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Abstract—The performance of multiprocessor synchronization and locking protocols is a key factor to utilize the computation power of

multiprocessor systems under real-time constraints. While multiple protocols have been developed in the past decades, their

performance highly depends on the task partition and prioritization. The recently proposed Dependency Graph Approach showed its

advantages and attracted a lot of interest. It is, however, restricted to task sets where each task has at most one critical section. In this

article, we remove this restriction and demonstrate how to utilize algorithms for the classical job shop scheduling problem to construct a

dependency graph for tasks with multiple critical sections. To show the applicability, we discuss the implementation in LITMUSRT and

report the overheads. Moreover, we provide extensive numerical evaluations under different configurations, which in many situations

show significant improvement compared to the state-of-the-art.

Index Terms—Real-time systems, multiprocessor resource synchronization, job shop, dependency graph approaches

Ç

1 INTRODUCTION

UNDER the von-Neumann programming model, shared
resources that require mutual exclusive accesses, such

as shared files, data structures, etc., have to be protected by
applying synchronization (binary semaphores) or locking
(mutex locks) mechanisms. A protected code segment that
has to access a shared resource mutually exclusively is
called a critical section. For uniprocessor real-time systems,
the state-of-the-art are longstanding protocols that have
been developed in the 90s, namely the Priority Inheritance
Protocol (PIP) and the Priority Ceiling Protocol (PCP) by
Sha et al. [34], as well as the Stack Resource Policy (SRP) by
Baker [3]. Specifically, a variant of PCP has been imple-
mented in Ada (called Ceiling locking) and in POSIX (called
Priority Protect Protocol).

Due to the development of multiprocessor platforms, mul-
tiprocessor resource synchronization and locking protocols
have been proposed and extensively studied, such as the
Distributed PCP (DPCP) [33], the Multiprocessor PCP
(MPCP) [32], theMultiprocessor SRP (MSRP) [16], the Flexible
Multiprocessor Locking Protocol (FMLP) [4], theMultiproces-
sor PIP [13], the OðmÞ Locking Protocol (OMLP) [7], the
Multiprocessor Bandwidth Inheritance (M-BWI) [15], and the
Multiprocessor resource sharing Protocol (MrsP) [8]. Since
the performance of these protocols highly depends on task
partitioning, several partitioning algorithms were developed
in the literature, e.g., for MPCP by Lakshmanan et al. [26] and
Nemati et al. [30], for MSRP byWieder and Brandenburg [42],
and for DPCP byHsiu et al. [21], Huang et. al [22], and von der

Br€uggen et al. [40]. In addition to the theoretical soundness
of these protocols, some of them have been implemented
in the real-time operating systems LITMUSRT [5], [9] and
RTEMS.1

For several decades, the primary focus when considering
multiprocessor synchronization and locking in real-time sys-
temshas been the design and analysis of resource sharing pro-
tocols, where the protocols decide the order in which the new
incoming requests access the shared resources dynamically.
Contrarily, the Dependency Graph Approaches (DGA), that
was proposed by Chen et al. [11] in 2018, pre-computes the
order in which tasks are allowed to access resources, and con-
sists of two individual steps:

1) A dependency graph is constructed to determine the
execution order of the critical sections guarded by
one binary semaphore or mutex lock.

2) Multiprocessor scheduling algorithms are applied to
schedule the tasks by respecting the constraints
given by the constructed dependency graph(s).

Chen et al. [11] showed significant improvement against
existing protocol-based approaches from the empirical as
well as from the theoretical perspective, and demonstrated
the practical applicability of the DGA by implementing it in
LITMUSRT [5], [9]. However, the original dependency
graph approaches presented in [11] has two strong limita-
tions: 1) the construction in the first step allows only one
critical section per task, and 2) the presented algorithms can
only be applied for frame-based real-time task systems, i.e.,
all tasks have the same period and release their jobs always
at the same time. The latter has been recently removed by
Shi et al. [36], who applied the DGA after unrolling the jobs
in the hyper-period. However, the former remains open
and is a fundamental obstacle which limits the generality of
the dependency graph approaches.
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In the original DGA, the assumption that each task has
only one non-nested critical section allows the algorithm to
partition the tasks according to their shared resources in the
first step. However, when a task accesses multiple shared
resources, such a partitioning is no longer possible. There-
fore, to enable the DGA for tasks with multiple critical sec-
tions, an exploration of effective construction mechanisms
for a dependency graph that considers the interactions of
the shared resources is needed.

Contribution. In this paper, we focus on allowing multiple
critical sections per task in the dependency graph approaches
for both frame-based and periodic real-time task systemswith
synchronous releases. Our contributions are:

� Our key observation is the correlation between the
dependency graph in DGA and the classical job shop
scheduling problem. With respect to the computational
complexity, we present a polynomial-time reduction
from the classical job shop scheduling problem, which
is NP -hard in the strong sense [28]. Intractability
results are established even for severely restricted
instances of the studied multiprocessor synchroniza-
tion problem, as detailed in Section 3.

