1170

IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 5, MAY 2022

Efficient Ancilla-Free Reversible and Quantum
Circuits for the Hidden Weighted Bit Function

Sergey Bravyi, Theodore J. Yoder™, and Dmitri Maslov

, Fellow, IEEE

Abstract—The Hidden Weighted Bit function plays an important role in the study of classical models of computation. A common belief
is that this function is exponentially hard to implement using reversible ancilla-free circuits, even though introducing a small number of
ancillae allows a very efficient implementation. In this paper, we refute the exponential hardness conjecture by developing a
polynomial-size reversible ancilla-free circuit computing the Hidden Weighted Bit function. Our circuit has size O(n%42), where n is the
number of input bits. We also show that the Hidden Weighted Bit function can be computed by a quantum ancilla-free circuit of size
0O(n?). The technical tools employed come from a combination of Theoretical Computer Science (Barrington’s theorem) and Physics

(simulation of fermionic Hamiltonians) techniques.

Index Terms—Quantum computing, quantum circuits, reversible circuits

<4

1 INTRODUCTION

HE origins of the Hidden Weighted Bit function go back

to the study of models of classical computation. This
function, denoted HWB, takes as input an n-bit string x and
outputs the kth bit of =, where k is the Hamming weight of
x; if the input weight is 0, the output is 0. It is best known
for combining the ease of algorithmic description and
implementation by classical Boolean circuits with the hard-
ness of representation by Ordered Binary Decision Dia-
grams (OBDDs) [1]—a popular tool in VLSI CAD [2]. The
difference between complexities of logarithmic-depth
implementations of HWB by circuits (recall that HWB € NC'
but HWB ¢ AC") and an exponential lower bound for the
size of the OBDD [3] is a startling two exponents (logarithm
vs exponent). Relaxing the constraints on the type of Binary
Decision Diagram considered or restricting the computa-
tions by circuits enables a multitude of implementations
with polynomial cost [4]. Relevant to this paper, we high-
light that removing the constraint that the order of variables
in the OBDD is fixed allows implementing HWB as a poly-
nomial-size BDD (equivalently, branching program) [5].

The Hidden Weighted Bit function was first introduced
in the context of reversible and quantum computations
about 16 years ago by I. L. Markov and K. N. Patel (unpub-
lished), and the earliest explicit mention dates to the year
2005 [6]. The original specification is irreversible, and
required a slight modification to comply with the restric-
tions of reversible and quantum computations. Specifically,
the Hidden Weighted Bit function was redefined to become

e The authors are with the IBM Quantum, IBM T.]. Watson Research Center,
Yorktown Heights, NY 10598 USA. E-mail: sbravyi@us.ibm.com, { ted.yoder,

dmitri.maslov)@ibm.com.

Manuscript received 21 July 2020; revised 25 Jan. 2021; accepted 25 Apr. 2021.
Date of publication 28 Apr. 2021; date of current version 7 Apr. 2022.
(Corresponding author: Dmitri Maslov.)

Recommended for acceptance by K. Gaj.

Digital Object Identifier no. 10.1109/TC.2021.3076435

the cyclic shift to the right by the input weight. We denote
this reversible specification as hwb. Formally, hwb(z) is
defined as the cyclic shift of its input z to the right by W
positions, where W =uz;+z+...4x, is the Hamming
weight of . The following shows the truth table of 3-input
hwb:

000
000

100
010

010
001

110
101

001
100

101
011

011
110

111
111

xT

hwb(x)

Since its introduction, hwb was used by numerous
authors focusing on the synthesis and optimization of
reversible and quantum circuits as a test case.

Despite a stream of improvements in the respective circuit
sizes by various research groups [7], [8], [9], [10], the best
known ancilla-free reversible circuits exhibit exponential scal-
ing in the number of gates. The synthesis algorithms benefiting
from the inclusion of additional gates, such as multiple-control
multiple-target Toffoli, Fredkin, and Peres gates [6], [9], [11]
also failed to find an efficient implementation without ancillae.
In 2013, this culminated with the hwb receiving the designa-
tion of a “hard” benchmark function [12]. A recent asymptoti-
cally optimal synthesis algorithm over the library with NOT,
CNOT, and TorroL1 gates [13], introduced in the year 2015,
was also unable to find an efficient ancilla-free implementa-
tion. An ancilla-free quantum circuit can be obtained by
employing an asymptotically optimal quantum circuit synthe-
sis algorithm such as [14], but the quantum gate count appears
to remain exponential and larger than what is possible to
obtain through the application of the asymptotically optimal
reversible logic synthesis algorithm [13].

The introduction of even a small number of ancillae
changes the picture dramatically. Just O(log (n)) ancillary (qu)
bits suffice to develop a reversible circuit with O(nlog?(n))
gates [15], by following the algorithmic definition of this func-
tion. Specifically, the circuit first computes the input weight
into a clean ancilla register spanning [log (n)] bits, then per-
forms control-SWAPs, and finally uncomputes the input

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-9614-2836
https://orcid.org/0000-0001-9614-2836
https://orcid.org/0000-0001-9614-2836
https://orcid.org/0000-0001-9614-2836
https://orcid.org/0000-0001-9614-2836
https://orcid.org/0000-0001-7381-4556
https://orcid.org/0000-0001-7381-4556
https://orcid.org/0000-0001-7381-4556
https://orcid.org/0000-0001-7381-4556
https://orcid.org/0000-0001-7381-4556
mailto:sbravyi@us.ibm.com
mailto:ted.yoder@ibm.com
mailto:dmitri.maslov@ibm.com

BRAVYI ET AL.: EFFICIENT ANCILLA-FREE REVERSIBLE AND QUANTUM CIRCUITS FOR THE HIDDEN WEIGHTED BIT FUNCTION

weight calculation to return ancillae back to zero. A more com-
plex but still polynomial-size circuit is given by Barrington’s
theorem which offers a width-5 polynomial-size branching
program implementation of arbitrary functions in the NC'
class, including individual components of the input weight.
The reversible circuit relies on using only 3 (= [log (5)]) ancil-
lary bits. It can be obtained by computing the individual bits of
the input weight through Barrington’s theorem, and using
such bits logarithmically many times to control-SWAP the
respective input bits into their desired positions. Finally, the
existence of a polynomial-size quantum circuit using a single
ancilla follows from [16], which invokes a version of
Barrington’s theorem by packing the ancillary qubit with
weight information. With 1 being the smallest non-zero posi-
tive integer number, it seemed that the use of at least a single
ancilla would be required to compute the weight into before
using it to control-SWAP the bits according to the hwb specifi-
cation. Indeed, all other attempts to keep both n input bits and
the input weight to a register of only n bits would seem impos-
sible due to the lack of space—the input bits already take up
all of it. There is also no other known algorithmic description
of the hwb function that would allow to compute it without
relying on additional bits.

State of the art, in both the classical reversible and quan-
tum settings, thus suggests an exponential difference in the
gate count between circuits with no ancillae and circuits
with a constant number of ancillae. Thus one of the follow-
ing two statements has to be true: either it is possible that
introducing a single ancilla may reduce the circuit size
exponentially, or it is possible to use n bits to store n Bool-
ean values together with their own weight. Each statement,
if true, would be uniquely surprising.

In this paper, we demonstrate efficient implementations
of the hwb function by ancilla-free reversible and quantum
circuits, thereby resolving which of the above two state-
ments is correct. Our reversible circuit algorithmically repli-
cates the hwb definition using no additional space—in
effect, it encodes the weight into the order of bits and thus
does not contradict the above intuition that appeared to pro-
hibit carrying both information on the n input bits and the
weight over just n bits. Our reversible ancilla-free circuit
requires O(n%?) gates and our quantum ancilla-free circuit
requires O(n?) gates. These results furthermore refute the
exponential hardness conjecture and remove hwb from the
class of hard benchmarks [12].

