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FLIXR: Embedding Index Into Flash
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Abstract—Flash memory technologies rely on flash translation layer (FTL) to manage no in-place update and garbage collection. Current
FTL management schemes do not exploit the semantics of the accessed data. In this paper, we explore how semantic knowledge can be
exploited to build and maintain indexes for stored data automatically. Data indexing is a critical enabler to accelerate many database
applications and big data analytics. Unlike traditional per-table or per-file indexes that are managed separately from the data, we propose
to maintain indexes on a per-flash page basis. Our approach, called FLash IndeXeR (FLIXR), builds and maintains page-level indexes
whenever a page is written into the flash. FLIXR updates the indexes alongside any data updates at page granularity. The cost of the index
update is hidden in the page write delays. FLIXR stores index data for each page within the FTL entry associated with that page, thereby

piggybacking index access on a page access request. FLIXR accesses the index data in each FTL entry to determine whether the
associated page stores data with a given key. FLIXR achieves 52.6% performance improvement for TPC-C and TPC-H benchmarks,

compared to the conventional host-side indexing mechanism.

Index Terms—Solid-state drives, flash translation layer, database index, in-storage processing

1 INTRODUCTION

BIG data analytics and database operations rely on effi-
ciently finding records to speedup query processing.
Index structures are employed for the purpose of finding
records associated with a given key. For instance, without an
index, the select from, SQL query needs to scan the entire data-
base and select items that match the filter condition specified
within the query. However, a database scan can be avoided if
an index structure is already built on the keys. Then the select
from operation can be implemented using a more efficient
hashing of the filtering key to access the index table, which
will in turn point to the records that match the key.
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Index structures are generally created and maintained
as separate structures from the data they index. If a server
basically keeps the index structures in storage, their
accesses need a large amount of I/O operations before
reaching the desired data. Even with a multi-level index
structure, such as a B+-tree, where the root nodes may be
cached on the host DRAM, the remaining levels need to
be accessed from storage. Therefore, host systems require
additional latency to access the index structures. Also,
when data is updated index tables must also be updated.
Updating database tables causes significant indirect
access to storage data and key comparisons that tax the
host processors [1]. Prior work revealed that even if 0.1%
of the data is updated, index updates can take 0.3x-5.2x
of the original index build time, using B+-tree based
index structures [2].

In this work, we make a case for improving storage per-
formance by exploiting the data semantics. The key insight
is derived from the fact that SSDs employ flash memory
management schemes to support the disparate characteris-
tics of read/write/erase operations of flash memory. Note
that flash memory does not allow in-place writes thus the
target page has to be erased before the updated data is over-
written. The erase operation in flash memory is significantly
slow and may contaminate neighbor pages severely since
the erasure requires a very high voltage level. SSDs write
the updated page data to one of the empty pages in order to
avoid such heavy performance burdens caused by the erase
operations. That means every update on the same page cre-
ates new mapping to a different physical page. SSDs manage
this page-level mapping information in a flash translation
layer (FTL). As such, every page access has to go through FTL
lookup in current SSDs. Note that the FTL management is
agnostic to the semantics of the data stored in the page. Fur-
thermore, the page/block sizes and the topology of the flash
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memory are divergent by flash memory vendors and gener-
ations and such information is sealed inside of SSDs. Conse-
quently, the per-page index management that is compliant
with SSD’s flash management schemes can be offloaded
into SSD in order to mitigate the heavy I/O transfers caused
by conventional host-side index management methods.
With this insight, we demonstrate how per-page indexing
information can be embedded within the FTL to speedup
database operations.

We propose FLash IndeXeR (FLIXR), which allows the
FTL management to parse per-page data to build and man-
age index information on a per-page basis automatically.
Given that FTL is a performance-critical structure, we limit
the type of indices that can be stored within each FTL entry
to be integer or bitmap structures that occupy several bytes
of extra space per FTL entry. This limitation inhibits the cre-
ation of complex index structures. However, we show that
many database queries can be accelerated using these sim-
ple indices. Also, we showcase a co-existence of the pro-
posed per-page index with traditional index structures that
host processors manage, thereby allowing flexibility to the
database administrators to use complex indices with FLIXR.

FLIXR has the following advantages over conventional
index management schemes. First, the storage processors
can update the index structures on the fly while the page is
being updated. Since flash memory exhibits a long write
latency, the index generation and update time can be easily
hidden within the flash write process. Second, FLIXR can be
applied to the commodity SSD platforms without additional
hardware resources or significant firmware modifications. It
is because FLIXR’s in-SSD operations exploit the native
address translation structures and data access processes
implemented in the existing SSD firmware. Thus, FLIXR’s
indexing mechanism works efficiently on the commodity
SSD platforms. Third, the data movement burden for read-
ing index structures may also be reduced with FLIXR. To
perform index-based filtering typically, the host processors
fetch index data structures from the storage devices. As
index structure size grows proportionally to database size
(5-15% for B+-tree indices), the performance cost for mov-
ing index structures from storage to host DRAM cannot be
ignored [2]. Previous studies tried to improve the perfor-
mance of index operations (e.g., indexed scan) exploiting
the operational characteristics of SSDs [3], [4]. However, the
prior works still incur the overheads caused by I/O opera-
tions and index data transfers between SSDs and the host
memory. Unlike the prior works, FLIXR can eliminate the
I/0 overheads and hide the latency caused by the indexed
search and the index management.

To summarize, FLIXR utilizes the existing page-mapping
tables in the FTL to automatically create and organize indi-
ces. FLIXR provides APIs to create programmer-defined
indexing rules and a set of APIs to define index lookup
operations to be offloaded to the SSD controller, thereby
reducing index-related data movement between the host
and SSD. This work implements several TPC-C and TPC-H
queries that require data filtration and table join operations
implemented within FLIXR. In our evaluation, FLIXR shows
52.6% performance improvement on query response time in
data analytics workloads, compared to the conventional
host-side indexing mechanism.

Followings are our contributions in this paper.

1)  We propose FLIXR, an in-SSD indexing structure
that enhances an SSD FTL to store page-level indices.
2) FLIXR provides a programming model that enables
programmers to specify index creation rules, which
are then executed on the SSD controller to create and
update indices. The programming model also ena-
bles the SSD controller to access the index structure
to automatically eliminate flash page accesses that
are guaranteed not to contain the search key.
3) We implemented FLIXR on the OpenSSD prototype
board and evaluated with critical database operations.
The remainder of this paper is organized as follows: Sec-
tion 2 introduces the modern SSD platform architecture and
FTL functions as background and discusses the related
work. Section 3 discloses the criticality of large index struc-
tures using exemplar query functions. Section 4 describes
the architecture and the programming model of FLIXR. Sec-
tion 5 represents the evaluation platform and the bench-
mark applications studied in this paper. Section 6 presents
the experimental results. Section 7 concludes this paper.

2 BACKGROUND AND RELATED WORK

2.1 Modern SSD Platforms

Most modern SSDs contain several packages of NAND flash
memory as non-volatile storage media. The smallest granu-
larity for accessing flash memory is one page, which is 4-
16KB. Multiple pages (64256 pages) are grouped into a
block. The read and write latencies of a NAND flash chip
are tens of us [5]. To communicate with the host system,
modern SSDs may use NVM Express (NVMe) protocol [6],
which is built on top of PCle standard.

To process a large number of I/O requests and manage
flash memory, modern SSDs equip a general-purpose multi-
core embedded processor to execute the SSD controller
firmware. The firmware handles NVMe commands, data
transfers between the host system and the NAND flash
memory, manages FTL table, and performs garbage collec-
tion (GC) and wear-leveling (WL). Modern SSDs also provi-
sion GB-scale DRAM to cache FIL tables and hot pages to
support fast accesses. Due to these advanced features, SSDs
can finish NVMe operations within tens of microseconds
(71, [8].