� For frame-based task sets, we reduce the problem of
constructing the dependency graph in the DGA to
the classical job shop scheduling problemin Section 4,
and establish approximation bounds for minimizing
the makespan based on the approximation bounds
of job-shop algorithms. Section 4.3 details how these
results can be extended to periodic real-time task
systems.

� We explain how we implemented the dependency
graph approach with multiple critical sections in
LITMUSRT and report the overheads in Section 5,
showing that our new implemented approach is
comparable to the existing methods with respect to
the overheads.

� We provide extensive numerical evaluations in
Section 6, which demonstrate the performance of
the proposed approach under different system con-
figurations. Compared to the state-of-the-art, our
approach shows significant improvement for all the
evaluated frame-based real-time task systems and
for most of the evaluated periodic task systems.

2 SYSTEM MODEL

2.1 Task Model

We consider a set T of n recurrent tasks to be scheduled on
M identical (homogeneous) processors. All tasks can have
multiple (non-nested) critical sections and may access sev-
eral of the Z shared resources. Each task ti is described by
ti ¼ ððhi; CiÞ; Ti; DiÞ, where:

� hi is the number of computation segments in task ti.
� Ci is the total worst-case execution time (WCET) of

the computation segments in task ti.
� Ti is the period of ti.
� Di is the relative deadline of ti.
We consider constrained deadlines, i.e., 8ti 2 T; Di �

Ti. For the jth segment of task ti, denoted as ui;j ¼ ðCi;j; �i;jÞ:

� Ci;j � 0 is the WCET of computation segment ui;j
with Ci ¼

Phi
j¼1 Ci;j.

� �i;j indicates whether the corresponding segment is a
non-critical section or a critical section. If ui;j is a criti-
cal section, �i;j is 1; otherwise, �i;j is 0.

� If ui;j is a non-critical section, then ui;j�1 and ui;jþ1
must be critical sections (if they exist). That is, ui;j
and ui;jþ1 cannot be both non-critical sections.

� If ui;j is a critical section, it starts from the lock of a
mutex lock (or wait for a binary semaphore), denoted
by si;j, and ends at the unlock of the same mutex
lock (or signal to the same binary semaphore).

Furthermore, we make following assumptions:

� Each task releases one job in the beginning of each
period. Therefore, each computation segment within
one task releases one instance accordingly, which is
treated as a sub-job of the corresponding job.

� A job cannot be executed in parallel, i.e., the sub-jobs
in a job must be sequentially executed.

� The execution of the critical sections guarded by a
mutex lock (or one binary semaphore) must be
sequentially executed. Hence, if two computation
segments share the same lock, they must be executed
one after another.

� There are in total Z mutex locks (or binary
semaphores).

We consider two kinds of task systems, namely:

� Frame-based task systems: all tasks release their jobs
at the same time and have the same period and rela-
tive deadline, i.e., 8i; j; Ti ¼ Tj ^Di ¼ Dj. Hence,
the analysis can be restricted to one job of each task.

� Periodic task systems (with synchronous release): all
tasks release their first job at time 0 and subsequent jobs
are released periodically, but different tasks may have
different periods and relative deadlines. The hyper-
period of the task set T is defined as the least common
multiple (LCM) of the periods of the tasks inT.

2.2 Problem Definition and Approximation

In this subsection, we define the problem of scheduling
frame-based real-time tasks with multiple critical sections
in homogeneous multiprocessor systems.

We define a schedule from the sub-job’s perspective.
Suppose that Q is the set of the computation segments, i.e.,
Q ¼ ui;j j ti 2 T; j ¼ 1; 2; . . . ; hi

� �
. A schedule for T is a

function r : R�M ! Q [ ?f g, where rðt;mÞ ¼ ui;j denotes
that the sub-job ui;j is executed at time t on processorm, and
rðt;mÞ ¼ ? denotes that processor m is idle at time t. Since
a job has to be sequentially executed, at any time point t �
0, only a sub-job of ti can be executed on one of the M pro-
cessors, i.e., if rðt;mÞ is ui;j, then rðt;m0Þ 6¼ ui;k for any k � hi
and m0 6¼ m. Moreover, since the sub-jobs of a job must be
executed sequentially, ui;k cannot be executed before ui;j fin-
ishes for any j < k � hi, i.e., if rðt;mÞ is ui;j for some
t;m; i; j, then rðt0;mÞ 6¼ ui;k for any t0 � t and any k > j. The
critical sections guarded by one mutex lock must be sequen-
tially executed. That is, if �i;j is 1, �k;‘ is 1, and si;j ¼ sk;‘

then a schedule must guarantee rðt;m0Þ 6¼ uk;‘ for any t � 0
andm 6¼ m0 when rðt;mÞ is ui;j.
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We only consider schedules that can finish the execution
demand of the computation segments. Let R be the finishing
time of the schedule. In this case,

