DMAC

148 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 1, JANUARY 2023

field(lines 9-12). However, if pktx is not an ST or RC packet,
pktx will not go through the Submission Control and FL-tag
Decapsulation modules.

Algorithm 3. Processing Workflows at the Last Hop

Input: pktx, FL-tag Decapsulation table (FD) and Submission
Control table (SC)

1: if pktx:FL tag:flow priority 2 ST then
2: pktx.submit_addr = pktx.FL_tag.submit_addr;
3: store pktx according to the submission_addr ;
4: for e 0 to SCvalid depth do
5: if pktx:submit addr ¼ SC½e�:submit addr then
6: pktx.submit_time = SC[e].submit_time;
7: while pktx:submit time ¼¼ current time do
8: read pktx from pktx.submit_addr, submit it;
9: for e 0 to FD entrynum do
10: if pktx:stream id ¼ FD½e�:stream id then
11: pktx.dmac = FD[e].dmac;
12: fill the dmac back to the corresponding field;

6.3 Evaluation

To verify the feasibility of FastTSN chip, we prototype
FastTSN on FPGA and deploy two typical TSN scenarios.

Experiment I: ring topology, unicast flows.
Devices settings.
In this experiment, as shown in Fig. 7, all the FL-Is

(FastTSN chips) are connected, forming a ring topology.
The controller/analyzer is used to configure and monitor
all FL-Is. Moreover, both Tester1 and Tester2 are imple-
mented by FPGA, which construct flows according to the
configuration parameters (such as packet payload and send-
ing interval) generated by the tester controllers. The camera
and camera monitor are used to generate an RC flow. In
addition, the bandwidth of each link is 1Gbp/s.

Traffic Settings. As illustrated in Fig. 7, there are BE flow1,
BE flow2, RC flow1, and 32 ST flows. The bandwidth of BE
flow1 is 400Mbps/s. The RC flow1 bandwidth is 5Mbps/s.
The bandwidths of BE flow2 and each ST flow are variables.
Among them, the BE flow1 and 32 ST flows are generated
from Tester 1, which aims to simulate the host generating ST
flows and non-ST flows simultaneously. BE flow2 is used to
construct a congested link between FL-I 3 and FL-I 4.

Synchronization Offset Evaluation. We set FL-I 1 as the
master clock (actively triggering synchronization) and the
other FL-Is as slave clocks (passively executing synchroni-
zation). The synchronization interval is 100ms. We collect
offset values in 400 minutes at runtime. As shown in
Fig. 8, the offset between slave clocks and the master clock always
keeps less than 64ns. Moreover, the offset value is positively
correlated with the distance between the slave clock and
master clock, which is consistent with theoretical analy-
sis [23]. Specifically, as the distance between FL-I 4 and the
master clock is the farthest, and the one between FL-I 2 or
FL-I 6 is the nearest, the average offset value of FL-I 4 is the
maximum, and the average offset value of FL-I 3 is over
than the one of FL-I 2 (as shown in Fig. 8a). Moreover, the
average offset value of FL-I 2 is roughly consistent with the
one of FL-I 6 (as shown in Fig. 8b), and the average offset
value of FL-I 3 is roughly consistent with the one of FL-I 5
(as shown in Fig. 8c).

Delay and Jitter Evaluation. We evaluate the influence of
background traffic (such as BE traffic) workload on ST
determinism by setting different bandwidths of BE flow2,
400Mbp/s and 700Mbp/s. When the bandwidth of BE-
flow2 is 700Mbp/s, the accumulated traffic bandwidth from
FL-I3 to FL-I6 is over than the link bandwidth. As illustrated
in Fig. 9a, the difference between the average end-to-end
delays of 8 ST flows under 400Mbp/s and 700Mbp/s BE
flow2 keeps less than 40ns. The difference mainly results
from the clock offset. Thus, the workload size of BE traffic
has no influence on the determinism of ST traffic.