We measured the utilization of SSD controllers in several
commodity NVMe SSDs. Our measurements revealed that
the controller is idle for nearly 70% of the time, even with
high levels of I/O parallelism. These results also concur
with prior work [8], [9], showing that SSD embedded pro-
cessors have sufficient slack to perform the basic indexing
functions that we propose in this study.

2.2 Flash Translation Layer

The read/write process of flash is significantly asymmetri-
cal. The data in flash cells is read or written at the page
granularity. However, in the case of writing, it is possible
only if the target page is empty. If not, the target page should
be erased before a write. An erasure is performed on the
whole block. Thus hundreds of pages in the same block
should be erased before any page in the block is rewritten.
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This erasure process is extremely slow compared to the read
speed since it requires higher voltage and a longer time to
reinitialize bit cells in a block. Hence, it is more efficient to
read-modify-write a page to an empty page rather than
erasing the block to update a page. That means the physical
page address (PPA) of the data changes at runtime, and the
PPA is not equal to the file system’s logical block address
(LBA). SSDs maintain the LBA-to-PPA mapping table,
called the FTL table.

Other than the page-level FTL, prior work proposed
block-level or mixed (hybrid) page-mapping structure to
reduce memory space assigned to the FTL table [10]. In this
paper, we describe FLIXR assuming a page-level FTL, but
the FLIXR architecture can be implemented even in a block-
level FTL with minimal modifications.

2.3 Related Work

Prior work revealed the criticality of indexing structures as
huge volumes of datasets are maintained by modern data-
base systems. Addressing this challenge, prior work pro-
posed range-based storage page loads/histograms [2] and
database systems based on log-structured merge trees
(LSMTs) [11], [12], [13]. While the LSMTs support automati-
cally ordering index and database tables, they still require a
massive overhead in the host CPUs to manage the index
structures. FLIXR maintains per-page indexing information
embedded within SSD to reduce index lookup overheads.
Since FTL access is required for all page accesses anyway,
the cost of index lookup is negligible. Furthermore, depend-
ing on major operations in a database, FLIXR may be uti-
lized with the traditional indexing scheme while mitigating
the host-side computation overhead. For example, FLIXR
can integrate LSMT structures with a simple interface as
both employ the range-based indexing scheme. Prior work
presented query processing on the distributed database sys-
tems as an important challenge [14]. FLIXR’s index struc-
tures are easily scalable to distributed datasets since FLIXR
maintains the indices for each SSD independently.

The concept of computing near storage appeared early,
such as active disk [15], active storage [16], Smart SSD [17], [18],
and Willow platforms [19]. These early in-storage processing
ideas proposed the storage device architecture that includes
general-purpose processors as powerful as the host process-
ors. While in-storage computation is becoming more feasible
as modern SSDs equip general-purpose embedded process-
ors [20], the computation power of the storage processor is
still much lower than that of the host CPUs. Another prior
work proposed to limit the computation resources for in-stor-
age computation depending on dynamic resource utilization
[8]. Unlike prior work, FLIXR minimizes the in-storage com-
putation overhead for index creation and comparison by
exploiting the native SSD I/O procedure.

Several researchers exploit hardware logic to accelerate
the specific data processing operations in storage. Jun et al.
presented an FPGA-based solution to perform big data anal-
ysis in NAND flash storage [21]. Kim et al. presented a hard-
ware engine to execute the scan and join functions in SSD
[22]. Biscuit framework exploits hardware pattern matching
units implemented on the flash channel paths to accelerate
query processing [23]. YourSQL is a software framework
that accelerates query processing by offloading the filtering
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Fig. 1. Hierarchical indexing operation.

operations to the SSD that equips hardware pattern matcher
units [24]. Biscuit and YourSQL focus on accelerating query
processing, not considering index update and maintenance.
Unlike these approaches, FLIXR provides autonomous
index management with minimal software modifications
without custom hardware accelerators.

There are prior works that improve the performance of
indexed scans exploiting the architectural characteristics of
SSDs [3], [4], [25], [26]. The proposed ideas focused on that
SSDs can exploit internal parallelism to achieve better
throughput and page-based data management. While the
ideas of these works are promising, they are orthogonal to
the direction that FLIXR aims at. The fundamental objective
of FLIXR is to show that the database indexes can be auto-
matically managed by SSDs themselves, exploiting the com-
putation power of SSD processors. The proposed new index
management using in-storage computing schemes and char-
acteristics of FIL is the main contribution that this paper
argues. We believe that the optimization schemes that prior
work proposed are applicable to FLIXR. We will investigate
this topic in the next stage of this paper.

Providing semantic awareness to storage was explored
recently in the context of graph analytics [27]. Prior work
replaced FTL with a new graph translation table to enable
faster graph accesses. FLIXR does not replace FTL, and
instead, it just augments FTL entries with indexing bit
vectors.

To summarize, FLIXR is an efficient in-storage indexing
mechanism that works well on commodity SSD platforms.
FLIXR exploits the native address translation structure in
SSDs and lightweight index operations when the storage
processor is idle. Furthermore, FLIXR framework does not
require significant modification to the SSD firmware, thus it
can be easily implemented on existing database software
stacks. The detailed FLIXR approach will be presented in
the following sections.

3 CRITICALITY OF INDEXING

Data indexing is critical for accelerating big data analytics.
Significant research has been expended on index structures
as database management systems (DBMS) have recognized
this critical need [2], [28]. However, index structures them-
selves have storage and latency overheads.

Consider B+-Trees and other multi-level index tables that
are popularly employed in DBMS [29]. The operation of this
index structure is illustrated in Fig. 1. With the hierarchical
index structures, when a query has a filtering condition (for
example where clause in SQL), the first (and second) level
index in the DRAM will point to leaf nodes (third level
index pages) that need to be accessed. These lower-level
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select )
sum( L_extendedprice * 1_discount) as revenue © Computation
from
lineitem © DB table
where

1_shipdate >= date ‘:1’

and 1_shipdate < date ‘:1’ + interval ‘1’ year @ Filtering
and 1_discount between :2-0.01 and :2+0.01

and 1_quantity < :3;

Fig. 2. Scan and filtering in TPC-H Query 6.

indices are read from the storage to finally identify the tar-
get data pages that meet the filtering criteria. Consequently,
even in the presence of a host DRAM to cache some of the
levels of index tables, an indexing operation typically
requires additional I/O accesses (to reach the lower-level
indices) before finally reaching the data page. Note that
even with proper caching policies such as storing recently
used index pages, the problem of accessing I/O for index
structure persists. Finally, the index must also be updated
whenever the data is updated. Index updates are computa-
tionally expensive due to key comparisons and pointer
chasing operations [1], [26].

To concretely demonstrate the above mentioned chal-
lenges, we describe how filtering and join processing opera-
tions in DBMS suffer from index access and maintenance
overheads.

3.1 Scan and Filtering

Fig. 2 shows the SQL code of TPC-H Query 6 [30], which
applies filtering conditions while scanning the lineitem table.
The query defines the filtering conditions (@) which are
defined on multiple columns (I_shipdate, I_discount, and
I_quantity). For the purpose of this discussion, let us optimis-
tically assume that the database administrator has already
created one primary index on [_shipdate and one secondary
index on I_discount columns. Then, the database engine uses
the primary index to winnow the records that fall within a
shipping time window. After that, it uses the secondary index
to identify the intersecting records that also match the stated
discount criteria. Finally, these records are then streamed to
the host CPU, which then further filters these records based
on I_quantity before performing the computation (©).