PM
m¼1

RR
0 ½rðt;mÞ ¼ ui;j�dt

must be equal to Ci;j, where ½P � is the Iverson bracket, i.e.,
½P � is 1 when the condition P holds, otherwise ½P � is 0. Note
that the integration is used in this paper only as a symbolic
notation to represent the summation over time. The earliest
moment when all sub-jobs finish their computation seg-
ments in the schedule (under all the constraints defined
above) is called the makespan of the schedule, commonly
denoted as Cmax in scheduling theory, i.e., Cmax of schedule
r is:

min:R s. t.
XM
m¼1

Z R

0

½rðt;mÞ ¼ ui;j�dt ¼ Ci;j; 8ui;j 2 Q

A schedule is non-preemptive from the sub-job’s perspec-
tive if a sub-job cannot be preempted, i.e., there is only one
interval with rðt;mÞ ¼ ui;j on processor m for any sub-job
ui;jin Q. A schedule is preemptive from the sub-job’s perspec-
tive if a sub-job can be preempted, i.e., more than one inter-
val with rðt;mÞ ¼ ui;j for any task ui;j in Q on processor m
is allowed. A critical section ui;j in a preemptive schedule
can be preempted by non-critical sections or other critical
sections that are unrelated to si;j.

For a partitioned schedule, all sub-jobs of a job have to be
executed on one processor, i.e., there is one processor m
with rðt;mÞ ¼ ui;j for t � 0 and j ¼ 1; 2; . . . ; hi for every
task ti in T. For a global schedule, a sub-job can be arbitrarily
executed on any of the M processors at any time point. That
is, it is possible that rðt;mÞ ¼ ui;j and rðt0;m0Þ ¼ ui;j for
m 6¼ m0 and t 6¼ t0. For a semi-partitioned schedule, a sub-job
has to be executed only on one processor.

A partitioned or a semi-partitioned schedule can be pre-
emptive or non-preemptive from the sub-job’s perspective.
A global schedule in the above definition is always a pre-
emptive schedule from the sub-job’s perspective.

The problem of multiprocessor synchronization with
multiple critical sections per task can be transferred to the
following two general problems:

Definition 1 (Multiprocessor Multiple critical-Sections
task Synchronization (MMSS) makespan problem).
AssumeM identical (homogeneous) processors and that n tasks
are arriving at time 0. Each task ti is composed of hi computa-
tion segments, each of which is either a non-nested critical sec-
tion or a non-critical section. The objective is to find a schedule
that minimizes the makespan.

A feasible schedule of the MMSS makespan problem is a
schedule that satisfies all aforementioned non-overlapping
constraints. An optimal solution of an input instance of the
MMSS makespan problem is the makespan of a schedule
that has the minimum makespan among the feasible sched-
ules of the input instance. An algorithm A for the MMSS
makespan problem has an approximation ratio a � 1, if given
any task set T and M processors, the resulting makespan is
at most a � C	max, where C	max is the optimal makespan.

Definition 2 (TheMMSS Schedulability Problem). Assume
there are M identical (homogeneous) processors and that n

tasks are arriving at time 0. All tasks ti have the same
deadline D. Each task is composed of hi computation segments,
each of which is either a non-nested critical section or a non-
critical section. The objective is to find a feasible schedule that
meets the deadlineD on the givenM processors.

A feasible schedule of theMMSS schedulability problem is
a schedule that has a makespan no more thanD and satisfies
all the non-overlapping constraints. TheMMSS schedulability
problem is a decision problem, in which for a given D and a
given algorithm either a feasible schedule is derived that
meets the deadlines or no feasible schedule can be derived
from the algorithm. For such a decision setting, the speedup fac-
tor [23], [31] can be used to examine the performance. Provided
that there exists one feasible schedule at the original speed, the
speedup factor a � 1 of a scheduling algorithm A for the
MMSS schedulability problem is the factor a � 1 by which
the overall speed of a system would need to be increased so
that the algorithmA always derives a feasible schedule.

2.3 Notation From Scheduling Theory

In this subsection, for completeness, we summarize the clas-
sical flow shop and job shop scheduling problems in opera-
tions research (OR). In scheduling theory, a scheduling
problem is described by a triplet ajbjg.
� a describes themachine (i.e., processing) environment.
� b specifies the characteristics and constraints.
� g is the objective to be optimized.