Next, we evaluate the influence of interval (the submis-
sion time-slot minus the injection time-slot), time-slot value,
and ST bandwidth on ST determinism by setting different
intervals (6time-slots and 1000 time-slots), different time-
slot values (namely 64us and 128us) and different ST band-
widths (16Kbp/s and 16Mbp/s). The difference between
the actual average end-to-end delays of 8 ST flows and the
theoretical interval (shown as the red dotted line in Fig. 9) is
less than 30ns, and the jitters of the end-to-end delays
always keep less than 120 ns, as illustrated in Fig. 9b,
Fig. 9c. Thus, the interval, time-slot value, and ST band-
width do not influence the determinism of ST traffic. The
above experimental results demonstrate that FastTSN is
able to provide microsecond-level determinism.

Fig. 7. Topology of experiment I.

Fig. 8. Offset between slave and master clocks. (a) FL-I 1, FL-I 2 and FL-I 4 offset. (b) FL-I 2 and FL-I 6 offset. (c) FL-I 3 and FL-I 5 offset.

FU ETAL.: FENGLIN-I: AN OPEN-SOURCE TIME-SENSITIVE NETWORKING CHIP ENABLING AGILE CUSTOMIZATION 149

Experiment II: line topology, multicast flows.
Devices Settings. Guaranteeing determinism of multicast

ST traffic is crucial for many TSN scenarios, such as triple
modular redundancy in aerospace craft and advanced driver
assistance system in the vehicle. Thus, we build this experi-
ment to verify the determinism precision that FastTSN pro-
vides for multicast ST traffic. As illustrated in Fig. 10, there
are three FL-Is to form a linear network. All FL-Is are used
as switches, which means FL-Is do not use the Injection and
Submission Control functionalities to improve ST determin-
ism. This is consistent with the above scenarios.

Traffic Settings. The ST flow generated by Tester 2 is a
multicast flow, which respectively goes through FL-I 2 and
FL-I 3 to arrive at Tester 2. Thus, Tester 2 receives two cop-
ies of each ST packet (the identical packets are called packet
pair). Tester 2 forwards the ST packets to the analyzer as
soon as it receives them. The BE flow is used as background
flow to demonstrate the influence of BE flow on the deter-
minism of ST multicast flow.

Determinism Evaluation. We first verify the influence of ST
packet length and bandwidth on ST determinism.We stop the
BE flow and generate ST flows with different packet lengths
and bandwidths, 128B and 1Mbp/s, 512B and 5Mbp/s, 1024B
and 10Mbp/s.Moreover,we configure this ST flow to transmit
from FL-I 2 and FL-I 3 at the same time-slot. After that, we col-
lect the time-point pair for each STpacket pair arrived at Tester
2, and calculate the absolute time difference of each time-point
pair. As shown in Fig. 11a, the time difference keeps less than
100ns under different ST packet lengths and bandwidths,
which ismainly resulted from clock offset.

Next, we evaluate the influence of background traffic on
ST determinism. We add a BE flow whose packet length is
128B and change its bandwidth, 10Mbp/s, 100Mbp/s,
200Mbp/s and 500Mbp/s. As FL-Is do not use the injection
and submission control functionalities to improve ST deter-
minism, the BE flow is supposed to increase the time

difference of each time-point pair. This is because when an ST
packet is planned to transmit, a BE packet may be transmitting
at the same physics port, resulting in the ST packet having to
wait until the BE packet finishes transmission. This increases
the time offset of ST packet sending from FL-I 2, further
increasing the time difference of each time-point pair. We col-
lect the time difference of 2000 packet pairs, and the results
show the time difference is positively correlatedwith BE band-
width. This is because the higher bandwidth of the BE flow is,
the greater probability that ST flow is blocked at FL-I 2. As the
BE packet length is 128B, transmitting a BE packet from FL-I 2
portwhose line rate is 1Gbp/sneeds 1ms. Thus, the timediffer-
ence is generally less than 1us, as shown in Fig. 11b. In order to
eliminate the influence of BE traffic on ST transmission deter-
minism, we turn on the guard band mechanism [21], that is,
BE traffic is not allowed to transmit within 12 microseconds
before ST traffic is planned to be transmitted, and the result is
the same as the one shown in Fig. 11a.

7 USE CASES

In this section, we demonstrate two customized TSN chips,
HX-DS09 ASIC chip and TZ-TS01 FPGA-based chip.

Fig. 9. End-to-End latency and jitter. (a) basis setup. (b) under different interval. (c) under different time-slot and bandwidth of ST flows.