In this example, there are multiple challenges faced by
the database administrator. First, the administrator must
identify the primary and secondary keys for index creation.
Second, every time the lineitem table is updated, the two
indices must be updated as well.

3.2 Join Processing

Join processing is one of the essential functions of database
engines that allows queries on multiple database tables that
share a key [31]. Join processing usually requires repeated

select
sum(CASE when p_type LIKE ‘PROMO%’

then (1_extendedprice * 1_discount) O Computation

else 0) /
sum(1_extendedprice * 1_discount) as revenue
from
lineitem @ DB tables
part
where © Join

1_partkey = p_partkey
1_shipdate >= date ‘:1’

and 1_shipdate < date ,9 Aillezing

‘:1’ + interval ‘1’ month;

Fig. 3. Join processing in TPC-H Query 14.

OTable ®WIndex @P-join OP-others

0% 20% 40% 60% 80%
%Query or Transaction Processing Time

100%

Fig. 4. Fractions of database table access time (Table), index access
time (index), and host CPU processing time (P-join: Time spent by join
processing, P-other: Time spent by other processing).

accesses to the index structures by multiple inter-related
key values. Hence, the I/O traffic to index structures is
significantly higher than simple filtering, as we demon-
strate with an example below. While there are multiple
approaches to perform join, we illustrate the problem
using one approach.

Fig. 3 demonstrates an example of a query that uses join
processing. TPC-H Query 14 requests the join operation
with a common column (I_partkey = p_partkey) from lineitem
and part tables. This query also has the filtering conditions
(®) on lineitem. Typically, database query optimizers apply
to filter first to reduce the size of the table (lineitem filtered
by the conditions @) before initiating join. While filtering
the lineitem table, the database system also generates a hash
table containing [ partkey values. Each entry in the hash
table contains pointers to all the records in the filtered line-
item table for a given unique [_partkey value. This hash table
is repeatedly accessed during the join process to match the
p_partkey of the part table. Depending on the number of the
unique keys, the I/O system is repeatedly accessed to just
get the index values for the part table. Thus, join requires
significant I/O time to access the index structures [28], [31].

3.3 Performance Hurdles

Fig. 4 exhibits the breakdown of the query processing time
with TPC-H benchmarks and the transaction processing
time with TPC-C benchmarks (Payment and NewOrder,
detailed information about the benchmarks in Section 5).
We measured the breakdown with a system that equips the
SSD platform. Also, we used a B+-tree index for the execu-
tion time breakdown analysis. Queries 1 and 6 employ the
scan and filtering operation only. Other query processing
includes join processing and filtering. We divide the total
execution time per query or transaction into database table
access time, index access time, join processing time (P-join),
and execution time for other functions (P-others).

This execution time graph exhibits the index access occu-
pies a significant fraction (47.5% on average) of the entire
execution time for query and transaction processing. Espe-
cially the transactions of TPC-C benchmarks spend 63% of
the entire execution time for index access on average. It is
because the TPC-C benchmarks update the index structure
requiring not only storing new index entries but also reor-
dering the index structure. As shown in the analysis in this
section, the large index structures can be a significant per-
formance burden in DBMS even if the index structures are
partially cached on the host memory.
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Fig. 5. Overview of FLIXR operation model.

4 FLASH INDEXER (FLIXR)

As investigated in the previous section, the large index
structures can be a significant performance burden in
DBMS even if the index structures are partially cached on
the host memory. Furthermore, managing these index struc-
tures itself is an expensive task in terms of I/O and compu-
tation overheads. To reduce these costs, this paper presents
FLIXR - an efficient data indexing mechanism in SSDs. A
DBMS with a conventional indexing technique fetches the
indices from memory or storage with conventional indexing
techniques. Even if a DBMS with a conventional indexing
scheme uses a hierarchical index structure, the host fre-
quently fetches indices from storage if it uses huge database
tables or the host memory size is not enough to keep all the
indices. Such a behavior incurs a substantial amount of I/O
operations. Unlike the conventional indexing techniques,
FLIXR can manage all the indices inside SSDs and perform
the in-SSD indexed scan or join processing. Such a scheme
eliminates or minimizes page transfers for index access
between the host and SSDs.

4.1 Overview of FLIXR Model

FLIXR’s in-storage indexing mechanism exploits the native
page translation structure in the FTL of modern SSDs. Tra-
ditionally, SSDs are block storage devices, and all data
appears as pages. FLIXR partially exposes data semantics to
the storage controller to automatically build per-(flash)
page index information.

Fig. 5 describes the FLIXR operation model. FLIXR can
create or update the page-level indices when page data is
written to the flash memory. For the index creation process,
FLIXR supports the index creation rules (©) that database
administrators can specify. Then, FLIXR firmware executes
the index creation function on the buffered page data (@)
during the flash write process. The created index is stored
in FLIXR’s page-level index structures (&), which can be
simply an enhanced FTL (as depicted in the figure) or a sep-
arate table structure indexed by LBA. In addition to the per-
page indices, administrators can create host-side indices
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coupled with the per-page indices. We will explain the
detail of each operation from Section 4.2.

Per-Page Index. FLIXR implements per-page index infor-
mation associated with each LBA. FLIXR’s index structure
can be implemented as an extended metadata field in each
FTL entry as depicted in Fig. 5 (or as a separate data structure
pointed by an FTL entry). The basic purpose of this per-page
index structure is to indicate whether a particular key is pres-
ent on that page or not. When the LBA translation entry is
searched, FLIXR can concurrently access the index. FLIXR
supports an index creation and maintenance API, and an
index usage APIL While these are programmer visible APISs,
one can piggyback them on top of existing NVMe commands
using a few reserved bits without any protocol changes. If
there is no host-side index associated with the per-page indi-
ces, FLIXR searches the indices corresponding to the pages
that keep database tables sequentially. We will explain how
FLIXR is associated with the host-side index later.

Index Types. FLIXR can provide various types of indices.
In this paper, we demonstrate two types of indices that can
cover various types of DBMS — a range-based type and a bit-
map type. There is no limitation on the number of indices as
long as the size of the index is configured at the start of the
FLIXR setup appropriately.

The administrator may create a range-based index that
indicates the min and the max values of a key located in a
flash page. Such range-based indices are typically used for
keys that can be easily ordered, such as integer values.

A bitmap type index is created for keys that may not be
easily ordered, such as the unordered sets. For example,
keys based on a state name or country name may use a bit-
map index [32], [33]. Each bit in the bitmap corresponds to
the presence/absence of one member of an unordered set.
For example, a key corresponding to a list of states in the
USA has a 50-bit bitmap, and each bit in the bitmap is set if a
record with that particular state key is present on that page.

Exploiting Both Host-Side and in-SSD Indices. The indices
associated with the FTL can significantly reduce the compu-
tation and I/O overheads. However, some database opera-
tions, such as lookup operations, can still benefit from the
host-side indices. Utilizing only the in-SSD per-page indices
involves a sequential search of a large number of the index
entries. The proposed in-SSD indexing scheme is beneficial
for the queries that demand intensive scan operations. On
the other hand, its performance gain may not be significant
for the operations that require a quick traversal of a small
part of indices, such as point queries.