The widely used machine environment in a are:

� 1: single machine (or uniprocessor).
� P : independent machines (or homogeneous multi-

processor systems).
� FM : flow shop. The environment FM consists of M

machines and each job i has a chain of M sub-jobs,
denoted as Oi;1; Oi;2; . . . ; Oi;M , where the M opera-
tions are executed in the specified order and Oi;m is
executed on the mth machine. A job has to finish its
operation on the mth machine before it can start any
operation on the ðmþ 1Þ-th machine, for any m ¼
1; 2; . . . ;M � 1.

� JM : job shop, i.e., a job i has a chain of hi sub-jobs,
denoted as Oi;1; Oi;2; . . . ; Oi;hi , where the hi opera-
tions should be executed in the specified order and
Oi;m is executed on a specified machine. Note that a
flow shop is a special case of a job shop environment.

In this paper, we are specifically interested in three con-
straints specified in b:

� prmp: preemptive scheduling. In classical scheduling
theory, preemption in parallel machines implies the
possibility of job migration from one machine to
another machine.

� rj: with specified arrival time of the job (and
deadline).

� li;j: preparation time between dependent job pair,
i.e., job i and job j.

� prec: the jobs have precedence constraints.
Note that the scheduler is implicitly assumed to be non-

preemptive if prmp is not specified. Furthermore, the job set
is assumed to arrive at time 0 if rj is not specified.
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In addition, we are specifically interested in two objec-
tives specified in g:

� Cmax: to minimize the makespan, as defined in
Section 2.2.

� Lmax: to minimize the maximum lateness over all
jobs, in which the lateness of a job is defined as its
finishing time minus its absolute deadline.

2.4 Critical Sections Access Patterns

Two types of access patterns of the critical sections are con-
sidered, which we name according to the applicable algo-
rithms for convenience:

� Flow-Shop Compatible Access Patterns: A task set has a
pattern where flow-shop approaches can be applied,
if all tasks access each resource (in a non-nested
manner) at most once and a total order 
 in which
tasks access the resources can be constructed over all
tasks in the set. Hence, a flow-shop pattern means
that si;j0 
 si;j when j0 < j and ui;j0 and ui;j are both
critical sections. In such a case, we can assume that
the mutex locks are indexed according to the speci-
fied total order set. Although the order must be
always respected, a task does not need to access all
the mutex locks. That is, the access pattern of the
mutex locks of a task is a subset of the specified total
order set.

� Job-Shop Compatible Access Patterns allow tasks to
accesses shared resources multiple times and with-
out any restriction on the order, in which resources
are accessed.

Flow-shop compatible access patterns are a very restrictive
special case of the much more general job-shop compatible
access patterns. We implicitly assume job-shop compatible
access patterns if not specified differently, but examine
flow-shop compatible access patterns when showing certain
complexity results.

3 COMPUTATIONAL COMPLEXITY ANALYSIS

In this section, we provide a short overview of results
regarding job shop and flow shop problems in the literature
at first. Afterwards, we explain the connection of the MMSS
schedulability problem to the job and flow shop problem by
showing different reductions that can be later applied for
demonstrating different scenarios with respect to their
computational complexity.

3.1 Literature Review of Shop Scheduling

Since the late 1950s, many computational complexity results,
approximation algorithms, heuristic algorithms, and tools
for job and flow shop scheduling problems have been estab-
lished. Intractability results have been well-established even
for severely restricted instances of job shop or flow shop
problems. The reader is referred to the surveys by Lawler
et al. [27] and Chen et al. [10] for details.

Specifically, the following restricted scenarios are
NP -complete in the strong sense:

� J2jjCmax, see [28].
� J3jpi;j ¼ 1jCmax, i.e., unit execution time, see [28].

� J3jn ¼ 3jCmax, i.e., 3 jobs with multiple operations on
3 shops, see [39].

� F3jjCmax, i.e., three-stage flow shop [17].
� F2jrjjCmax, i.e., two-stage flow shop with arrival

times, as shown in [28].
� F2jpi;j ¼ 1; tjjCmax, i.e., two-stage flow shop with unit

processing time and transportation time between the
finishing time of the first and the starting time of the
second stage [44].

The best polynomial-time approximation algorithm for
the general JM jjCmax problem was provided by Shmoys

et al. [38], showing an approximation ratio of O log2ðMmÞ
log log ðMmÞ
� �

,
where M is the number of shops and m is the maximum
number of operations per job. The approximation ratio of
this algorithm was later improved by Goldberg et al. [18],

showing a ratio of O log2ðMmÞ
ðlog log ðMmÞÞ2
� �

.

Whether there exists a polynomial-time algorithm with a
constant approximation ratio for the general FM jjCmax or
JM jjCmax problem remained open until 2011, when
Mastrolilli and Svensson [29] showed that FM jjCmax (and
hence JM jjCmax) does not admit any polynomial-time
approximation algorithm with a constant approximation
ratio. Moreover, they also showed that the lower bound on
the approximation ratio is very close to the existing upper
bound provided by Goldberg et al. [18].