We next sketch the main ideas behind our ancilla-free cir-
cuits. We begin with the reversible circuit. Our construction
works as follows. First, we show that the n-bit hwb function
can be decomposed into a product of O(nlog(n)) gates
denoted C5(f(z); B), where f(z) is a symmetric Boolean func-
tion and B C « is a subset with 5 input bits. The gate C'5(f; B)
cyclically shifts the 5-bit register B if f(z) = 1, and does noth-
ing when f(z) = 0. To implement C5(f; B), we first break it
down into a product of 6 gates of the form C5|,, (f(z\B); B),
where i € {1,2,3,4,5,6}, each M; is a fixed set of Boolean 5-
tuples, and f are symmetric Boolean functions. The gate C5|,
restricts the operation of the corresponding gate C5 onto the
set M; and simultaneously separates the set B of bits being
cycle-shifted from the set 2\ B controlling these shifts. This
allows us to employ Barrington’s theorem [5] to implement
the gates C5|,, (f(z\B); B) in an ancilla-free fashion by

171

expressing them as polynomial-size branching programs with
the input 2\ B and computing into B. Each instruction in such
program realizes a permutation of 5-bit strings controlled by a
single bit and it can thus be mapped into a reversible circuit
over 6 = 5+1 wires.

Next we introduce our quantum ancilla-free circuit. Let
Unwb be the n-qubit unitary operator implementing the hwb
function. By definition, Upwp|z) = C™ 27 "|2), where C
is the cyclic shift of n qubits. Suppose we can find an n-qubit
Hamiltonian H such that C = ¢/ and H commutes with the
Hamming weight operator W= 37", [1)(1[;. Then Unwb =
¢ Thus it suffices to construct a quantum circuit simulat-
ing the time evolution under the Hamiltonian HW. Since
the cyclic shift C is analogous to the translation operator for
a particle moving on a circle, the Hamiltonian H generating
the cyclic shift C is analogous to the particle’s momentum
operator [17]. This observation suggests that // can be diag-
onalized by a suitable Fourier transform. We formalize this
intuition using the language of fermions and the fermionic
Fourier transform, which is routinely used in physics and
quantum simulation algorithms [19], [20]. The desired Ham-
iltonian H such that C=¢ is shown to have the form
H=VTH'V, where V is a (modified) fermionic Fourier
transform and H’ is a simple diagonal Hamiltonian. We
also show that V' commutes with the Hamming weight
operator W, so that Upwp =™ = VTV, We demon-
strate that each layer in this decomposition of Unwp can be
implemented by a quantum circuit of size O(n?).

The rest of the paper is organized as follows. Section 2 intro-
duces a simple modification of the known O(nlog?(n))-gate
O(log (n))-ancilla reversible circuit that requires O(nlog(n))
gates and O(log (n)) ancillary bits. Section 3 describes an
O(n%?)-gate ancilla-free reversible circuit. Section 4 reports an
ancilla-free O(n?)-gate quantum circuit. These sections are
independent of each other and can be read in any order.

2 ReVERSIBLE CIRCUIT OF SIZE O(nlogn) USING
ANCILLAE

We start with the description of a modification of the previ-
ously reported classical/reversible circuit that implements
hwb with O(nlog?(n)) gates and about log (n) ancillae [15].
Our circuit relies on O(nlog(n)) gates and about 2log (n)
ancillae. Compared to the original, it features improved
asymptotics at the cost of using twice the computational/
ancillary space.

Similarly to [15], we break down the computation into
three stages:

1) Compute the input weight W =21 + 22+ ... + 2.

2) Apply controlled-SWAP gates to SWAP inputs into

their correct position as specified by the hwb.

3) Restore the value of ancillary register to |0) by

appending the inverse of the stage 1.

Note that the stage 3 is omitted in [15], allowing a direct
comparison to our circuit illustrated in Fig. 1. The difference
between our construction and [15] is how we compute the
input weight. Specifically, we use the same “plus-one”
approach to calculate the weight into the ancillary register,
however, we implement the integer increment function differ-
ently. Given input z;, 1<i<n, the register wy,wa, ..., W4 (1))

1172 IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 5, MAY 2022

x1 @ X1

x2 T O—@ x2

X3 @ X3

x4 4 @ x4

X5 L 4 99— X5

X6 x6

. 1 .
o P-e—Db-eDH z G N> % ,{%—C—H—H—C Garbage
o A\ D Garbage
o G G D D > NV, 90000 Garbage
o D D D D 900000 Garbage

Fig. 1. 10-stage reversible circuit applying the 7-bit hwb to |z xs2324252627w1 twows). Each of the first 7 CNOT/TorroLl gate stages increments
|wiwows) by one depending on the value of input variable, the next 3 FREpkIN gate stages perform controlled-SWAP. Vertical red lines separate these
10 stages. Not shown is Garbage uncomputation that can be performed by appending the inversion of the weight calculation circuit (CNOT/TorroLt

gate part).

+1, where the input weight is being computed into, and tem-
porary storage t1,%a, ..., |1 (i)|-1, “increment by one” works
as follows. If i = 1, apply CNOT(x1; wl). Fori > 1:

1) ifi> 3: apply Toffoli gate to |z;, wi, t,); for j from 2 to
|log (7) | —1 apply the Toffoli gate TOFFOLI(t;_1, w;; t;);

2) if i=2 or i=3 apply TOFFOLI(x;, w;ws) CNOT(z;;
wy); else apply TOFFOLI(E|1og (4)|—15 W|log ()]} W]log (i) |+1)
CNOT (2105 i) 15 Wi i))-

3) if i>3: for j from [log(i)|—1 down to 2 apply the
half adder, computed by the circuit ToFFOLI(t;_1, w;;
t;)CNOT(tj_1; w;). Apply TorroLi(z;,w;;t;)CNOT (25 wy).

In our implementation, the ¢ register is used to store nec-
essary digit shifts. Advertised asymptotics follow by inspec-
tion of the above construction. We furthermore illustrated
our circuit in Fig. 1 forn = 7.

3 ANCILLA-FREE REVERSIBLE CIRCUIT OF SIZE
O(n6.42)

In this section we show how to construct an ancilla-free clas-
sical reversible circuit of size poly(n) implementing hwb.
We focus on n > 5, noting that optimal circuits with n up to
4 are already known.

Let n be the total number of bits, and = = (z1, zo,.. .,
x,) € {0,1}" be the input. In some discussions where it is
convenient, we label these bits by the integers {0,1,...,
n—1}=27,. Suppose BCZ, is a subset of 5 bits and [:
{0,1}" — {0,1} is a symmetric Boolean function (that is,
f(z) depends only on the Hamming weight of z). Define a
reversible gate

C5(f;B) : {0,1}" — {0,1}",

where the output is obtained from the input = by applying
the cyclic shift to the register B if f(z)=1. Otherwise, when
f(x) = 0, the gate does nothing. Note that, because the sym-
metric function f does not depend on the order of the bits,
C5(f; B) is a permutation of the set {0,1}". Moreover,
C5(f; B) is an even permutation, since it is a product of
length-5 cycles and each length-5 cycle is an even
permutation.

Define C(f; (ig,%1,...,%-1)) to be a reversible gate that
applies the cyclic shift of some ¢ bits defined by the cycle
(0,71, ..,9-1) (Where ig,i1,...,4_1 € Z, are all distinct) if

the symmetric function f evaluates to one and does nothing
otherwise. We call 4y, i1, . . ., i;—1 the targets. We call a collec-
tion of C-type gates a layer when the sets of their targets do
not overlap.

We next construct hwb by first expressing it as a circuit
with the C-type gates, then breaking down the C-type gates
into elementary reversible gates and C5-type gates, and
finally expressing the C5-type gates in terms of the elemen-
tary reversible gates.