Fig. 10. Topology of experiment II.
Fig. 11. Time differences of ST packet pairs. (a) under different ST band-
width and packet length. (b) under different bandwidths of BE flow.

150 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 1, JANUARY 2023

7.1 HX-DS09 ASIC Chip

Further to demonstrate the benefits of Fenglin-I, we custom-
ize an ASIC chip named HX-DS09 (as shown in Fig. 12a)
based on Fenglin-I to provide deterministic service for time-
critical flows among controllers, actuators, and sensors in
an industrial control system. The requirements are ðiÞ some
actuators need to respond to the duplicate multicast pack-
ets. Since the memory resource in the actuators is limited,
the actuators at most supports receiving packets continu-
ously for 2ms without any drops. Therefore, HX-DS09
requires 2ms determinism for multicast flows. ðiiÞ The power
supply provides 1W power to the original Ethernet chip. In
order to substitute the Ethernet low-power chip, HX-DS09
requires less than 1W power consumption.

As the ATC method described in section 5, Customizing
HX-DS09 based on Fenglin-I requires the following steps.

Design Function Chains. The target chip requires 2ms deter-
minism for multicast flows, and FastTSN can deliver 1ms
determinism for multicast flows with the interference of
128B BE traffic, as illustrated by the results of experiment II.
To reduce or eliminate the interference of non-ST packets,
frame preemption and slicing functionalities are two
options. Because frame preemption involves modifying PHY
logic, which results of high implementation complexity.
Therefore, we insert slicing and recombining functionalities
into Fenglin-I function chains, forming the function chains of
HX-DS09. The slicing functionalities cuts each packet larger
than 128 bytes into multiple slices smaller than 128 bytes,
and the recombining function reassembles these slices back

into a complete packet. According to the definition of end-to-
end delay in Appendix A, available in the online supplemen-
tal material, it is critical to eliminate the influence of BE pack-
ets on the injection and submission time of ST packets.
Therefore, the HX-DS09 chip inserts the slicing functionality
before the FL-tag Encapsulation function and the recombin-
ing functionality after the FL-tag Decapsulation function.
Moreover, there is no RC traffic in the target application, so
we delete the function chain for RC traffic further to form the
HX-DS09 TTP, as shown in Fig. 13.

Renew Table Map. In order to reassemble slices back into a
complete packet, the recombining module adopts a table to
record the sequence number of received slices. The keys of
this table are the StreamID and packet sequence, and the
value is the sequence number of received slices. Extracting
and optimizing this table takes a few hours.

Configure Resource Size. As the recombining functionality
reassembles slices at the last hop and the last hop node
loads less than 100 flows in the target application, the size
of the table in recombining functionality is set to 128.

Develop Function Chains. In this step, we develop the slicing
and recombining modules. The input interfaces of the FL-tag
Encapsulationmodule and the output interfaces of the FL-tag
Decapsulationmodule are the standard Ethernet packet inter-
faces. In order to adapt to those interfaces, both the input and
output interfaces of slicing and recombining functionalities
are also the standard Ethernet packet interfaces.

Verify Customized Chip. In this step, we build a TSN sys-
tem similar to experiment II. The verification results show
that HX-DS09 is able to deliver 1.2ms determinism, which is
mainly composed of the following three parts. (1) Clock off-
set. As shown in Fig. 9, the clock offset always keeps within
64ns. (2) The jitter of the PHY chip in the HX-DS09 test
board. Since the HX-DS09 test board respectively records
the sending and receiving timestamps before and after the
PHY chip, the jitter of the HX-DS09’s PHY chip will inter-
fere with the timestamp values. After testing a single HX-
DS09 test board, it is concluded that the round-trip jitter of
the HX-DS09’s PHY chip keeps within 132ns. (3) Interfer-
ence of non-ST frames. Since the HX-DS09 integrates the

Fig. 12. Two Customized chip based on Fenglin-I. (a) HX-DS09 chip. (b)
A FPGA-based TSN chip.

Fig. 13. HX-DS09 chip extends the frame slicing and recombining functionalities based on Fenglin-I chip.