In Section 3.3, we demonstrate that the MMSS schedul-
ability problem is already NP -complete in the strong sense
for very restrictive scenarios, even when M and Z are both
extremely small. In Section 3.4, we further reduce from the
master-slave problem [44] to show that the MMSS schedul-
ability problem is NP -complete in the strong sense even
when there are two critical sections that access the unique
shared resource with unit execution time per task.

3.2 Reductions From the Job/Flow Shop Problem

Chen et al. [11] showed that a special case of theMMSSmake-
span problem isNP -hard in the strong sensewhen a task has
only one critical section and M is sufficiently large. The
MMSS schedulability problem is the decision version of the
MMSS makespan problem. We therefore focus on the hard-
ness of the decision version in Definition 2. Here, we provide
reductions from the job/flow shop scheduling problems to
different restricted scenarios of the MMSS schedulability
problem. Such reductions are used in Section 3.3 for demon-
strating the NP -completeness for different scenarios. The
complexity results are shown in Table 1.

We start from the more general scenario under the semi-
partitioned scheduling paradigm.

Theorem 1. Under the semi-partitioned scheduling paradigm,
there is a polynomial-time reduction from an input instance of
the decision version of the job shop scheduling problem
JZ jjCmax with Z shops to an input instance of the MMSS
schedulability problem that has Z mutex locks on M processors
withM � Z.

Proof. The proof is based on a polynomial-time reduction
from an instance of the job shop scheduling problem
JZ jjCmax to the MMSS schedulability problem. We pres-
ent a polynomial-time reduction from the job shop sched-
uling problem JZ jjCmax to the MMSS schedulability
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problem. Suppose a given input instance with n jobs of
the job shop scheduling problem JZ jjCmax.

� We have Z shops with non-preemptive execution.
� A job i is defined by a chain of hi sub-jobs,

denoted as Oi;1; Oi;2; . . . ; Oi;hi . The processing time
of Oi;j is Ci;j.

� These hi operations should be executed in the
specified order and Oi;m is executed on one of the
given Z shops, i.e., on shop sðOi;mÞ, where
sðOi;mÞ 2 1; 2; . . . ; Zf g.

The decision version of the job shop scheduling prob-
lem is to decide whether there is a non-preemptive
schedule whose makespan is no more than a given D.
The polynomial-time reduction to the MMSS schedul-
ability problem is as follows:

� There areM � Z processors.
� There are Z mutex locks, indexed as 1; 2; . . . ; Z.
� For a job i of the input instance of the job shop

scheduling problem, we create a task ti, which is
composed of hi computation segments. The exe-
cution time of ui;j is the same as the processing
time of the operation Oi;j. The mutex lock si;j

used by ui;j is sðOi;mÞ.
� The deadline of the tasks is D and the period is

T ¼ D.
We denote the above input instance of the job shop

scheduling problem as I (the MMSS schedulability prob-
lem as I 0, respectively). We show that there exists a feasi-
ble schedule r for I (in the job shop scheduling problem)
if and only if there exists a feasible schedule r0 for I 0 (in
theMMSS schedulability problem).2

Only-if Part. Suppose r is a feasible schedule for I, i.e.,

XZ
m¼1

Z D

0

½rðt;mÞ ¼ Oi;j�dt
 !

¼ Ci;j; 8Oi;j; (1)

and rðt;mÞ 6¼ Oi;j for any t andm if sðOi;jÞ 6¼ m. Since the
execution on shops ins non-preemptive, if two operations
Oi;j and Ok;‘ are supposed to be executed on a shop z,
they are executed sequentially in r. As a result, without
any conflict, for 0 � t � D, we can set

r0ðt;mÞ ¼ ? if rðt;mÞ ¼ ?
ui;j if rðt;mÞ ¼ Oi;j

�
: (2)

In the schedule r0, critical sections guarded by the mutex
lock z are executed sequentially on the zth processor.
Therefore,

XZ
m¼1

Z D

0

½r0ðt;mÞ ¼ ui;j�dt
 !

¼ Ci;j; 8ui;j 2 Q; (3)

and all the constraints for a feasible schedule for I 0 are met.
Such a schedule is a semi-partitioned and non-preemptive
schedule (from the sub-job’s perspective), which is also a
global preemptive schedule (from the job’s perspective).