Lemma 1. The n-bit hwb function can be implemented by an
ancilla-free circuit with |log (n)] + 1 layers of C-type gates.

Proof. We will create a circuit with & layers numbered
0,1,...,[log(n)]. At each layer, the C gates take the form
C(fr;*). Select the symmetric functions f;, as follows: let
fr(xz) =1 iff the kth power of 2 in the binary expansion of
the weight W = 21 + 23 + ... + 2, equals one. Note that f;,
are symmetric functions since the calculation of weight
does not depend on the order the bits are added in. The
function hwb can now be expressed as

hwb = C?'(f0:(0,1,...,n—1)) C2 (f1;(0,1,...,n—1))

[log (n)]
O (fliog ()3 (0,1, . n—1)).
(1)

For any k=0,1,..., |log(n)], let g := GCD(n,2") and
Ci = C(fi; (i, i+ 2" modn, ..., i + (4 —1)2" mod n)).
Then by elementary modular arithmetic,

¥ (f1:(0,1,...,n— 1)) = CyCy...C,q,

and the targets of any two distinct C; in this product do
not overlap. This shows that each of the [log (n)] + 1 fac-
tors in Eq. (1) can be written as a layer of C-type gates.
We next implement each of [log(n)|+1 layers of
cyclic shift gates in Lemma 1 as circuits with O(n)
C5-type gates by expressing the cycles (ig,1,...,%-1) as
products of length-5 cycles. Note that a length-5 cycle is
always an even permutation and (ig,%i,...,%-1) iS an
odd permutation when ¢ is even. It is not possible to
implement an odd permutation as a product of even per-
mutations. However, with one exception, the C-type
gates C; come in pairs (recall that their number, g, is a
power of two) and thus they can usually be paired up to
form an even permutation that can then be decomposed

BRAVYI ET AL.: EFFICIENT ANCILLA-FREE REVERSIBLE AND QUANTUM CIRCUITS FOR THE HIDDEN WEIGHTED BIT FUNCTION

0

1

2

3

4 -

5

6

7

8
Fig. 2. Implementation of the 9-bit cyclic shift C(f;(0,1,2,3,4,5,6,7,8))
using the gates C5(f; (4,5,6,7,8)) and C5(f;(0,1,2,3,4)).

into a product of length-5 cycles. The one exception is the
leftmost gate in Eq. (1), C(fo;(0,1,...,n— 1)), when n is
even. We handle this case first.]

Lemma 2. C(fy;(0,1,...,n—1)) can be implemented by a
reversible circuit with O(n) elementary gates.

Proof. The Boolean function fy(z) =z ®z2 & ... &z, can
be implemented on the top bit to control all bit SWAPs on
the bottom bits, and it can be implemented on the bottom
bit to control all bit SWAPs on the top bits. The number of
controlled-SWAP gates required is n — 1, and the total
number of the CNOT gates required to compute/uncom-
pute the control register is 4(n — 1). We illustrated this
construction in Fig. 3 forn = 7. O

Lemma 3. For n>5:

1) for t <4, pairs of two C(f; (i0,i1,...,14—-1)) gates can
be implemented by an ancilla-free circuit using con-
stantly many gates C5(f; B);

2) for odd t > 4 the C(f;(io,t1,...,4—1)) gate can be
implemented by an ancilla-free circuit using O(t) gates
C5(f; B).

3) forevent > 4 pairs of C(f; (do,i1,...,%—1)) gates can

be implemented by an ancilla-free circuit using O(t)
gates C5(f; B);

Proof. 1. There are three cases to consider: t=2, t =3, and
t=4.

t=2. C(f; (z1,22)) and C(f; (y1,y2)) can be implemented
simultaneously by the circuit C5(f; (y1, 1,92, a,
x9)) C5(f; (a,y1, 1, y2, x2)). This is equivalent to say-
ing that the following permutation equality holds:
(w1, 22) (Y1, 42) = (Y1, 21, Y2, @, T2) (@, Y1, 1, Yo, T2).
Note that the bit ‘a’ can be found since n > 5. We will
show only the permutation equalities in the rest of
the proof, since it is trivial to translate those to

1173

t=3. To implement a pair of gates C(f;(x1,x2,x3)) and
C(f;(y1,vy2,y3)) rely on the cycle product equality
(w1, 29, 23) (Y1, Y2, 43) = (21, Y1, T2, Y2, Y3) (T3, T1, Y1, T2, Yo)-

t=4. Cycles (x1, 22, 23,24) and (y1,y2,y3,ys) can be obtai-
ned by the equality

(rl,wg,x;;,x4)(y1,y2,y;;,y4)
= (96171762)(561795371754) : (?/17y2)(y17y37y4)
= (z1,22) (W1, y2) - (71,73, 24) (Y1, Y3, Ya),

where first and second part require two C5 gates
each, as described in the cases t =2 and t = 3, for a
total of four C5 gates.2. The goal is to develop a
circuit with C5 gates implementing the gate
C(f;(0,1,...,t—1)), where ¢ is odd. There are two
cases to consider, t =4p+1 and ¢t = 4p+3.

Case 1: t=4p+1, p > 1. We want to implement the
integer permutation given by the cyclic shift (0,1,...,4p)
by the cyclic shifts of length 5. This can be done as fol-
lows,

This decomposition uses p length-5 cycles, resulting in
the ability to implement C(f;(0,1,...,t — 1)) gate using
p =52 C5(f; B) gates. This construction is illustrated in
Fig. 2 forn=09.

Case 2: t =4p + 3, p > 1. Use the formula

(0,1,....4p+2) = (4p,4p + 1,4p+2) - (0, 1,. ..
= (4p +2,4p,2,1,0)(4p + 1,4p +2,0,1,2) - (0, 1,..

,4p)
., 4p).

Since we already implemented (0,1,...,4p) with p C5
gates in Case 1 above, this implementation requires 42
C'5 gates.

3. The goal is to implement a pair of C(f; (z1, 2, ...,
xy)) and C(f; (y1,y2, ..., y:)) where ¢t > 4 is even. Write

(3;'1,.7327. "7xt) : (yhyQa"' ayt)
= ($1,$2)(I1,137$4, s ,xt) ! (ylayZ)(ylay37y4a ve e ayt)
= (1'1,332)(y1,y2) ' ($1,$3,I4,. .- 7xi) ' (y1>3137y4: .. 'ayt)‘

Here, (z1,%2)(y1,y2) requires two C5 gates per item 1.
case t=2, and each of (z1,x3,24,...,2;) and (y1,ys3,ys,
.., y) requires O(t) gates per item 2. O

Observe how the above proof implies thatkthe number of
C5 gates required to implement each of C?'((0,1,..., n —
1); fi) stages in Eq. (1) for k= 1,2,..., [log (n)] is between % +

circuits. Const and § + Const. Thus, per Lemma 2, the total number
MDD DD D MDD DD DD
"I\J\/\J\/\JT’_._'T\/\J\/\J\/‘ ®— 1
x2 L 3 @ x2
x3 L 4 L L i L x3
x4 @ ﬁ L g @ i L 4 x4
x5 ‘ T ‘ ‘ ‘ x5
D T ° X X N
A A A AD D DDA A D

X7 —@ L EANVAANVAANPARNVAANVEANZZN 2 2N 7ESNPARNPARN VAR YE N il

Fig. 3. Implementation of C(fy; (21, x2, 23, 24, x5, 6, 7)), Where fo(z) = 21 © 2 @ w3 x4 B x5 D 6 D 7.

1174

of elementary and C5 gates required to implement hwb
over n qubits is between % + O(n) and M + O(n).