FU ETAL.: FENGLIN-I: AN OPEN-SOURCE TIME-SENSITIVE NETWORKING CHIP ENABLING AGILE CUSTOMIZATION 151

slicing and reassembling functionalities which cut the frame
larger than 128 bytes into multiple frames smaller than 128
bytes, the maximum block time caused by a non-ST frame is
1ms (128B/1Gbps). Moreover, the HX-DS09 adopts 84.1% of
code from FastTSN chip database (as shown in Table 2) and
achieves ultra-low power (0.5W) under the 130nm process.

7.2 TZ-TS01 FPGA-Based Chip

A third-party customizes an FPGA-based chip named TZ-
TS01 (as shown in Fig. 12b) based on Fenglin-I to provide
deterministic service for time-critical flows between control-
lers and sensors in an aircraft network. This scenario ðiÞ
requires the single-hop delay keep less than 200ms under
the 100Mbps physical interface, ðiiÞ requires end-to-end
transmission jitter keep less than 100ms, ðiiiÞ support 64 ST
flows from 32 nodes.

As FastTSN satisfies these requirements, the designers of
TZ-TS01 just delete the Injection Control and Submission
Control functionalities, without any increment code, and
configure the table size on demand. Although the determin-
istic accuracy is decreased to tens of microseconds, it still
satisfies the determinism requirement. Moreover, the sin-
gle-hop delay keeps less than 7us under the 100Mbps physi-
cal interface.

8 RELATED WORK

Open-Source Hardware. With the rapid increase of new IT
technologies, hardware become more and more compli-
cated. In order to reduce the complexity of new technology
development, open-source technology has become an essen-
tial means of hardware development. RISC-V [10] founda-
tion proposes the instruction set architecture, and some
organizations open source code of RISC-V chips. For exam-
ple, SiFive proposes an open-source RSIC-V chip, Rocket-
chip. Users are able to agilely customize a RSIC-V chip by
following the specification of the instruction set architecture
and referring to the source code. However, The RISC-V chip
aims at general purpose computation. Another open-source
hardware is corundum (a high-performance FPGA-based
NIC) [28], which opens the source-code. corundum project
encourages users to directly reproduce the mature products,
rather than serving as the foundation of customization.
NetFPGA [29] and P4NetFPGA [30] are famous open-source

programmable switches. They recommend designers to cus-
tomize switches by configuring table parameters. However,
they do not support time-triggered actions, such as Enqueue
and Dequeue GCL functionalities, and thus cannot be used
to customize TSN switches.

TSN Chip Design. The commercial off-the-shelf (COTS)
TSN chips [4], [5] are developed in a Bottom-up method
without considering specific application requirements. It is
challenging for users to select a COTS chip that satisfies all
their requirements appropriately. Moreover, the resource
partitioning for tables, queues and buffers in such chips is
fixed. Inmany cases, the resource partitioning does not adapt
to the specific application features very well. As a result, the
on-chip memory resource is often under low utilization.
Therefore, TSN-Builder [6] decomposes a TSN chip into five
core modules and decouples the various resource specifica-
tions of each module from the fixed processing logic with a
comprehensive abstraction of memory-related resources.
Users can configure these resource specifications on demand
for customizing a resource-efficient TSN switches. However,
TSN-builder lacks the software tools and does not recom-
mend designing new function chains, limiting flexibility for
chip customization. Moreover, its forwarding model follows
CQF and TAS, facing the challenge I.

Open-Source TSN-Related Project. OpenAvnu project [31]
focuses on TSN and AVB systems and realizes the gPTP
and SRP protocols, etc. However, it does not realize TSN
core functionalities, such as TAS and CQF, etc. OpenTSN
project [8], [9] opens a compete TSN system including hard-
ware in data plane and software in control plane to reduce
the customization complexity. However, it lacks the
detailed high-level abstraction and customization method.
Moreover, it also adopts CQF and TAS forwarding model,
facing the challenge I.

9 CONCLUSION

In this paper, we propose an open-source TSN chip to serve
as the basis of customizing TSN chips to reduce development
overhead. Specifically, the Fenglin-I chip contains high-level
abstraction (TTP), software tools, and a real chip (FastTSN)
following Fenglin-I TTP specification. To demonstrate the
effectiveness of Fenglin-I, we prototype and evaluate Fenglin-I
on FPGA-based testbed. We verify that Fenglin-I chip satisfies
the common requirements of TSN applications. Moreover, we
propose a method named ATC to introduce the concrete steps
of customizing TSN chips based on Fenglin-I. Finally, we and
a third-party use the ATC method to customize two different
chips. The post-customization chips reuse 84.1% and 100%
fromFastTSN’s codebase.