To address the above challenge, we propose an idea of
co-locating the in-SSD indices and the host-side index struc-
tures (B+-tree in this paper). If a DBMS creates a B+-tree
using all the per-page indices, the size of the tree structure
becomes large unnecessarily. Then, the host system would
suffer from substantial I/O and computation overheads as
mentioned in Section 3. To resolve this issue, we implement
a cooperative host/in-SSD indexing scheme that creates
customized host-side indices using only a part of the per-
page indices. We showcase an exemplar design of a host-
side B+-tree structure whose leaf nodes contain min values
and page numbers in SSD. Once an indexed search for a
query reaches a leaf node, FLIXR traverses all the records
on the corresponding page. The size of the host-side B+-tree
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Fig. 6. Index creation and maintenance by FLIXR.

cooperating with the per-page indices becomes much
smaller than the traditional host-side B+-tree that uses per-
record or per-row information. Note that the performance
overhead by a search for all the records on a page is insignif-
icant. Eventually, the cooperative indexing scheme can
achieve a significant performance improvement (more
details in Section 5). Furthermore, programmers can imple-
ment any customized host-side index structures using the
per-page indices without a heavy index creation overhead.

In the above example, the host first traverses the host-
side index created with the per-page indices while process-
ing a query. Whenever the host reaches a leaf node, it sends
an SSD page request with the page number in the current
node. Once the SSD receives the page access request, it com-
pares only the max value in the FTL entry of the requested
page as the DBMS already traversed the host-side index cre-
ated by the min value. After the max value comparison, SSD
decides whether to send the page to the host or not. Once
the page is sent from SSD, the host can search for the rows
that meet the query condition within that page. In this man-
ner, FLIXR can boost a wide range of database operations.

If a DBMS updates a database table record, FLIXR first
compares the min and max indices of the page that contains
the entry and updates either the min value or the max value
accordingly. If FLIXR does not create the host-side index,
FLIXR updates only the in-SSD indices. On the other hand,
if FLIXR uses both the host-side index and the in-SSD indi-
ces, the SSD firmware sends the logical page numbers
whose indices (e.g., the min values) are updated to the
DBMS. After then, the DBMS updates the B+-tree structure
accordingly.

4.2 Index Creation
The first step in using FLIXR is to set up an index creation
rule, which the database administrator generates. The rule
is then communicated to the SSD controller hardware using
a set of FLIXR APIs. Then, the SSD controller automatically
generates per-page indices using the programmer-provided
table schema information and the index creation rules
whenever the host DBMS writes a page. This process flow is
depicted in Fig. 6 which we will walk through. We first
explain FLIXR's operations and APIs for index creation.
Offloading a Table Schema. Since the creation of the indices
is now automatically done by FLIXR SSD controller, the
SSD controller needs to know the database schema. As
such, the administrator sends the structure of each database
table, namely the number of columns, the data type, name,
and size of each column, etc., to SSD. For a table, the FLIXR
API creates a table id (tblID) and the table information along

with the tblID is sent to the SSD using SEND_TBL_COL
NVMe command (see @ in Fig. 6). Then, the FLIXR firm-
ware on the SSD copies the database schema to a dedicated
array structure, called table structure information array
(TSIA), and TSIA is indexed by the key tblID. The above
process is repeated for each table in the database. Thus
TSIA stores the structure of all tables in the database.

Due to the limited space in the SSD memory, FLIXR firm-
ware may return a success or failure indication to the host
administrator after processing the SEND_TBL_COL com-
mand. Note that a failure to register a table in FLIXR is a lost
opportunity for performance since the database administra-
tor may still create a traditional index structure for any table.

Per-Page Index Creation. FLIXR provides the index crea-
tion API, which passes the index generation function to the
SSD controller. The index generation function could be sim-
ple, such as creating an index on I_partkey or could be a
more complex function. To provide the most general index-
ing capability, the API allows the database administrator to
pass a pointer to any custom index creation function. Then,
the index creation API transfers the custom function code to
the SSD using SEND_IDX_ENC (@ in Fig. 6). The FLIXR
firmware on SSD then stores the function pointer of the off-
loaded index creation function in the index encoding rule
array (IERA), which is indexed by the tblID. To support
index creation and index updates concurrent with each
page write, FLIXR provides WRITE_IDX that initiates the
index creation alongside the usual data write command to
the SSD (® in Fig. 6) and written to the flash memory (@).

Host-Side Index Creation. Once an in-SSD per-page index
is created, administrators can select whether to build the
customized host-side index (explained in Section 4.1) or not.
FLIXR provides the UPDATE_HOST INDEX (® in Fig. 6),
which is a simple interface between DBMS and FLIXR. A
DBMS can call UPDATE_HOST_INDEX after a WRITE_IDX
is called. This command uses the same page number in the
latest WRITE_IDX command. Once UPDATE_HOST _IN-
DEX is called, the SSD sends the corresponding min value
to the host. With the metadata sent from SSD, a DBMS can
create the customized host-side index by simply exploiting
its index creation mechanism.

4.3 Index Maintenance
Once the WRITE_IDX command is received, the SSD firm-
ware first buffers data in the SSD DRAM as it does by
default. Then the firmware issues the page write command.
Concurrently, the FLIXR firmware initiates an index genera-
tion process by executing the offloaded index creation func-
tion identified by the tblID. While scanning the table data in
the buffered page, it parses the column entries in the table
using the registered table structure identified by the tblID.

In the same manner as the per-page index creation, if a
host-side index with per-page index is already created, the
DBMS issues an UPDATE_HOST_INDEX command after
the WRITE_IDX command. In this case, the UPDATE_HOS-
T_INDEX gets the new index value. If the index value is
newly updated, the DBMS removes the lastly accessed leaf
node of the host-side index, creates a new node with the
new index value, and updates the host-side index.

Given the scheme of the per-page indexing, there are two
issues: ‘how to keep the large-sized index structures’ and
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‘how to provide enough availability while updating the
index.” To address them, FLIXR includes an optional feature
of separating the index from FTL. The SSD firmware keeps
pointers of the separated index structures and reads them
once it receives an index read command. The key benefit of
the proposed idea is that if the administrators create an
additional index (e.g., a secondary index), the proposed
idea makes the SSD create it simply. Such flexibility of index
maintenance significantly makes FLIXR available to a wide
range of database systems. Second, if an index structure
accounts for a large size, FLIXR can store the index pages in
flash instead of managing entire index structures in the
embedded DRAM. Then FLIXR can use a dedicated in-SSD
DRAM space to cache indices. As a page is the basic fetch
unit for a flash read, indices associated with thousands of
pages can be embedded in a single physical page. With this
index caching mechanism, we noticed that indices associ-
ated with hot pages are frequently cached in the embedded
DRAM, thereby minimizing the need to access the flash
page for index accesses.

4.4 Exploiting FLIXR Indices

FLIXR provides a set of APIs that can be used by the query
optimizer (or directly by a programmer as we have done in
this implementation) to define the query filtering rules that
must be applied when reading a flash page. For instance,
FLIXR can perform the where clause filtering directly at the
page granularity without accessing separate index struc-
tures as is typically done in database systems.

Registering Index Comparison Rules. FLIXR provides an
API to automatically exploit the per-page index to create a
filter request. FLIXR provides a new NVMe command, SEN-
D_IDX ICR, which transfers a data filtering or index com-
parison rule to the SSD. This command uses the tblID and a
index comparison rule number (icrID) as parameters. Note that
multiple queries can simultaneously access a single data-
base table, thus each table may have multiple filtering rules.
As such, FLIXR allocates multiple index comparison rules
identified by the icrID and (tblID). Typically, the index com-
parison rules are relatively simple operations, such as less
than, greater than, and bitmap match.

Read Page With Filtering. Once the index comparison rules
are registered in the SSD, the FLIXR database system issues
READ_IDX command, which performs index comparison
operations and page-level data access filtering. This NVMe
command uses the tblID and icrID as parameters (plus the
normal NVMe read parameters). Note that these two new
parameters are used as the identifiers of the registered index
comparison rules.