We next show how to implement C5(f;; B) as a branch-
ing program, using Barrington’s theorem [5], by closely fol-
lowing the original proof. In preparation for using
Barringon’s theorem, we first remove the dependence of the
functions f;, in C5(f; B) on the variables inside the set B, to
allow the desired cyclic shift to be controlled by the values
of n—>5 variables outside the set B itself. To accomplish this,
note that C5(fi; B) acts trivially on the strings 00000 and
11111; those can be ignored. This leaves 30 non-fixed by the
operation 5-bit strings that can be partitioned into six dis-
joint subsets My, My, M3, My, M5, and Mg, with 5 strings
each. Every subset M; contains 5 cyclic shifts of some fixed
5-bit string, and is defined as follows:

M, := {10000,01000,00100,00010, 00001},
M, :={01111,10111,11011,11101, 11110},
M := {11000,01100,00110,00011, 10001},
M, := {10100,01010,00101,10010,01001},
Ms :={00111,10011,11001,11100,01110},
Mg :={01011,10101,11010,01101, 10110}.

(2)

We implement C5(f;; B) by performing the cyclic shifts of a
single subset M; per time.

First, let us introduce some more notations. Given a bit
string x € {0,1}", write z = (y,b), where be {0,1}" is the
restriction of x onto the register B and y€ {0,1}"” is the
rest of z. Let w; € {1,2, 3,4} be the Hamming weight of bit
strings in M, (note that all strings in the same subset J/;
have the same weight). Define a Boolean function f;; :
{0,1}"° — {0,1} such that f;;(y) = 1 iff 2¥ appears in the
binary expansion of |y|+w;. Then

Je(@) = fi(y,b) = fri(y) for any b € M;.

Define a gate C5]y, (fi; B) : {0,1}" — {0,1}" that maps an
input = (y,b) to an output 2’ = (y,b') according to the fol-
lowing rules:

if fii(y) =0thend =0;
if fri(y)=1and b ¢ M, then ¥/ =b;
if fi(y) =1and b€ M, then V/ € M; is obtained from b
by cyclically shifting the elements of);.
By definition, the cyclic shift of bits in the register B can
be realized by cyclically shifting elements of each subset M;
fori =1,2,3,4,5,6. Thus

6
C5(fu(@); B) = [[5l (fulw); B). 3)

Here the order in the product does not matter because the
gates C5[), (fi; B) pairwise commute. Note that the depen-
dence of function f; on the variables inside the set B has
now been removed, and we can proceed to implementing
C5|y, (fi; B) as a branching program, and finally mapping
the instructions used by the branching program into revers-
ible gates.

Recall some relevant notation used in Barrington’s paper
[5]. Let S5 be the group of permutations of 5 numbers,
{1,2,3,4,5}. Given a 5-tuple of distinct integers a;, as, as, a4,

IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 5, MAY 2022

and as, we write (a1,a2,a3,a4,a5) to denote the 5-cycle. Let e
be the identity permutation. A branching program of length
L with m Boolean input variables yi,vs, ...,y is a list of
instructions (y;,0;,7;) with i =1,2,...,L and o;,7; € S;,
such that o; is applied if y; = 1, and t; is executed when y; =
0. Given a permutation o € S5, the branching program is
said to o-compute a Boolean function f(y) if executing the
list of all instructions in the program results in e (the iden-
tity permutation) for all inputs y such that f(y) = 0 and per-
mutation o for all inputs y such that f(y) = 1.

Barrington’s theorem asserts that any function in the
class NC' can be (1,2,3,4,5)-computed by a branching pro-
gram of polynomial size [5]. We next specialize the proof of
the theorem to explicitly develop a short branching pro-
gram that (1,2,3,4,5)-computes the Boolean function fj;(y).
Recall that f;(y) = 1 iff ok appears in the binary expansion
of y1+yo+...+yn5 +w; with w; € {1,2,3,4} being the
weight of bit strings in M;. It suffices to develop a branching
program computing the Boolean function fi(y) with y €
{0,1}™ and m =n—5 by appending two constant binary var-
iables encoding w; to the bit string y.

While the original proof [5] explored the mapping of log-
arithmic-depth classical circuits over {AND, OR} library, we
focus on the classical circuits over 3-input 1-output MAJ
(a,b,c) :=ab@® bc @ ac and XOR(a,b,c) :=a®bd c gates.
Recall that the library {MAJ, XOR} is universal for classical
computations if constant inputs are allowed.

Lemma 4. Suppose y is an m-bit string and fi,(y) is the kth bit in
the binary representation of W =y, + y2 + ... + Y. The func-
tion fi(y) can be (1,2,3,4,5)-computed by a branching program
of size O(m>*?).

Proof. First, we describe a logarithmic-depth classical cir-
cuit that computes functions f;(y) for the range of appli-
cable values k, and second, report expressions for MAJ
and XOR in the form of a branching program that can be
used in the recursion [5, Proof of Theorem 1]. The length
of the branching program computing f;(y) is upper
bounded by taking the maximal length of the program
implementing MAJ or XOR to the power of the circuit
depth.

First, construct a classical circuit with MAJ and XOR
gates that implements f;(y). To do so, we develop a cir-
cuit that computes all bits of the W (y), and for the pur-
pose of implementing a given single Boolean component,
discard all gates that compute the bits we are not inter-
ested in. Such operation does not increase the depth of
the circuit, and may, in fact, decrease it slightly.

To find W (y), we employ a circuit consisting of two
stages. First, compose a circuit of depth log 3, (m) + O(1)
with 3-input 2-output Full Adder gates FA(a,b,c) :=
(MAJ(a, b, c),XOR(a, b, c)) by grouping as many triples of
digits of same significance at each step as possible (note
that MAJ and XOR are implemented in parallel). We fin-
ish this first stage when the output contains two
log (m)-digit integer numbers v and v such that W =
u+v. To analyze this circuit, it is convenient to group all
bits needing to be added into the smallest set of integer
numbers, and count the reduction in the number of inte-
gers left to be added by treating layers of FA gates as
Carry-Save Adders [21], [22]. A Carry-Save Adder is

BRAVYI ET AL.: EFFICIENT ANCILLA-FREE REVERSIBLE AND QUANTUM CIRCUITS FOR THE HIDDEN WEIGHTED BIT FUNCTION

defined as the 3-integer into 2-integer adder, which is
implemented by applying the Full Adders to the individ-
ual components of the three integer numbers at the input.
Since the number of integers left to be added changes by
a factor of 2 at each step, and every step is implemented
by a depth-1 MAJ/XOR circuit, the depth of the first
stage is log 3 /5(m) + O(1). To find the individual compo-
nents of W(y), the second stage adds two log (m)-digit
integer numbers u and v. This can be accomplished by
any logarithmic-depth integer addition circuit in depth
O(loglog (m)), such as [23]. The total depth is thus log 5,
(m)+ O(loglog (m)).

Next, construct Ss-programs computing the MAJ and
XOR functions:

(z1,(1,4,3,2,5), e} (29,(1,3,5,4,2), €) (23,(1,2,5,3,4),¢)
(21,(1,2,3,4,5), e} (29, (1,2,4,5,3), €) (23,(1,4,3,5,2),¢)
(21,(1,5,4,3,2),¢) (z1,(1,5,2,3,4),¢) (4
e if MAJ(z1,29,23) =0
B { (1.2.345) if MAJ(z1,2,25) =1,

(29,(1,2,3,5,4), e} (z3,(1,2,4,5,3),€) (29,(1,3,5,4,2),¢)
(z3,(1,4,5,3,2), e} (21,(1,2,3,4,5),€) (29,(1,3,4,2,5),¢)
(29,(1,3,2,4,5), ¢} (z3,(1,3,4,2,5),¢) (23,(1,3,2,4,5),¢) (5)
if XOR(z1,22,23) =0

(&
B { (152,37475) if XOR(ZI,ZQ’ 23) =1.