REFERENCES

[1] A. Nasrallah et al., “Ultra-low latency (ULL) networks: The IEEE
TSN and IETF DetNet standards and related 5G ULL research,”
IEEE Commun. Surv. Tuts., vol. 21, no. 1, pp. 88–145, Jan.–Mar.
2019.

[2] J. Farkas, L. L. Bello, and C. Gunther, “Time-sensitive networking
standards,” IEEE Commun. Standards Mag., vol. 2, no. 2, pp. 20–21,
Jun. 2018.

[3] IEEE Standard for Local and Metropolitan Area Networks-Bridges and
Bridged Networks (802.1Q standard), IEEE Std. 802.1Q-2018, Jul.
2018. [Online]. Available: https://standards.ieee.org/standard/
802_1Q-2018.html

TABLE 2
Code Quantity in HX-DS09

HX-DS09 Modules quantity belonging percentage

LCPU ingress pipeline 3128 lines

FastTSN 84.1%

LCPU egress pipeline 1932 lines
L2 forwarding 1472 lines
buffermanagement 2300 lines
gPTP 733 lines
switching ingress pipeline 3036 lines
switching egress pipeline 4370 lines
FL-tag Encapsulation 1357 lines
FL-tag Decapsulation 483 lines
LCPU or SW interface 1416 lines

slicing 456 lines incremental
modules

15.9%
recombining 3381 lines

152 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 1, JANUARY 2023

https://standards.ieee.org/standard/802_1Q-2018.html
https://standards.ieee.org/standard/802_1Q-2018.html

[4] BROADCOM, “BCM53570, 1G/2.5G/10G/25G TSN connectiv-
ity switch, (product brief),” 2022. [Online]. Available: https://
docs.broadcom.com/doc/53570-PB101

[5] NXP, “SJA1105TEL, five-ports AVB and TSN automotive ethernet
switch (product data sheet),” 2019. [Online]. Available: https://
www.nxp.com.cn/docs/en/data-sheet/SJA1105.pdf

[6] Y. Jinli et al., “TSN-Builder: Enabling rapid customization of
resource-efficient switches for time-sensitive networking,” in
Proc. 57th ACM/IEEE Des. Automat. Conf., 2020, pp. 1–6.

[7] H. Won et al., “A 0.87 W transceiver IC for 100 Gigabit ethernet
in 40 nm CMOS,” IEEE J. Solid-State Circuits, vol. 50, no. 2,
pp. 399–413, Feb. 2015.

[8] W. Quanetal, “OpenTSN: An open-source project for time-sensi-
tive networking system development,” CCF Trans. Netw., vol. 3,
no. 9, pp. 51–65, 2020.

[9] “OpenTSN team, an opensource project to enable TSN research,”
2020. [Online]. Available: https://github.com/fast-codesign/
OpenTSN2.0

[10] “RISC-V International, RSIC-V specifications,” 2016. [Online].
Available: https://riscv.org/technical/specifications/

[11] N. Mckeownetal ., “DpenFlow: Enabling innovation in campus
networks,” Comput. Commun. Rev., vol. 38, no. 2, pp. 69–74, 2008.

[12] OpenNetworking Foundation, “OpenFlow table type patterns,” 2014.
[Online]. Available: https://opennetworking.org/wp-content/
uploads/2013/04/
OpenFlow%20Table%20Type%20Patterns%20v1.0.pdf

[13] J. Sanchez-Garrido et al., “Implementation of a time-sensitive net-
working (TSN) Ethernet bus for microlaunchers,” IEEE Trans.
Aerosp. Electron. Syst., vol. 57, no. 5, pp. 2743–2758, Oct. 2021.

[14] Q. Yu, H. Wan, X. Zhao, Y. Gao, and M. Gu, “Online scheduling
for dynamic VM migration in multicast time-sensitive networks,”
IEEE Trans. Ind. Inform., vol. 16, no. 6, pp. 3778–3788, Jun. 2020.