If a DBMS uses only per-page indices, each READ_IDX
command calls the index comparison function to check
whether the target page keys meet the registered filtering
condition or not. The FLIXR firmware can access the per-
page indices without additional index structure scanning
since the indices are associated with the LBAs in the page
mapping table. The FLIXR firmware simply performs the
lightweight comparison operations for the target page. If
the target page contains the items that meet the filtering
condition, FLIXR allows the normal flash read process and
returns the fetched page to the host system. Otherwise, the
FLIXR firmware does not issue a page read request to the

IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 1, JANUARY 2023

Page index comparison rule 00000

1 partkey 1 shipdate
page 0 |11110000000 | Q110000110 | O
lineitem table
page | 00000011 | 1000010010 | €
A
per-table index 1110000000
__ p_partkey
page 0 |10011000110 | 1100110011 | O
part table
page I 111000110001 | 0001101011 | Q
page2 |10001111001 | 0000000001 | 3¢

Fig. 7. An example of per-table indexing (In this example, FLIXR per-
forms TPC-H Query 14 (See Fig. 3).)

flash array to prevent the SSD from fetching the unneces-
sary page data.

If a DBMS uses both host-side and per-page indices, it
first traverses the host-side index. Once it reaches a leaf
node, the DBMS issues READ_IDX command with the SSD
page number in the current node. After then, the SSD pro-
cesses the indexing and page fetching in the same manner
as the in-SSD per-page index-only case.

In summary, FLIXR supports the index comparison rules
(@), which specify the filtering rules based on the created
FLIXR's page-level indices (see Fig. 5). When the host data-
base systems access the database table from the SSD, FLIXR
can apply the light-weight index comparison operations (&)
by comparing the per-page index values with the previ-
ously registered index comparison rules. If the page data
does not include the items that meet the filtering conditions,
FLIXR cancels the flash memory read to eliminate the
unnecessary page accesses.

4.5 Support for Join Processing

Join is a key database operation to identify common records
across multiple tables. For the join processing, the key val-
ues of one table are compared against the key values in
another table. In the example TPC-H Query 14 (see Fig. 3),
two database tables (lineitem and part) have a common key
(partkey) in both tables. This query requests the common
partkey records that are present in both tables and performs
certain computations on these common records.

Fig. 7 shows an example of how FLIXR applies a novel
join processing. In this example, FLIXR performs TPC-H
Query 14, described earlier, with a join on the lineitem and
part tables. We assume that the DBMS uses per-page indices
only. Also, we assume that the bitmap-based per-page indi-
ces are created for the partkey in each table, and for I_shipdate
for the lineitem table. The query first performs the filtering
operation using I_shipdate on the lineitem table. The filtering
condition selects only a subset of pages from the lineitem
table that matches the I_shipdate filter; in the example, page
0 is fetched, but page 1 is filtered out. For every page
selected by the filter (page 0 in our example), FLIXR concur-
rently scans that page to find all the unique partkey values
present on that page. It then creates a per-table bitmap
index, as shown in the figure. This bitmap index is a single
global index that shows what are all the partkey values that
are present in all the fetched pages. In this example, the Fig.
shows that the first three partkeys values are present (as
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indicated by three bits of 1 in the per-table index). This per-
table index is then used to scan the part table and identify
any page that has at least one partkey that matches the part-
key values in the per-table index. In this example, page 0 has
at least one matching partkey (the third bit of the p_partkey
bitmap is 1), page 1 has at least one matching partkey (the
first bit of the p_partkey is 1). But page 2 has partkey values
that match none of the partkeys present in the lineitem table.
Hence, page 2 will not be fetched in any join processing.

As described above, there are two major steps in join
processing. The first step is to filter one of the tables and cre-
ate the per-table index. The second step uses this newly cre-
ated intermediate per-table index to find common keys in
the second table. This multi-step join process can be initi-
ated using the following three APIs. Note that these three
APIs may be embedded in a single join API called by the
query optimizer. For clarity, we explain all three embedded
APIs separately.

Per-Table Index Creation. Like the per-page index creation
process, the database administrator can offload per-table
index creation functions to the SSD using the new NVMe
command, called SEND_TIDX ICR. The offloaded index
creation function is registered in the table index rule array
(TIRA) indexed by tblID and per-table index creation id
(tiaD).

Step1 of Join. When the query optimizer calls join it gener-
ates READ_IDX_JOIN1 and READ_IDX_JOIN2 calls. The
READ_IDX_JOINT starts the per-table index creation opera-
tion. This operation applies the filtering condition on a table,
and for every fetched page, it automatically scans for the
unique join keys that are present on the page and create a
per-table index based on the registered per-index creation
function. Note that this per-table index could be reused in
future joins on the same table with similar filtering condi-
tions. Hence, FLIXR saves the intermediate per-table index
in storage and may then avoid re-creating this index in
future join calls on the table.

Step2 of Join. In the second step, READ_IDX JOIN2 API
call is made. This API takes as parameters the two table ids
(tblld1 and tblld2) that are used in the join operation, and
the id of the intermediate table index created, and the com-
mon key value that is used for the join process. While the
SSD reads the second table used in the join process, FLIXR
firmware uses the per-table index to filter any page that has
no matching keys using the READ_IDX JOIN2 call.

4.6 Design Considerations

Consistency. In current SSDs, FTL entries are only cached in
DRAM, but FTL itself is stored in flash. FLIXR index is also
stored in flash even if part of the index data is cached in
DRAM. Hence, there is no index data loss in case of power
failure. The only issue to consider is if an index is currently
being updated within the DRAM FTL, but it has not been
copied into the flash. To create a consistent view of the
index, the FTL index must be atomically updated. For this
purpose, when a page write request is received, which is
the only time an index may be updated, first, we clear a sin-
gle redo-log bit in that FTL entry to zero before starting the
index creation process. Then, the index creation process
starts. Once that process is completed, the redo-log bit is set
one, indicating the completion of index creation. On a

reboot from a power failure, any FTL entry whose redo-log
bit is still set to 0 is considered to have an invalid index, and
a new index creation process is initiated just on that page.
We rely on SSD’s default crash consistency to allow any
FTL entry with the built-in index to be preserved across
power failures.

Security. FLIXR does not introduce new security vulner-
abilities since accesses to the flash pages first go through the
database administration security protocol, and then each I/
O access is further validated by OS file system checks before
the access reaches the FTL. FLIXR thus piggybacks on exist-
ing security checks to determine access rights. Since SSD is a
shared I/O device, it may be possible to construct side-chan-
nel attacks by accessing FTL to extract information such as
whether a particular page has a pre-built index, and with the
additional effort, it may be possible to narrow the set of key
values stored, which is outside the scope of this paper.

Exploiting FLIXR for Various use Cases. FLIXR can be
adapted to various database organization scenarios with
simple extensions to the current implementation. For exam-
ple, suppose the database tables are stored with a sorted col-
umn layout. In that case, FLIXR can exploit this knowledge
by essentially stopping its index scan search if the search
hits a page whose index exceeds the search criteria. This
functionality can be implemented by enabling the FLIXR’s
API to communicate this unique data organization knowl-
edge to the FLIXR firmware.

While the current description of FLIXR uses row-storage
databases, FLIXR can be extended to improve the efficiency
of columnar storage. For instance, the FTL structure can be
extended to have pointers to all the pages that hold the
remaining column data associated with the current page.
That way, single-column page access will also be able to iden-
tify other columns associated with the same rows. FLIXR can
work even if a row spans across two pages. With the
SEND_TBL_COL command, FLIXR can support various row
layouts, including multi-page-sized rows. If a single row
exceeds an SSD page, an extension of the FLIXR firmware is
required. For example, a single bit would be added to each
FTL entry. Each bit indicates that the index is valid for that
page, and for every other page, FLIXR can set the bit to true.