The branching program that (1,2,3,4,5)-computes
fr(y) is created by recursively replacing gates MAJ and
XOR in the circuit constructed above with the branching
programs Eqs. (4) and (5), where each z; is either one of
the primary input variables yi,y>..., v, or one of the
intermediate variables in the circuit computing fi.(y),
until all instructions are controlled by constants and pri-
mary variables yi, s ..., yn. The recoding of branches of
the program r-computing a desired intermediate variable
z, when 1%£(1,2,3,4,5) (note how Egs. (4) and (5) (1,2,3,
4,5)-compute the gates, but not -compute them for arbi-
trary 1) is accomplished in accordance with [5, Lemma
1]. The total length of the branching program is thus
upper bounded by the size of longest branching program
implementation of the basic gates used (MAJ and XOR)
raised to the power the depth of the circuit it encodes,

910g 3/2(m)+0(loglog (m)) _ O(m5A4190225m10g (m)O(l))
= O(m™*?).
O

We conclude this section by summarizing the main result
in a Theorem.

Theorem 1. The n-bit hwb function can be implemented by an
ancilla-free reversible circuit of size O(n®4?).

Proof. First, implement each instruction (z,,(a1,as,a3,a4,
as),e) where z, is either a primary variable or a constant
and the sets {ai,as,a3,a4,a5} are defined per Eq. (2),

1175

using constantly many basic reversible gates. This can be
accomplished by employing a reversible logic synthesis
algorithm, e.g., [10]. Next, use Lemma 4 with m =n —5
and z = yU B to implement all necessary C5|,,. (fi(y); B)
gates, using a branching program with

o) (glog 3/2(n=5) + O(loglog ("—5>)) -0 (9103; 3/2(n) + O(log log (”))) ,
instructions. Each such branching program requires
O(9'oes/2(m+Ooelos)y pagic reversible gates since every
instruction requires constantly many basic reversible
gates. Use six C5|,, (fu(y); B) gates to implement one
C5(fx(x); B) gate, using Eq. (3). Each C5(f;(z); B) thus
costs Q9832 TOMele(M)y pasic reversible gates. Com-
bine Lemmas 1, 2, and 3 to implement hwb using O(nlog
(n)) C5(fr(x); B) gates, implying the total basic revers-
ible gate count of

O(glOgS/z(”) +O(loglog (n)) . nlog (n)>
_ O<n6,4190225..,10g (n)O(l)) — O(n%12).
a

4 ANCILLA-FREE QUANTUM CIRCUIT OF SIZE O(n?)

Consider a register of n qubits and let C be the cyclic shift
operator,

C|.’131,.T)2,l’37 cee 7:1:77,> = |$n,l’1,l'2, s 7-7:17,71)-

The hidden weighted bit function Upwp, may be written as

Unwo|z) = CLF25 %2y for all x € {0,1}".

In other words, Unwb implements the kth power of C on the
subspace with the Hamming weight k. Here we show that
Unwb can be implemented by an ancilla-free quantum circuit
of the size O(n?). The circuit is expressed using Clifford
gates and single-qubit Z-rotations.

Let W := Z;’:_Ul |1)(1|; be the Hamming weight operator.
Our starting point is

Lemma 5. Suppose C = e for some n-qubit Hamiltonian H
that commutes with W. Then

Unwo = ¢

Proof. Indeed, let £}, be the subspace spanned by all basis
states |z) with the Hamming weight k. The full Hilbert
space of n qubits is the direct sum £y & £, & ... ® L,. Let
us say that an operator O is block-diagonal if O maps
each subspace £;, into itself. Since H commutes with W,
we infer that H is block-diagonal. Therefore HW and
¢ are also block-diagonal. Note that HWW and kH have
the same restriction onto £. Thus ¢ and ¢”* have the
same restriction onto £;. By assumption, ¢’/ = C. Thus
¢ and C* have the same restriction onto L. Likewise,
Unhwp is block-diagonal and the restriction of Upwp onto L,
is C*. We conclude that Upwp, and eV have the same
restriction onto L for all k. Since both operators are
block-diagonal, one has Upwp = eV]

1176

To construct a Hamiltonian H satisfying conditions of
Lemma 5 it is natural to work in the momentum space [17],
[18] such that the cyclic shift operator C becomes diagonal.
Unfortunately, the momentum space is not well-defined for
qubits and Pauli operators. Instead, we will use the the lan-
guage of fermions and the fermionic Fourier transform [19],
[20]. First, define fermionic creation and annihilation opera-
tors al and a,, with p € Z,, :={0,1,...,n—1} as

a;:Z®Z®-.-®Z®\1><0|®I®I®--~®I
—————— —_—
P n—p—1

a, =202 -0 Z30)(1|®II®---oI.
— — —

p n—p—1

Here Z = |0)(0] — |1)(1| is the Pauli-Z operator. The creation
and annihilation operators obey the fermionic canonical
commutation rules, a,a, = —a,a, and a,a} + ala, = 8,,I.
We will make use of the ability to perform unitary basis
changes in the space of fermionic operators. Namely, sup-
pose w is a unitary n x n matrix. Then there exists an n-qubit
unitary operator U such that Ua,U' = Y ge7, Upgtq forall p €
Zy,. Furthermore, U can be implemented by an ancilla-free
quantum circuit of size O(n?), see [20]. The desired momen-
tum space basis is defined by choosing U as the Fermionic
Fourier Transform [20].

Definition 1. A Fermionic Fourier Transform is a unitary
n-qubit operator F such that F|0") = |0") and

1 .
FapFT = Z 62”””1/"% for all p € Z,. (6)

qE€Ln

Note that Eq. (6) uniquely specifies F. Indeed, suppose
x € {0,1}" is a weight-k basis state with ones at qubits p; <
p2 < ... < pp. Then

Tt T on
p, ap, p, 0")

Flz) =F

P1P2 Pr

k
—Fal af - .df FT|0"> = H Fa,;\)iF”O").
i=1
(7)

Since each operator Faf F' = (Fa, F')' is determined by
Eq. (6), this uniquely specifies the action of F on the basis
vectors |z). It will be important that F commutes with the
Hamming weight operator I,

FW = WF. 8

Indeed, from Egs. (6) and (7) one can see that F|z) is a linear
combination of states af, af, ---al [0"). Since (af)* =0, the
state af af, ---af [0") is non-zero only if all indices ¢,
@2, - - ., q; are distinct. Such state has weight k. Thus F maps
weight-k states to linear combinations of weight-k states
proving Eq. (8).

We will use the following fact established by Kivlichan
etal. [20].

IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 5, MAY 2022

Lemma 6. The fermionic Fourier transform F on n qubits can be
implemented by a quantum circuit of size O(n?). The circuit
requires no ancillary qubits.

For completeness, we provide a simplified proof of
Lemma 6 and an explicit construction of the quantum cir-
cuit realizing F in Section 4.1. Now we are ready to define a
Hamiltonian H satisfying conditions of Lemma 5. Let

1
E=Z(I+2"),

be the projector onto the even-weight subspace. Define
n-qubit Hamiltonians

2 T
Hy:=— 11|, H :=Hy+-WE d
0 n Zp| >< |p7 U+n , an

PELy,

H := V'H'V, where V = Fle/l0F/2, 9)

Lemma 7. The Hamiltonian H defined in Eq. (9) satisfies
C=el.

A proof of this lemma is given in Section 4.2. A high-level
intuition behind the definition of / comes from the fact that
FHUFT is the fermionic momentum operator. Note that H =
FHyF' in the odd-weight subspace where F=0. The extra
terms in the definition of H are needed to change integer
momentums (periodic boundary conditions) in the odd-
weight subspace to half-integer momentums (anti-periodic
boundary conditions) in the even-weight subspace. This
accounts for the difference between the qubit cyclic shift
and its fermionic analogue, as detailed in Section 4.2.