If part: Suppose that r0 is a feasible schedule for I 0, i.e.,

XM
m¼1

Z D

0

½r0ðt;mÞ ¼ ui;j�dt ¼ Ci;j; 8ui;j 2 Q; (4)

and the schedule r0 executes any two critical sections ui;j
and uk;‘ with si;j ¼ sk;‘ ¼ z sequentially. Therefore, for a
mutex lock z 2 1; 2; . . . ; Zf g, the critical sections guarded
by z must be sequentially executed. As a result, without
any conflict, for 0 � t � D, we can set

rðt; zÞ ¼ Oi;j if 9m with r0ðt;mÞ ¼ ui;j and si;j ¼ z
? otherwise

�
: (5)

However, since we do not put any constraint on the feasi-
ble schedule r0, it is possible that the execution of Oi;j on
shop z is not continuous. Suppose that ai;j (fi;j, respec-
tively) is the first (last, respectively) time instant when
Oi;j is executed on shop z in r. Since the schedule r0 exe-
cutes any two critical sections ui;j and uk;‘ sequentially
when si;j ¼ sk;‘ ¼ z, we know that for any t between ai;j
and fi;j either rðt; zÞ ¼ Oi;j or rðt; zÞ ¼ ?. Therefore, we
can simply set rðt; zÞ to Oi;j for any t in the time interval
½ai;j; ai;j þ Ci;jÞ and set rðt; zÞ to ? for any t in ½ai;j þ
Ci;j; fi;jÞ. The resulting schedule r executes all the opera-
tions non-preemptively on the corresponding shops.
Therefore, all the scheduling constraints of the job shop
scheduling problem are met and

XZ
m¼1

Z D

0

½rðt;mÞ ¼ Oi;j�dt
 !

¼ Ci;j; 8Oi;j: (6)

We note that there is no specific constraint of scheduling
imposed by the schedule r0. tu
The proof of Theorem 1 is not valid for themore restrictive

partitioned scheduling paradigm, i.e., all the computation

TABLE 1
The Complexity Results That are Known and

Discussed in This Work

2. Although we do not formally define the schedule function of the
job shop scheduling problem, we believe that the context is clear
enough by replacing the use of the computation segments with the
operations.
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segments of a task must be executed on the same processor,
since the constructed schedule r0 in the proof of the only-if
part is not a partitioned schedule. Interestingly, if we use an
abundant number of processors, i.e.,M � n, then the reduc-
tion in Theorem 1 holds for the partitioned scheduling para-
digm aswell.

Theorem 2. Under the partitioned scheduling paradigm, there is
a polynomial-time reduction which reduces from an input
instance of the decision version of the job shop scheduling prob-
lem JZ jjCmax with Z shops to an input instance of the MMSS
schedulability problem that has n tasks and Z mutex locks on
M processors withM � n � Z.

Proof. The proof is identical to the proof of Theorem 1 by
ensuring that r0 constructed in the only-if part in the proof
of Theorem 1 can be converted to a partitioned schedule.
Instead of applying Eq. (2), sinceM � n, without any con-
flict, for 0 � t � D and i ¼ 1; 2; . . . ; n, we can set

r0ðt; iÞ ¼ ? if @m with rðt;mÞ ¼ Oi;j

ui;j if 9m with rðt;mÞ ¼ Oi;j

�
: (7)

Since all computation segments of ti are executed on
processor i, the schedule r0 is a partitioned schedule. All
the remaining analysis follows the proof of Theorem 1. tu

Theorem 3. There is a polynomial-time reduction which reduces
from an input instance of the decision version of the flow shop
scheduling problem FZ jjCmax with Z flow shops to an input
instance of theMMSS schedulability problem that has Z mutex
locks with a flow-shop compatible access pattern. The condi-
tions in Theorems 1 and 2 for different scheduling paradigms
with respect to constraint ofM remain the same.

Proof. The proof is identical to the proofs of Theorems 1 and 2.
The additional condition is to access to theZ mutex locks by
following the index, starting from 1. tu
The above theorems show that the computational com-

plexity of the MMSS schedulability problem is almost inde-
pendent from the number of processors (i.e., adding
processors may not be helpful) and the underlying schedul-
ing paradigm. The fundamental problem is the sequencing
of the critical sections.

3.3 Computational Complexity for SmallM

We can now reach the computational complexity of the
MMSS schedulability problem when Z � 2 for small M. For
completeness, we state the following lemma.

Lemma 1. TheMMSS schedulability problem is inNP .

Proof. Since the feasibility of a given schedule for the
MMSS schedulability problem can be verified in polyno-
mial-time, it is inNP . tu
The following four theorems are based on the reductions

in Theorem 1 and Theorem 3. In general, even very special
cases areNP -complete in the strong sense.

Theorem 4. Under the semi-partitioned scheduling paradigm,
the MMSS schedulability problem is NP -complete in the
strong sense when Z ¼M ¼ 2.

Proof. The job shop scheduling problem J2jjCmax with 2
shops is NP -complete in the strong sense [28]. Together
with Theorem 1, we conclude the theorem. tu
The MMSS schedulability problem is also difficult when

all computation segments have the same execution time.