Exploiting Internal Parallelisms. FLIXR can simply exploit
the benefit of various types of parallelism inside SSDs. Prior
studies revealed that it is critical to exploit channel-level,
package-level, die-level, and plane-level parallelisms to
improve the I/O performance of flash memory [4], [34]. Sev-
eral works focused on such issues and proposed the various
types of the flash I/O request scheduling schemes that make
SSDs benefit from such internal parallelisms [35], [36], [37].
As FLIXR's overhead is negligible and agnostic to I/O sched-
uling, it is not harmful to achieve high degrees of internal
parallelism of SSDs. For example, FLIXR can be simply com-
bined with the proposed I/O scheduling schemes.

4.7 Applying and Using FLIXR

FLIXR requires a few modifications to DBMS: (1) The query
optimizers in a DBMS application should take advantage of
the available FLIXR indices to extract maximum benefits. The
query optimizers send the necessary metadata to the NVMe
host driver to create WRITE_IDX, READ IDX, READ IDX_-
JOIN1, and READ_IDX_JOIN1 commands listed in Table 1.
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TABLE 1
New NVMe Commands for FLIXR
Command Type Description Parameter
Sending indexing rules
SEND TBL _COL Adm Send table column item structure tblID
SEND_IDX _ENC Adm Send per-page index generation rule tblID
SEND_IDX_ICR Adm Send per-page index comparison rule tblID, icrID
SEND_TIDX_ENC Adm Send per-table index generation rule (for join processing) tblID, tiaD
In-SSD indexing & filtering with I/O
WRITE_IDX 1I/0 Write pages with index generation tblID
READ IDX I/0 Read pages with index comparison tblID, icrID
READ_IDX_JOIN1 I/O Read pages with index comparison and generate per-table indices tblID, icrID, tialD

READ_IDX _JOIN2 I/0 Read pages with index comparison using per-table indices tblID1, tblID2, icrID, tialD
Host-side index creation
UPDATE_HOST_INDEX 1/0 Read updated index of currently written page tblID, icrID

(2) The DBMS applications (or at least the DBMS runtime)
must use FLIXR API whenever the DBMS administrator cre-
ates the indices. Similarly, a database table creation operation
should also pass the schema information to FLIXR using
SEND_TBL_COL, SEND_IDX_ENC, SEND_IDX_ICR, and
SEND TIDX ENC command in Table 1. (3) The NVMe host
driver and SSD firmware modification is needed for newly
added commands and metadata generated by the DBMS
applications. Note that we do not change the NVMe protocol
itself since all the APIs are simply enhanced versions of exist-
ing NVMe commands which have several bytes of reserved
space for transferring all the API parameters. We imple-
mented FLIXR functionality with approximately two person-
years of effort, which we believe is relatively inexpensive.

Once the FLIXR API and firmware are applied to a DBMS
and SSDs, administrators can easily use FLIXR. In any basic
configuration (e.g., conf file in mysql) in any database, if
administrators add an attribute (index:) and a line (mode:
with an argument) accordingly, they can select indexing
mode. If the argument is set to flixr_ssd_only, the database
creates only the in-SSD per-page index. If the argument is
set to flixr_ssd_host, the FLIXR API automatically creates
both the per-page index and the tiny B+-tree that we
explained in Section 4.2. Then the API makes the database
access the indices of the requested pages accordingly. If the
argument is not set, only the traditional host-side index of
the corresponding DBMS is created.

4.8 Cost Overhead
FLIXR creates the indices per page and associates these per-
page indices to each logical block. Thus FLIXR requires
additional storage space for the per-page indices. With the
FLIXR API, the administrators can set the index of any size.
In the case of the database tables that we used in this paper,
the size of the index structures ranges from 8 to 24 bytes per
page. FLIXR’s per-page index structure can include multi-
ple per-page indices as long as they fit in the pre-assigned
size. Hence more indices can be packed per-page if more
space is assigned to FLIXR indices. The storage overhead of
FLIXR’s per-page indices is approximately 0.05-0.15% of
the entire storage space with the default configuration.
Moreover, the size of the FLIXR index structure is only
up to 10% compared to the traditional index structure (B

+-tree nodes). The traditional index structures take up
space, and more importantly, they take several layers of
indirection before reaching the target data. By creating indi-
ces on a per-page basis and storing them within an FTL
entry, we dramatically reduce the cost of accessing the tar-
get data. The small-sized per-page index enables the SSD
controllers with low computation power to traverse it
quickly, thus reducing the query processing time.

FLIXR can also create per-table indices associated with
database tables and index creation rules for join processing.
While various sizes of the per-table index are available, we
used the 8-byte per-table index. The size of the per-table
index space allocated in SSD DRAM is negligible since most
databases have a limited number of tables.

Although FLIXR’s index structure size is very small com-
pared to the large SSD storage space, the index structures
may sacrifice some DRAM space that can be utilized for
caching the page mapping table. However, as we show in
our results, the positive effect of in-55D indexed table access
outweighs the DRAM use. Furthermore, DRAM capacity
has been growing steadily in SSDs, and we believe FLIXR
storage is a clever usage of DRAM rather than simply cach-
ing more page mapping information or flash pages.

We can also minimize the DRAM space use with demand-
based fetching. Demand-based mechanisms utilize the small
DRAM space as a cache for the recently-used mapping entries,
and the cold mapping information is stored in the large space
of the over-provisioned flash memory [38]. The performance
degradation is negligible compared to the pure in-DRAM
page-level mapping [39]. Along with the feature, as men-
tioned in Section 4.3, it is possible for FLIXR's index to be
decoupled from the FTL entries, and FLIXR can use a dedi-
cated in-SSD DRAM space to cache a subset of indices. As a
result, our FLIXR implementation does not sacrifice the pre-
assigned page buffer space in the SSD development platform.

5 [EVALUATION

We implemented FLIXR on the Cosmos+ OpenSSD board —
the open-source SSD research and development platform
[40]. The OpenSSD platform equips a Xilinx Zyng-7000 pro-
grammable SoC with a dual-core ARM Cortex-A9 applica-
tion processor. Thus users can program the hardware logic
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TABLE 2
Evaluation Platform Configuration
OpenSSD platform
Processor Dual-core ARM Cortex-A9 @ 1 GHz
FPGA Xilinx Zynq-7000 (350K logic cells)
DRAM On-board 1 GB DDR3-1066
NAND flash 8 channels, 8 ways/channel, 2 TB MLC
Flash page size 16 KB
Interconnection AXI-lite (command) and AXI (data) bus
Protocol NVM express 1.1

Host interface
Page cache replacement

PClIe Gen.2 8x (Max. 4GB/s)
Least Recently Used (LRU)

Host system

CPU Quad-core Intel i7-4790 @ 4 GHz
DRAM 16 GB DDR3-1600
OS & file system Linux kernel 3.19.0, direct I/O

as well as the SSD controller firmware [41]. The controller
firmware consists of the NVMe command decoder, page
buffer management, and flash translation layer functions
running on the embedded processor. OpenSSD supports up
to 1.38 GB/s sequential read data bandwidth. Although this
performance metric is lower than the commercial high-end
NVMe SSDs, the read bandwidth supported by the
OpenSSD is similar to the mid-range NVMe SSDs and
much higher than SATA SSDs [42]. Hence, the OpenSSD
evaluation platform reflects real commodity SSD systems.
In addition, it is also possible to emulate various perfor-
mance ranges by adjusting the configurations of the SSD
controller. OpenSSD assigns 16 MB DRAM space as page
buffers, and this space is relatively small compared to the
total SSD DRAM size. FLIXR's index structures do not sacri-
fice this page buffer space. Thus FLIXR does not change the
performance of normal page transfers. The host system
equips an Intel i7 CPU and 16 GB DRAM. The host system
runs Linux operating system, including NVMe driver [6].
Note that we modified the NVMe driver by adding the new
commands for FLIXR operation as shown in Table 1. Table 2
lists the detailed configuration of the SSD platform and the
host system.