From Eq. (8) one can see that HW =WH. Thus H satisfies
conditions of Lemma 5. Combining Lemma 5, Lemma 7,
and noting that VIV =WV one arrives at

_ _iHW __ iVIH'VW _ y st iH'W
thb—el _ev/ﬂ—vVe Vv (10)
_ eszgE/QFezH w FT€ZH0E/2.
Here we used the well-known fact that ¢’ = VeV for
any Hermitian operator O and any unitary V' (which can be
verified by expanding the exponent using the Taylor series
and noting that (VIOV)? = VIOPV for all p > 1). We claim
that each term in Eq. (10) can be implemented using O(n?)
two-qubit gates without ancillary qubits. By Lemma 6, the
layers F and F' have gate cost O(n?).
For the term ¢'0E/2 and its inverse, we have the follow-

ing lemma.
Lemma 8. The operator ¢0F/? can be implemented by a quan-
tum circuit of size O(n) without using ancillary qubits.

Proof. If we set 0, = pr/n, then

B2 — RIR,--- R,_1, where R, = eI lpE,

an
The operator [1)(1],E projects the subset of qubits Z,\{p}

onto the odd-weight subspace. Note p#0 and let C), be a
CNOT circuit that computes the parity of Z,\{p} into the

BRAVYI ET AL.: EFFICIENT ANCILLA-FREE REVERSIBLE AND QUANTUM CIRCUITS FOR THE HIDDEN WEIGHTED BIT FUNCTION

qubit 0,

c,= J[cNoTj.

J€Zn\{0.p}

Then [1)(1],E = Cf|11)(11],C, and thus
R, = Clei® oy
p

Therefore, an individual R, is implemented with O(n)
gates, which suggests ¢'#05/2 can be implemented with
O(n?) gates. However, we can improve this count by not-
ing that for p#q C,C] = CNOT, (CNOT,,. Thus, in fact,
the product in Eq. (11) can be implemented with just
O(n) gates. O

We still need to implement the term " = i’
elT/MW2E The operator ¢'0" is a product of O(n?) rotations
el and VMl Although a naive implementation of
eiT/mW2E requires O(n®) gates, we next show that a better

implementation exists.
Lemma 9. The operator ¢ ™/"W*E can be implemented by a
quantum circuit of size O(n?) without using ancillary qubits.

Proof. First, note that

>

P/ €Ln0<p<p'

+20) 0 M)A, E+ 1) E.

PELRO0<p PEZLnp

20
W2E =2 11)(11],, E

(12)

The terms in Eq. (12) commute. Therefore, we have, with
arbitrary order within the products,

Giln/mW2E _ H U,y H Uop H Up,

pp €LR0<p<p PEZR0<p PEZLn,

(13)

where, for p < p/,

U,y = ST E g U, = e/mna,e,

The second and third products in Eq. (13) can be
implemented with O(n) gates using arguments similar to
those in Lemma 8. In the rest of this proof we focus on
the first product and show that it can be implemented
with O(n?) gates.

Notice that |[11)(11],,E projects the subset of qubits
Z,\{p,p'} onto the even weight subspace while projec-
ting qubits p and p’ to |11) - Therefore, if 0 < p < P, we
can define S, := Z,\{0,p,p'} and

Cpp’ = H CNOTj_](),

jGSpp/
such that
Uy = C;p/ei(2ﬂ/n)|011)(011\0pp/ C

This implementation of U,y takes O(n) gates, which sug-
gests O(n®) gates might be needed to implement all
n(n—1)/2 factors in the first product in Eq. (13). How-
ever, we can order the factors in such a way as to allow

1177

massive cancellation between consecutive CNOT circuits
C, and implement the first product with just O(n?) total
gates.

Notice that

o
CPP’ qu’ - H
€S,y A8,y

CNOT;,

is a circuit of at most four CNOT gates. In fact, it is a cir-
cuit with just two CNOT gates when [{p,p'} N {¢,¢'}| = 1.
Thus, the following two products can be implemented
with O(n) gates:

UDT = Uxﬁw+1Uz‘z+2 t Uxﬂ‘hb Uyl = Uy,nfl Uy,n72 T Uy‘y+1a

where z,y € Z,\{n—1}. Hence, the first product in
Eq. (13) can be implemented with O(n?) gates because

H Upy = UnUs Usp - Up—g 1.

P €LR0<p<yp

a

The above implementation of e!"/"W*E requires three-

qubit gates of the form e?I"')1! The latter can be decom-
posed into a sequence of O(1) two-qubit Clifford gates and
single-qubit Z-rotations using the standard methods [24].
We summarize main result of this section in the following
Theorem.

Theorem 2. Eq. (10) reports an ancilla-free quantum circuit of
size O(n?) implementing Unwp.

The next two subsections detail various proofs building
up to Theorem 2; an uninterested reader may skip to
Section 5.

4.1 Implementation of the fermionic Fourier
transform

Here we use the method of Ref. [20] to construct a quantum
circuit implementing the fermionic Fourier transform F on
n qubits and illustrate it for n = 3. The circuit is expressed
using O(n?) single-qubit and two-qubit gates

i 1 0
S(y) = eI — {0 eW}
and

R(O{,ﬂ) — eaciﬁ\1()}(01\—11(%_iﬂ\()1)(1()\

1 0 0 0
10 cos(a) —ePsin(w) 0
T 10 ePsin(a) cos («) 0

0 0 0 1

Here «, 8, and y are real parameters. We use subscripts
p,q € Z, to indicate qubits acted upon by each gate. In the
fermionic language, R, ,1(c, 8) implements a Givens rota-
tion in the two-dimensional subspace spanned by operators
ap and a,11. Namely, let R, .11 = R,,:1(o, B). Then

RP,IJ+1QPR;.p+1 = cos (@)a, — sin (a)eiﬂap-%—lv (14)
Rp‘p+]ap+1R;7p+1 = sin (a)e Pa, + cos (a)ay 1. (15)

1178
We also need a fermionic SWAP gate [20], [25] defined as

fSWAP = CZ - SWAP = R(r/2,7/2)S(—7/2)"".

One can easily check that (fSWAP, .)a,(fSWAP, ;) =
apy1 and (FSWAP, . 1)a,. (fSWAP, ,.,)" = a,. Define a uni-
tary n x n matrix f with matrix elements

(16)

g = n~V2e2mPin where p,q € Z,.

We will write row(f,p) for the pth row of f. Below we
define a function ColumnReduce(f,m, U) that takes as input
a unitary n x n matrix f, an integer m € Z,, and a quantum
circuit U acting on n qubits. The function returns a modified
unitary matrix f' and a modified quantum circuit U’. A
quantum circuit realizing the fermionic Fourier transform F
on n qubits is generated by the following algorithm.

Algorithm 1. FermionicFourierTransform

1: Let f be the n x n unitary matrix defined in Eq. (16)

2. U«1I > Empty quantum circuit
3: form=n—1to0do

4: (f,U) = ColumnReduce(f,m,U)

5: end for

6: returnF =U"!