Theorem 5. Under the semi-partitioned scheduling paradigm,
the MMSS schedulability problem is NP -complete in the
strong sense when Z ¼M ¼ 3 and Ci;j ¼ 1 for any computa-
tion segment ui;j.

Proof. The job shop scheduling problem J3jpi;j ¼ 1jCmax

with unit execution time on 3 shops is NP -complete in
the strong sense [28]. Together with Theorem 1, we con-
clude the theorem. tu
The following theorem shows that the MMSS schedul-

ability problem is also difficult when there are just three
tasks, three mutex locks, and three processors.

Theorem 6. The MMSS schedulability problem is NP -complete
in the strong sense when n ¼ Z ¼M ¼ 3.

Proof. The job shop scheduling problem J3jn ¼ 3jCmax with 3
jobs (with multiple operations) on 3 shops isNP -complete
in the strong sense [39]. Together with Theorem 1, we
conclude the theorem for semi-partitioned scheduling
paradigm.

For the partitioned scheduling paradigm, since there
are exactly 3 tasks, 3 processors, and 3 mutex locks, the
computational complexity remains the same, as a semi-
partitioned schedule can be mapped to a partitioned
schedule. tu

Theorem 7. Under the semi-partitioned scheduling paradigm,
the MMSS schedulability problem for flow-shop compatible
access patterns is NP -complete in the strong sense when
Z ¼M ¼ 3.

Proof. The flow shop scheduling problem F3jjCmax with 3
shops is NP -complete in the strong sense [17]. Together
with Theorem 3, we conclude the theorem. tu

3.4 Computational Complexity WhenM � n

Chen et al. [11] showed that a special case of the MMSS
makespan problem is NP -hard in the strong sense when a
task has only one critical section and M is sufficiently large.
The following theorem shows that the MMSS schedulability
problem is NP -complete when there are only two critical
sections per task and the critical sections are with unit exe-
cution time.

Theorem 8. The MMSS schedulability problem is NP -complete
in the strong sense when Z ¼ 1, hi � 3 for every ti 2 T, Ci;j ¼
1 for every computation segment ui;j with �i;j ¼ 1, andM � n.

Proof. The problem is in NP , since the feasibility of a given
schedule can be verified in polynomial-time. Similar to
the proof of Theorem 1, we show a polynomial-time
reduction from the master-slave scheduling problem
with unit execution time on the master [44]. Assume a
given input instance with n jobs of the master-slave
scheduling problem:
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� We assume a sufficient number of slaves, but only
one master that can be modeled as a uniprocessor.

� A job i has a chain of three sub-jobs, in which the
first and third sub-jobs have to be executed on the
master and the second sub-job has to be executed
on a slave.

� The processing time of the first and third sub-jobs
of a job i is 1. The processing time of the second
sub-job of a job i is Oi > 0.

The decision version of the master-slave scheduling
problem is to decide whether there is a schedule whose
makespan is no more than a given target D, which is
NP -complete in the strong sense [44]. The master-slave
scheduling problem is equivalent to the uniprocessor
self-suspension problem with two computation segments
and one suspension interval.

The polynomial-time reduction to the MMSS schedul-
ability problem is as follows:

� There areM � n processors.
� There is one mutex lock.
� For a job i of the input instance of the master-slave

scheduling problem, we create a task ti, which is
composed of three computation segments. The
execution time Ci;1 ¼ Ci;3 and Ci;2 ¼ Oi. Compu-
tation segments ui;1 and ui;3 are critical sections
guarded by the only mutex lock. Computation
segment ui;2 is a non-critical section.

� The deadline of the tasks is D and the period is
T ¼ D.

It is not difficult to prove that a feasible schedule r for
the original input of the master-slave scheduling prob-
lem exists if and only if there exists a feasible schedule r0

for the reduced input of the MMSS schedulability prob-
lem. Details are omitted due to space limitation. tu

4 THE DGA BASED ON JOB/FLOW SHOP

In this section, we detail the DGA for tasks with multiple
critical sections, based on job shop scheduling to construct a
dependency graph.

� In the first step, we construct a directed acyclic graph
G ¼ ðV;EÞ. For each sub-job ui;j of task ti in T, we
create a vertex in V . The sub-job ui;j is a predecessor
of ui;jþ1 for j ¼ 1; 2; . . . ; hi � 1. Suppose that Qz is the
set of the computation segments that are critical sec-
tions guarded by mutex lock z, i.e., Qz  ui;j j�i;j ¼

�
1 and si;j ¼ zg. For each z ¼ 1; 2; . . . ; Z, the subgraph
of the computation segments in Qz is a directed
chain, which represents the total execution order of
these computation segments.