For evaluation, we use microbenchmarks and real data-
base workloads. We created four microbenchmarks that
performs basic database operations: Scan with filtering
(Scan), join processing (Join), Insert, and Delete. The Scan ker-
nel simply filters rows of a table with a query condition.
The Join kernel performs a simple inner join with two tables.
The Delete kernel creates random queries with random con-
ditions to delete the rows that meet the conditions. The
Insert creates random queries to add randomly generated
rows in a single database table. We used lineitem (for all the
microbenchmarks) and part (for Join) tables that are in TPC-
H benchmarks.

For real database workloads, we use online transaction
processing (OLTP) and online analytical processing (OLAP)
workloads. In order to study FLIXR’s index maintenance
performance, we tested the NewOrder and Payment transac-
tions in the TPC-C benchmark [43], an OLTP benchmark.
The selected transactions include frequent database writes
and updates. Thus, efficient index updates are necessary for
these workloads. We configured the database tables with

the setting of warehouse as 100. For OLAP workloads that
are data-intensive but not update-intensive, we selected the
TPC-H benchmark suite [30]. We used the database tables
with a scale factor of 10. We study four queries (queries 1, 4,
6, and 14), including key operations in the TPC-H bench-
mark. Queries 1 and 6 perform the aggregation function
with the filtering operations. Queries 4 and 14 include the
join processing that includes the inter-table relation condi-
tions. Due to the OpenSSD software stack limitations, we
emulated our database setup to match the TPC-C and TPC-
H schema implemented in MySQL [44], [45] in terms of
database management functions, such as logging, table
management.

We first implement the no-indexing that does not access
database tables with any indices. With this implementation,
once a query or transaction arrives, the host system sequen-
tially searches all the database records. To compare the per-
formance of FLIXR with the conventional host-oriented
index structures, we employed a B+-Tree index structure.
The host processor performs all index-related operations for
conventional host-side indexing, such as creation, updates,
and traversing of indices and index accesses inside SSD for
the large-sized database tables. The generated index struc-
tures are stored in the SSD, and some of the layers in the
tree are cached on host DRAM on demand. We call this
mechanism as Host-Side Index in the evaluation section. We
also implemented in-SSD B+-tree indexing to compare its
performance to FLIXR. The in-SSD B+-tree indexing creates
the same index structure as the host-side index. However,
unlike the host-side index, the SSD controllers traverse the
indices once a request arrives at DBMS. While traversing
the B+-tree structure, this scheme automatically accesses
flash pages where the indices are stored. Also, the SSD con-
troller keeps hot B+-tree nodes into a predetermined space
inside the DRAM buffer in the SSD. We implemented such
a scheme by modifying the SSD firmware.

We implemented FLIXR with two types of indexing
mechanisms — in-SSD per-page indexing only (called
FLIXR-S), and the combination of a (tiny) host-side B+-tree
and in-SSD per-page indexing schemes (called FLIXR-HS),
which was described in Section 4.1. In the case of the
FLIXR-HS, all nodes of the tiny B+-tree are kept in the host
DRAM as the tree size is small enough, as explained in
Section 4.8.

6 EXPERIMENTAL RESULTS

6.1 Basic Operation Performance

We measured Queries per Minute as the performance metric
and normalized the experimental results to the performance
of the host-side index. Fig. 9 shows the performance of the
microbenchmarks on five different system configurations: a
database system without indexing, host-side indexing, in-
SSD B+-tree indexing, FLIXR-S and FLIXR-HS. In Scan, Join,
and Delete, FLIXR-HS achieves the best performance among
all the architectures. FLIXR-HS exhibits 75% (Scan), 40%
(Join), and 30% (Delete) better throughput than the host-side
index, respectively. Note that the host-side index shows up
to 3x better throughput than the no-indexing scheme in these
microbenchmarks. Both FLIXR-HS and the host-side index
could achieve the performance improvement by exploiting B
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+-tree traversing to access the rows in the database table. In
addition, FLIXR-HS could reduce the overhead in the host-
side index and efficiently access the per-page indices in SSD,
thus achieving significant performance improvement over
the host-side index only.

FLIXR-S could mitigate a heavy overhead for fetching
indices from SSD to the host DRAM even with iterating all
the per-page indices. However, it should iterate all the FTL
table entries to search for the rows that satisfy query condi-
tions. As a result, in Scan and Delete, FLIXR-S shows 8%
lower performance than the host-side index as the overhead
of the iteration is slightly heavier than the B+-tree traverse
overhead.

In the case of Insert, a database without indexing shows
the best performance as it has no overhead of index update.
However, we don’t consider this configuration as a critical
one because the database without indexing is not a realistic
case. We observe that using only in-SSD indices (FLIXR-S)
achieves the best performance among the architectures con-
taining indexing schemes. FLIXR-S and FLIXR-HS achieve
58% and 39% better performance than the host-side index,
respectively. FLIXR-HS requires additional host DRAM
accesses and computations to update its own B+-tree struc-
ture, so it achieves less speedup than FLIXR-S. The host-
side index incurs heavier I/O and computation overheads
than FLIXR, thus exhibiting a worse speedup than FLIXR.

In the case of the in-SSD B+-tree indexing, we observe that
it significantly increases the SSD controller’s computation
overheads. Delete and Insert requires more computations

ONo Indexing [ Host-Side Index [ In-SSD B+-Tree M FLIXR-S M FLIXR-HS

ol ol

Insert

Speedup

Scan Join Delete

Fig. 9. Basic operation performance (Queries per Minute (QpM), normal-
ized to the host-side index).
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Fig. 10. Database performance (tpmC in NewOrder and Payment. QpM
in TPC-H queries. All results are normalized to the host-side index.)

than Scan and Join due to the updates of the B+-tree indices
while the computation power of the SSD controller is worse
than the host CPUs. As a result, the in-SSD B+-tree indexing
suffers from a slowdown compared to the host-side index
and FLIXR. Unlike Delete and Insert, the in-SSD B+-tree
indexing achieves similar performance to the FLIXR-S inScan
and Join as those operations do not require heavy computa-
tions for the B+-tree updates. Although the performance of B
+-tree traversal with the SSD controller is worse than the
host CPUs, the in-SSD B+-tree indexing mitigates the 1/O
overheads so that it could achieve similar performance to the
FLIXR-S.

As shown in the results in this section, FLIXR-S and
FLIXR-HS show different performance results. The database
administrators can select either of the solutions depending
on the target database characteristics.

6.2 Database Workload Performance

Fig. 10 compares the performance of TPC-C and TPC-H
benchmarks. We measured Transactions per Minute (tpmC)
with TPC-C benchmarks and Queries per Minute (QpM) with
TPC-H benchmarks. TPC-C benchmarks have frequent
page updates. On the other hand, TPC-H does not have
data updates, and hence index maintenance and updates
are not as frequent.

In addition to the four configurations that we mentioned
in the previous section, we also studied the performance of
an ideal host-side index configuration. Since some real
workloads tend to show skewed access patterns, some of
the B+-tree nodes may be frequently re-accessed in the host
memory. The entire B+-tree is loaded into host memory in
the ideal configuration, and no B+-tree nodes are replaced.
In essence, we assume an infinite-sized host-side cache for
caching B+-tree nodes.