Algorithm 2. ColumnReduce(f, m,U)
1. forp=0tom —1do
20 if fy. #0o0r fy 1, # 0 then
3 if fp+1,m = 0 then
4 Swap row(f, p) and row(f,p + 1)
5: U «—fSWAP, 41 - U > Add fSWAP gate
6: end if >Now fyi1m # 0
7 Choose angles «, B such that tan («)e ™ = —f, ./ foi1m
8 v — row(f, p)
9 row(f,p) « cos (a)row(f,p) + sin (e)e Prow(f,p + 1)
>Now f,,, =0
10: row(f,p + 1) « cos (e)row(f,p + 1) — sin (e)ePv
11: U«—Rppri(a, B)- U > Add R gate
12: endif
13: end for > Now f,,, is the only nonzero in

the mth column of f
14: y — phase(f.m) > Now fom = €
15: fm.m =1
16: U~ S, (y)-U

17: return (f,U)

> Add S gate

We claim that the quantum circuit U and the unitary
matrix f obtained after each call to the function Column
Reduce have the property

(UF)a,(UF)" =Y foga, for all p € Z,. 17)

q€Ln

Indeed, Eq. (17) is trivially true initially when U = I and f is
defined by Eq. (16). The lines 4 and 7-10 of Algorithm 2
apply a sequence of Givens rotations to the matrix f setting
to zero all matrix elements f,,, with 0 <p < m and setting
fmm = 1. The order in which matrix elements of f are set to

IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 5, MAY 2022

0 or 1 is illustrated for n = 3 below (asterisks indicate matrix
elements of f):

% ok ok * *x 0 * x 0
x % x| — |x x x| —=|x x 0
ERERES | * * | EREREN
[« % 0] [+ 0 0] [+ 0 0]
—|x x 0l =[x x 0| —1|x 1 0O (18)

EREERY EREERY EREERY

(1 0 0

—|*x 1 0

"

Since f remains unitary at each step, the final unit-diagonal
low-triangular matrix is the identity, i.e., f = I after the last
iteration of Algorithm 1. Each time a Givens rotation is
applied to some rows p,p+ 1 of the matrix f, the corre-
sponding Givens rotations of fermionic operators a,, a,;1
are added to the quantum circuit U, see Eqgs. (14) and (15).
More precisely, the angles «, 8 at Line 7 are chosen such that
the operator

Rpﬁp+1 (Ola /3) (f]kmaﬁ + fp+1,map+1)RpAp+l (av ﬂ)T7

is proportional to a,;1, see Eqs. (14) and 15). Thus the prop-
erty Eq. (17) is maintained at each step. After the last itera-
tion of Algorithm 1 one has f = I and Eq. (17) gives (UF)aq,
(UF)" = a, for all p. Furthermore U|0") = |0") since all gates
added to U map [0") to itself. We conclude that U = F!
after the last iteration of Algorithm 1. Thus the algorithm
returns a quantum circuit realizing F. The inverse circuit
U~! can be obtained from U using the identities R(«, g =
R(—a, B) and S(y) ' = S(—y). The direct inspection shows
that the total numberof gates fSWAP, R and S added to U is
O(n?). We implemented Algorithms 1 and 2 in Matlab
obtaining the circuit illustrated in Fig. 4 in the case n = 3.

4.2 Proof of Lemma?7
First note that

C = SWAP,;SWAP,,---SWAP,, 5, 1.
Define a fermionic cyclic shift
fC = fSWAP, ,fSWAP, , - - - {SWAP,,_5,,_1. (19)
A simple algebra shows that
Cla) = (—1)-1E0tartet-2fC 7).

Let k =29+ 21 +... + 2,1 be the Hamming weight of z.
Then

_ Tp-1(TotTr ot Ty _2) _ _ 1\ (k1)
(=1) = (=1

— (_ 1)'7:7171 ety

_ (_ 1).’1:,,,1 (k+1))

Thus C=fC on the odd-weight subspace and C=fCZ,_; on
the even-weight subspace, i.e.,

C = EfCZ, . + (I — E)fC. (20)

BRAVYI ET AL.: EFFICIENT ANCILLA-FREE REVERSIBLE AND QUANTUM CIRCUITS FOR THE HIDDEN WEIGHTED BIT FUNCTION

S(m/6)

R H N

R(a,m/3)

Fig. 4. Quantum circuit realizing the 3-qubit fermionic Fourier transform
F. The circuit was generated using Algorithm 1. Here o = —(1/2)
arccos (1/3) ~ —0.9553.

We claim that

fC = FeitloFT, (21)

Indeed, let G := Fe®oF'. First note that fC|0") = G|0") =
|0™). Since any state can be obtained from |0") by applying
the creation operators alf), it suffices to check that

fC'a,fC = G'a,G,
for all p. Recall that

(fSWAP,,.1)a,(fSWAP,,..)| = a,., and
(fSWAP,,,1)a,,1 (fSWAP, ,.1)" = a,,.
Combining this and Eq. (19) one gets fC'a,fC = a,_;, where

the indices of fermionic operators are evaluated modulo 7.
Using the identities

677,HU aqezHU _ equ/naq7

1 & :
FapFT =— E e>wilng - and
vn v

q€Ln

1 & _
FTCLQF _ Z e—?mqr/nar
vn ’

€L

one gets

Gla,G =n7'2 Z mi-pla/npg Fi

q€Ln

_ n*l § e2ﬂ1(1*p+7‘)q/nar =a, 1.

q.rE€Ln

Thus G'a,G = fC'a,fC = a,_,, proving Eq. (21).
Next we claim that
fCZ,L_l _ e*ng/2fCeiH0/261'(ﬂ/n)W. (22)

Indeed, let L :=fCZ,_; and R := e 0/2fCeiH0/2¢i(m/mW _Gince
L|0™) = R|0™) = |0"), it suffices to check that L'a,L = Ra,R
for all p € Z,,. A simple algebra gives

e77',(n/n)I/Vapei(n/n)I/V _ ei(r{/n)ap7

a, if 0<p<n-2

—a, if p=n—1"

anlapZn—l = {

6ZH0/2ap672H0/2 _ efmp/nap7 and

e—zHO/ZapezHg/Z _ emp/nap,

1179

for all p € Z,. Recall that fC'q,fC = a, . Using the above
identities one gets

if 1<p<n-1

t _) W
LapL—{ if p=0

—a,
and

RTCLPR —e mp/nemp /rLet(n/n)ap_l’

where p’ = p — 1 (mod n). Note that

e*inp/neinp//n _ { 677?7?/71 if 1< p<n— 1)
e i p=0
Thus L'a,L = Rla,R, thatis, L = R, proving Eq. (22).
Combining Egs. (20),(21), and (22) one infers that the
restrictions of C onto the odd-weight and even-weight sub-
spaces coincide with the operators C,s; = Fe/™0F' and C..,,,, =
e H/2(FeltoFheifo/2¢in/mW respectively. Thus

C= 6—1'HUE/2(F61'HU FT)ez'HUE/267?(7r/n)WE7

on the full Hilbert space. Recall that the fermionic Fourier
transform F preserves the Hamming weight. Thus F' com-
mutes with //""F Commuting the term e/™/"WF to the
left gives

C= e—iHoE/QF(eiHoei(n/n)WE) FieiHoE/2 _ erz‘H’M

where V = Flei0F/? and H' = Hy + (7/n)WE. Thus C =
V'V proving Lemma 7.

5 CONCLUSION

In this paper, we introduced two ancilla-free circuits imple-
menting the Hidden Weighted Bit function, O(n%*?)-gate
reversible circuit and O(n?)-gate quantum circuit. Our cir-
cuits improve best previously known exponential size
reversible and quantum ancilla-free circuits into polyno-
mial-size ones. Our results demote hwb by removing it
from the class of “hard” benchmarks [12]. Our ancilla-free
reversible implementation marks a new point in the study
of ancilla vs gate count (space-time) tradeoff. Noting a high
exponent in the reversible circuit complexity and a more-
than-cubic difference between complexities of our best
quantum and reversible circuit implementations, we sug-
gest that a further line of inquiry may target improving the
reversible implementation. Our work gives an example of a
reversible function that can be efficiently implemented by
quantum circuits using techniques originally developed in
the context of quantum Hamiltonian simulation. It remains
to be seen whether hwb is an isolated example or there is a
larger class of reversible functions that can be efficiently
implemented using a similar strategy. More generally, we
find it important to study other space-time tradeoffs in
quantum computing.

ACKNOWLEDGMENTS

The work of Sergey Bravyi and Theodore J. Yoder was sup-
ported in part by the IBM Research Frontiers Institute.

1180

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(171

[18]

[19]

[20]

[21]

[22]

Randal E. Bryant, “Graph-based algorithms for Boolean function
manipulation,” IEEE Trans. Comput., vol. 100, no. 8, pp. 677-691,
Aug. 1986.