[15] D. Chatzopoulos, C. Bermejo, Z. Huang, and P. Hui, “Mobile aug-
mented reality survey: From where we are to where we go,” IEEE
Access, vol. 5, pp. 6917–6950, 2017.

[16] B. Cizmeci, X. Xu, R. Chaudhari, C. Bachhuber, N. Alt, and
E. Steinbach, “A multiplexing scheme for multimodal teleope-
ration,” ACM Trans. Multimedia Comput. Commun. Appl., vol. 13,
no. 2, pp. 21:1–21:28,May 2017.

[17] IEC/IEEE TSN Profile for Industrial Automation, IEC/IEEE Std.
60802 V0.61,” Apr. 2018.

[18] IEEE Standard for Local and Metropolitan Area Networks–Frame Repli-
cation and Elimination for Reliability, IEEE Std. 802.1CB-2017, Oct.
2017. [Online]. Available: : https://standards.ieee.org/standard/
802_1CB-2017.html

[19] IEEE Standard for Local and Metropolitan area Networks–Bridges and
Bridged Networks–Amendment 28, IEEE Std. I802.1Qci-2017, Sep.
2017. [Online]. Available: https://1.ieee802.org/tsn/802–1qci/

[20] IEEE Standard for Local and Metropolitan Area Networks–Bridges and
Bridged Networks - Amendment 34: Asynchronous Traffic Shaping,
IEEE Std. 802.1Qcr-2020, Nov. 2020. [Online]. Available: https://
standards.ieee.org/standard/802_1Qcr-202

[21] IEEE Standard for Local and Metropolitan Area Networks–Bridges and
Bridged Networks–Amendment 26: Frame Preemption, IEEE Std.
802.1Qbu-2016, Aug. 2016. [Online]. Available: : https://standards.
ieee.org/standard/802_1Qbu-2016.html

[22] IEEE Standard for Local and Metropolitan Area Networks–Bridges and
Bridged Networks–Amendment 29: Cyclic Queuing and Forwarding,
IEEE Std. 802.1Qch-2017, 2017. [Online]. Available: https://
standards.ieee.org/standard/802_1Qbv-2015.html

[23] IEEE Standard for Local and Metropolitan Area Networks–Timing and
Synchronization for Time-Sensitive Applications, IEEE Std. 802.1AS-
2020, 2020. [Online]. Available: https://www.ieee802.org/1/
pages/802.1as.html

[24] IEEE Standard for Local and Metropolitan Area Network-Forwarding
and Queuing Enhancements for Time-Sensitive Streams, IEEE Std.
802.1Qav-2009, 2009. [Online]. Available: https://standards.ieee.
org/ieee/802.1Qav/

[25] J. Yan, W. Quan, X. Jiang, and Z. Sun, “Injection time planning:
Making CQF practical in time-sensitive networking,” in Proc.
IEEE Conf. Comput. Commun., 2020, pp. 616–625.

[26] Y. Huang, S. Wang, T. Huang, B. Wu, Y. Wu, and Y. Liu, ”Online
routing and scheduling for time-sensitive networks,” in Proc. IEEE
41st Int. Conf. Distrib. Comput. Syst., 2021, pp. 272–281, doi: 10.1109/
ICDCS51616.2021.00034.

[27] R. S. Oliver, S. S. Craciunas, and W. Steiner, “IEEE 802.1Qbv gate
control list synthesis using array theory encoding,” in Proc. IEEE
Real-Time Embedded Technol. Appl. Symp., 2018, pp. 13–24.

[28] A. Forencich, A. C. Snoeren, G. Porter, and G. Papen, “Corundum:
An open-source 100-Gbps NIC,” in Proc. IEEE 28th Annu. Int. Symp.
Field-Programmable CustomComput.Machines, 2020, pp. 38–46.

[29] J. W. Lockwood et al., “NetFPGA–An open platform for gigabit-rate
network switching and routing,” in Proc. IEEE Int. Conf. Microelec-
tronic Syst. Educ., 2007, pp. 160–161, doi: 10.1109/MSE.2007.69.

[30] S. Ibanez, G. Brebner, N. McKeown, and N. Zilberman, “The
P4NetFPGA workflow for line-rate packet processing,” in Proc.
ACM/SIGDA Int. Symp. Field-Programmable Gate Arrays, 2019, pp. 1–9.