Overall, FLIXR-S and FLIXR-HS achieve 29.6% and 52.6%
performance improvement over the host-side index, respec-
tively. In TPC-C benchmarks, FLIXR-S and FLIXR-HS
outperform the host-side indexing by 59% and 55%, respec-
tively. As we showed in Section 6.1, FLIXR-S exhibits the best
performance in the insert operations, thus achieving signifi-
cant speedup over the host-side index. FLIXR-HS also reduces
computation overhead for B+-tree updates compared to the
host-side index as the B+-tree in FLIXR has fewer leaf nodes
than the traditional B+-tree that has per-row leaf nodes.

Unlike the simple scan in Section 6.1, in TPC-H queries 1
and 6, which are the cases of point queries, FLIXR-S suffers
from the performance degradation as shown in Fig. 10. On
the other hand, the experimental results show that FLIXR-
HS resolves such a problem and the overhead for traversing
all the records on a page is not critical to overall performance.
In TPC-H queries 4 and 14, which require join processing, both
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FLIXR-HS and FLIXR-S benefit from the per-table join index.
FLIXR supports bitmap indexing for join processing. Hence,
they improve the query processing performance more effec-
tively than the host-side index. Among them, FLIXR-HS
could outperform FLIXR-S as it filters a large portion of
pages in the first table faster than FLIXR-S. FLIXR-HS and
FLIXR-S improve the performance queries 4 and 14 by 67%
and 39% over the host-side index.

As shown in Fig. 10, the ideal host-side index shows 28.1%
better performance than the conventional host-side index
scheme due to the reduced index access time. However, the
computations of the page addresses and memory references
for access validation and OS checks still become the perfor-
mance bottleneck. FLIXR significantly reduces such overhead,
thus achieving the best performance. In the case of the in-S5D
B+-tree indexing, it suffers from a slowdown in the TPC-C
benchmarks. It is because the benchmarks frequently perform
Delete and Insert in indices as well as the database tables. As
mentioned in the previous section, due to the limited compu-
tation power of the SSD controller, the overheads caused by
the indices incur a slowdown with the in-55D B+-tree index-
ing. In the cases of TPC-H benchmarks, the in-SSD B+-tree
indexing shows similar performance to FLIXR-S. On average,
the in-5SD B+-tree indexing shows a 5.8% speedup over the
host-side index, which is 46.6% worse than FLIXR-HS.

6.3 Storagel/O
To study FLIXR’s bandwidth reduction impact, we measure
the amount of page data fetched from the SSD to host as
shown in Fig. 11. The fetched data size is normalized to the
host-side index. We split the total data transfer into two
components for host-side index bars. In the case of the host-
side index, 36% of total storage traffic is caused by index
accesses. When looking only at the data pages, FLIXR-HS
reduces the traffic to the host by 31% compared to the host-
side index, and only 3% of total traffic was for the tiny B
+-tree update interfaced with the in-SSD per-page indices.
Both FLIXR-S and FLIXR-HS are coarse-grained index
mechanisms, and hence they may occasionally send a data
page to the host even when a particular key value is not pres-
ent on the page. Such a situation occurs when the key is within
the key ranges stored in the index for that page, but that par-
ticular key may not be present on that page. Because of this
coarse grain index, the database table accesses with FLIXR are
slightly higher than a precise indexing scheme used with the
host-side index. However, the host-side index incurs addi-
tional data transfer between storage and host-side memory to
access the index structures, even when the top few levels of
the index trees are cached on the host. The in-SSD B+-tree
indexing exhibits the same I/O overhead as the overhead
caused by the database table access with the host-side index
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Fig. 12. Performance and data traffic with multiple keys (Results with
TPC-H Q6 and Q14, all results are normalized to the host-side index
using primary key only.)

as it does not send any pages for index access to the host.
However, the SSD controller suffers from a heavy computa-
tion overhead, as mentioned in Section 6.1. Thus, the in-SSD B
+-tree indexing spends a long time to transfer the same
amount of SSD pages as the host-side index.

Managing indices of large databases tends to create vast
index access overheads, particularly when database entries
are updated [2]. With FLIXR, the index update time, in fact,
grows sub-linearly as the index building time can be masked
within the page write access latency. As such, FLIXR outper-
forms the host-side index even with a much larger database.

6.4 Effect of Secondary Key Indexing

Among the evaluated database workloads, TPC-H queries 6
and 14 include the filtering conditions for multiple keys. or
instance, query 6 reads three columns from lineitem table as
mentioned in Section 3.1. We can use the items in the
I_shipdate column, which has the widest value range, as the
primary key. The items in other two columns (I_discount and
I_quantity) can be used for creating the secondary key indi-
ces. For those queries, we apply the index filtering using
both the primary and the secondary keys for FLIXR and the
host-side indexing. Note that FLIXR can generate indices
for multiple keys if the created indices are packed within
the reserved per-page index fields.

In this section, we evaluate the performance impact of the
multi-key indexing supported by FLIXR. We measure the per-
formance and storage I/O traffic changes when the indices
are built for both the primary and the secondary keys. The
conventional database systems access indices created for
these columns if the corresponding indices are pre-made.

Fig. 12 shows the experimental results. The performance
improvement with FLIXR-HS using the secondary key is 65%
compared to the host-side indexing mechanism. FLIXR-S also
outperforms the host-side indexing mechanism by 39%.
FLIXR-HS with multiple keys improves performance by 17%
compared to when only the primary key is used for indexing.

Data traffic from storage is obviously reduced when the
multi-key indices are applied (as shown in the right-hand
Fig. 12). For the host-side indexing, the storage 1/0O traffic
for database table accesses is decreased by 10.3% when com-
pared to just a primary key only system, however, the entire
traffic (both data and index traffic) is reduced by only 8%. It
is because with the conventional host-side indexing the host
database system now needs to access more index structures
— the primary and second indices. On the other hand,
FLIXR’s in-storage indexing mechanism allows that more
efficient page-filtering using multi-key indices.
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6.5 Separating Indices From FTL

As mentioned in Section 4.3, FLIXR provides the functionality
of separating the index structure from FTL and caching it into
DRAM to provide more flexibility and mitigate the perfor-
mance penalty when accessing large-sized and in-flash index
structures. In this experiment, we study the performance of
FLIXR index separation and caching. We configured FLIXR to
store the index pages in flash and then uses only 16MB SSD
DRAM to cache indices and measure their performance.

Fig. 13 shows the performance of FLIXR with separate
index data combined with caching. The On DRAM configura-
tion, the rightmost two bars in each group, shows the perfor-
mance when all the per-page indices are managed in the
embedded DRAM along with the FTL table. This configura-
tion will guarantee the fastest index mapping from LBAs. The
caching configuration results, the leftmost two bars in each
group, show the performance with a very limited cache space
used for index storage. Our evaluation shows that the perfor-
mance of FLIXR-S and FLIXR-HS with caching achieve 94.1%
and 93.6% of the On Dram performance. This evaluation
reveals that FLIXR can minimize the use of the embedded
DRAM with the caching mechanism while achieving perfor-
mance benefits similar to the FTL-embedded index.

7 CONCLUSION

Large-scale data analytics require extensive indexing of data
to reduce unnecessary data movement between the storage
and host. In this paper, we represent an efficient in-SSD
indexing mechanism — FLIXR, which exploits SSD’s unique
FTL page-mapping architecture to organize page-level indi-
ces. FLIXR can execute user-defined index generation func-
tions whenever page data is written or updated in flash
memory. The page-level indices from FLIXR are embedded
in FTL, which are utilized for performing filtering or join
processing using the SSD controller. FLIXR’s page-level
indexing mechanism enables efficient data filtration even
with the wimpy embedded processor on the storage plat-
form. Our evaluation with the Open-source SSD develop-
ment platform reveals that the overall query processing
performance is improved by 52.6% compared to the conven-
tional host-side indexing mechanism.
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