C. Meinel and T. Theobald, Algorithms and Data Structures in VLSI
Design: OBDD-Foundations and Applications. Berlin, Germany:
Springer, 2012.

R. E. Bryant, “On the complexity of VLSI implementations and
graph representations of Boolean functions with application to
integer multiplication,” IEEE Trans. Comput., vol. 40, no. 2,
pp- 205-213, Feb. 1991.

B. Bollig, M. Lobbing, M. Sauerhoff, andl. Wegener,”On the com-
plexity of the hidden weighted bit function for various BDD mod-
els,” RAIRO-Theoretical Inform. Appl., vol. 33, no. 2, pp. 103-115,
1999.

D. A. Barrington,“Bounded-width polynomial-size branching
programs recognize exactly those languages in NC!,” J. Comput.
Syst. Sci., vol. 38, no. 1, pp. 150-164, 1989.

D. Maslov, G. W. Dueck, and D. M. Miller, “Toffoli network syn-
thesis with templates,” IEEE Trans. Comput.-Aided Des. Integr. Cir-
cuits Syst., vol. 24, no. 6, pp. 807-817, Jun. 2005.

A. K. Prasad, V. V. Shende, I. L. Markov,]J. P. Hayes, andK. N.
Patel,“Data structures and algorithms for simplifying reversible
circuits,” ACM]. Emerg. Technol. Comput. Syst., vol. 2, no. 4,
pp. 277-293, 2006.

Dmitri Maslov, Gerhard W. Dueck, and D. Michael Miller ,
“Techniques for the synthesis of reversible Toffoli networks,”
ACM Trans. Des. Autom. Electron. Syst., vol. 12, no. 4, pp. 42.1-28,
2007.

J. Donaldand N. K. Jha,“Reversible logic synthesis with Fredkin
and Peres gates,” ACM]. Emerg. Technol. Comput. Syst., vol. 4,
no. 1, pp. 1-19, 2008.

M. Saeedi, M. S. Zamani, M. Sedighi, andZ. Sasanian,“Reversible
circuit synthesis using a cycle-based approach,” ACM |. Emerg.
Technol. Comput. Syst., vol. 6, no. 4, pp. 1-26, 2010.

D. Maslov, G. W. Dueck, and D. M. Miller, “Synthesis of Fredkin-
Toffoli reversible networks,” IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 13, no. 6, pp. 765-769, Jun. 2005.

M. Saeediand I. L. Markov,“Synthesis and optimization of revers-
ible circuitsa survey,” ACM Comput. Sur., vol. 45, no. 2, pp. 1-34,
2013.

D. V. Zakablukov, “Application of permutation group theory in
reversible logic synthesis,” 2015, arXiv:1507.04309.

V. V. Shende, S. S. Bullock, and I. L. Markov, “Synthesis of quan-
tum-logic circuits,” IEEE Trans. Comput.-Aided Des. Integrated Cir-
cuits Syst., vol. 25, no. 6, pp. 1000-1010, Jun. 2006.

D. Maslov, “Reversible logic synthesis benchmarks page,” 2005.
[Online]. Available: https://webhome.cs.uvic.ca/~dmaslov/
hwbpoly.html

F. Ablayev, A. Gainutdinova, M. Karpinski, C. Moore, and
C. Pollett,”On the computational power of probabilistic and quan-
tum branching program,” Inf. Computation, vol. 203, no. 2,
pp. 145-162, 2005.

J. J. Sakurai, Modern Quantum Mechanics, Revised Edition. Reading,
MA, USA: Addison-Wesley, 1994.

A. Abrikosov, L. Gorkov, and 1. Dzyaloshinski, Methods of Quantum
Field Theory in Statistical Physics. Courier Corporation, 2012. [Online].
Available: https:/ /www.amazon.com/Methods-Quantum-Theory-
Statistical-Physics /dp /0486632288

R. Babbush, N. Wiebe, J. McClean, J. McClain, H. Neven, and G. K.
Chan, “Low depth quantum simulation of electronic structure,”
Phys. Rev. X, vol. 8, 2018, Art. no. 011044.

I. D. Kivlichan, . McClean, N. Wiebe, C. Gidney, A. Aspuru-Guzik ,
G. K.-L. Chan, and R. Babbush, “Quantum simulation of electronic
structure with linear depth and connectivity,” Phys. Rev. Lett.,
vol. 120, no. 11,2018, Art. no. 110501.

A. Avizienis, “Signed-digit number representations for fast paral-
lel arithmetic,” IRE Trans. Electron. Comput., vol. EC-10, vol. 3,
pp- 389400, Sep. 1961.

Ingo Wegener, The Complexity of Boolean Functions. Germany: BG
Teubner, 1987.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 5, MAY 2022

[23] Valerii M. Krapchenko, “Asymptotic estimation of addition time
of parallel adder,” Syst. Theory Res., vol. 19, pp. 105-122, 1970.

[24] M. A. Nielsen and I. Chuang, Quantum Computation and Quantum
Information. 2002. [Online]. Available: https:/ /www.amazon.com/
Quantum-Computation-Information-10th-Anniversary/dp/
1107002176

[25] F. Verstraete, J. I. Cirac, and J. I. Latorre, “Quantum circuits for
strongly correlated quantum systems,” Physical Rev. A, vol. 79,
no 3, 2009, Art. no. 032316.

[26] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus,
P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary
gates for quantum computation,” Physical Rev. A, vol. 52, no. 5, 1995,
Art. no. 3457.

Sergey Bravyi received the PhD degree in physics
from the Landau Institute for Theoretical Physics,
Moscow, Russia, in 2003. He is currently a research
staff member at IBM Quantum IBM T. J. Watson
Research Center. His present research interests
include quantum error correction theory and devel-
opment of quantum algorithms. He has authored
more than 60 publications on topics related to quan-
tum computing, information theory, and physics.

Theodore J. Yoder received the PhD degree
from the Massachusetts Institute of Technology,
in 2018, and has been a research staff member
with the quantum computing theory group at IBM
T.J. Watson Research since then. He has auth-
ored more than 20 publications on quantum phys-
ics and quantum computation. His current
interests include quantum algorithms and quan-
tum error correction, with focus on novel error-
correcting codes and architectural considerations
for practical usage.

Dmitri Maslov received the PhD degree, in 2003.
He is currently the chief software architect at IBM
Quantum (since 2019), IBM’s Quantum Comput-
ing branch. He provides technical vision and
direction for the research and development of
software aspects of quantum computing. His
research interests include quantum circuits and
architectures, quantum compiling, quantum infor-
mation processing, and reversible logic. The
overall goal of Dmitri's research with the estab-
lishment of the knowledge base and the develop-
ment of a set of tools for efficient control and utilization of scalable
quantum computers. Before joining IBM, Dmitri was a program director
with the Division of Computing and Communication Foundations, Direc-
torate for Computer & Information Science & Engineering, National Sci-
ence Foundation, Arlington/Alexandria, VA (2008-2018). He directed
various programs, including quantum computing and communication,
algorithms, computational geometry, complexity, nanocomputing, and
symbolic and humeric computing.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

https://webhome.cs.uvic.ca/~dmaslov/hwbpoly.html
https://webhome.cs.uvic.ca/~dmaslov/hwbpoly.html
https://webhome.cs.uvic.ca/~dmaslov/hwbpoly.html
https://www.amazon.com/Methods-Quantum-Theory-Statistical-Physics/dp/0486632288
https://www.amazon.com/Methods-Quantum-Theory-Statistical-Physics/dp/0486632288
https://www.amazon.com/Quantum-Computation-Information-10th-Anniversary/dp/1107002176
https://www.amazon.com/Quantum-Computation-Information-10th-Anniversary/dp/1107002176
https://www.amazon.com/Quantum-Computation-Information-10th-Anniversary/dp/1107002176

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