[31] “OpenAvnu-an avnu sponsored repository for time sensitive net-
work (TSN and AVB) technology,” 2020. [Online]. Available:
https://github.com/Avnu/OpenAvnu

[32] K. Steinhammer and A. Ademaj, “Hardware implementation of
the TimeTriggered Ethernet controller,” in Embedded System
Design: Topics Techniques and Trends. Boston, MA, USA: Springer,
2007, pp. 325–338.

[33] T. Fruhwirth, W. Steiner, and B. Stangl, “TTEthernet SW-based
end-system for AUTOSAR,” in Proc. 10th IEEE Int. Symp. Ind.
Embedded Syst, 2015, pp. 1–8.

[34] E. Kyriakakis et al., “A time-predictable opensource TTEthernet
end-system,” J. Syst. Architecture, vol. 108, 2020, Art. no. 101744.

Wenwen Fu is currently working towrd the PhD
degree with the National University of Defense
Technology. His main research interests include
time-sensitive networking, time-triggered ether-
net, software defined network, and congestion
control in data centers.

Wei Quan is an associate professor with the
College of Computer Science and Technology,
National University of Defense Technology. His
main research interests include cover time-sensitive
networking, time-triggered ethernet, and computer
architecture.

Jinli Yan is currently working toward the PhD
degree with the National University of Defense
Technology. His main research interests include
time-sensitive networking, time-triggered ether-
net, software defined network, and network func-
tions virtualization.

Zhigang Sun is a professor with the National Uni-
versity of Defense Technology, chair of OpenTSN
open-source project. His main research interests
include deterministic ethernet, software defined net-
work, network architecture, and network security.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

FU ETAL.: FENGLIN-I: AN OPEN-SOURCE TIME-SENSITIVE NETWORKING CHIP ENABLING AGILE CUSTOMIZATION 153

https://docs.broadcom.com/doc/53570-PB101
https://docs.broadcom.com/doc/53570-PB101
https://www.nxp.com.cn/docs/en/data-sheet/SJA1105.pdf
https://www.nxp.com.cn/docs/en/data-sheet/SJA1105.pdf
https://github.com/fast-codesign/OpenTSN2.0
https://github.com/fast-codesign/OpenTSN2.0
https://riscv.org/technical/specifications/
https://opennetworking.org/wp-content/uploads/2013/04/OpenFlow%20Table%20Type%20Patterns%20v1.0.pdf
https://opennetworking.org/wp-content/uploads/2013/04/OpenFlow%20Table%20Type%20Patterns%20v1.0.pdf
https://opennetworking.org/wp-content/uploads/2013/04/OpenFlow%20Table%20Type%20Patterns%20v1.0.pdf
https://opennetworking.org/wp-content/uploads/2013/04/OpenFlow%20Table%20Type%20Patterns%20v1.0.pdf
https://opennetworking.org/wp-content/uploads/2013/04/OpenFlow%20Table%20Type%20Patterns%20v1.0.pdf
https://opennetworking.org/wp-content/uploads/2013/04/OpenFlow%20Table%20Type%20Patterns%20v1.0.pdf
https://opennetworking.org/wp-content/uploads/2013/04/OpenFlow%20Table%20Type%20Patterns%20v1.0.pdf
https://standards.ieee.org/standard/802_1CB-2017.html
https://standards.ieee.org/standard/802_1CB-2017.html
https://1.ieee802.org/tsn/802--1qci/
https://standards.ieee.org/standard/802_1Qcr-202
https://standards.ieee.org/standard/802_1Qcr-202
https://standards.ieee.org/standard/802_1Qbu-2016.html
https://standards.ieee.org/standard/802_1Qbu-2016.html
https://standards.ieee.org/standard/802_1Qbv-2015.html
https://standards.ieee.org/standard/802_1Qbv-2015.html
https://www.ieee802.org/1/pages/802.1as.html
https://www.ieee802.org/1/pages/802.1as.html
https://standards.ieee.org/ieee/802.1Qav/
https://standards.ieee.org/ieee/802.1Qav/
https://doi.org/10.1109/ICDCS51616.2021.00034
https://doi.org/10.1109/ICDCS51616.2021.00034
https://doi.org/10.1109/MSE.2007.69
https://github.com/Avnu/OpenAvnu

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