� In the second step, we construct a schedule of G on
M processors either globally or partitioned, either
preemptive or non-preemptive.

For a directed acyclic graph G, a critical path of G is a lon-
gest path of G, and its length is denoted by lenðGÞ. We now
explain how to reduce from an input instance IMS of the
MMSS makespan problem to an input instance IJS of the
job shop scheduling problem JZþnjjCmax.

� We create Z þ n shops:

– Shop z 2 f1; 2; . . . ; Zg is exclusively used to exe-
cute critical sections guarded by mutex lock z.
That is, only critical sections ui;j with �i;j ¼ 1 and
si;j ¼ z (i.e., ui;j 2 Qz) can be executed on shop z.

– ShopZ þ i is exclusively used to execute non-crit-
ical sections of task ti. That is, only non-critical
sections ui;j with �i;j ¼ 0 can be executed on shop
Z þ i.

� The operation of each computation segment ui;j is
transformed to the corresponding shop, and the
processing time is the same as the segment’s execu-
tion time, i.e., Ci;j.

Suppose that rJS is a feasible job shop schedule for IJS .
Since rJS is non-preemptive, the operations on a shop are
executed sequentially in rJS . The construction of the depen-
dency graph G sets the precedence constraints of Qz by fol-
lowing the total order of the execution of the operations on
shop z, i.e., the shop dedicated for Qz in rJS .

Once the dependency graph G is constructed, a schedule
rMS of the original input instance IMS can be generated by
applying any scheduling algorithms to scheduleG, as already
detailed in [11], [36]. Specifically, for semi-partitioned sched-
uling, the LIST-EDF in [36] based on classical list scheduling
by Graham [19] can be applied, i.e., whenever a processor
idles and at least one sub-job is eligible, the sub-job with
the earliest deadline starts its execution on the processor.
Additionally, its partitioned extension in [37] (P-EDF) can be
applied to generate the partitioned schedule.

We assume each computation segment/sub-task executes
exactly its WCET for all the releases, i.e., early completion is
forbidden, thus the schedule generated for one hyper-period
is static and repeated periodically. Accordingly, an exact
schedulability test is performed by simply evaluating the
LIST-EDF or P-EDF schedule over one hyper-period to check
whether there is any deadline miss. Since the schedule is static
and repeated periodically, there is no dynamics that can lead
to the multiprocessor anomalies pointed out by Graham [19].
To demonstrate the work flow of our approach, we provide an
illustrative example in the supplemental material, which can
be found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TC.2020.3043742.

4.1 Properties of Our Approach

We now prove the equivalence of a schedule of IJS and a
directed acyclic graph G for IMS .

Lemma 2. Suppose that there is a directed acyclic graph G for
IMS whose critical path length is lenðGÞ. There is a job shop
schedule for IJS whose makespan is lenðGÞ.

Proof. This lemma is proved by constructing a job shop
schedule rJS for IJS , in which the makespan of rJS is
lenðGÞ. Suppose that the longest path ended at a vertex
ui;j in V in the directed acyclic graph G is Li;j. There are
two cases to schedule ui;j in rJS :

� If ui;j is a non-critical section, the schedule rJS

schedules the operation on shop iþ Z from time
Li;j � Ci;j to Li;j.

� If ui;j is a critical section guarded by mutex lock z,
the schedule rJS schedules the operation on shop
z from time Li;j � Ci;j to Li;j.
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The above schedule has a makespan of lenðGÞ by con-
struction. The only thing that has to be proved is that the
schedule is a feasible job shop schedule for IJS .

Suppose for contradiction that the schedule rJS is not
a feasible job shop schedule for IJS . This is only possible
if the schedule rJS has a conflicting decision to schedule
two operations at the same time t on a shop z. There are
two cases:

1) z is an exclusively reserved shop for the non-critical
sections of a task. This contradicts to the definition
of G since the non-critical sections of task ti form a
total order in graphG.

2) z is a shop for the critical sections guarded by the
mutex lock z. This contradicts to the definition of
G since the critical sections in Qz form a total
order in graph G.

In both cases, we reach the contradiction. Therefore, IJS

is a feasible job shop schedulewith amakespan of lenðGÞ. tu
Lemma 3. Suppose that there is a job shop schedule for IJS whose

makespan is D. Then, there is a directed acyclic graphG for IMS

whose critical path length is at most D.

Proof. This lemma is proved by constructing a graph G for
I, in which the critical path length of G is at most D. By
the definition of G, the sub-job ui;j is a predecessor of
ui;jþ1 for j ¼ 1; 2; . . . ; hi � 1 for every task ti. For the sub-
jobs in Qz, we define their total order and form a chain
in G by following the execution order on shop z in the
given schedule rJS for IJS . Such a graph G must be acy-
clic; otherwise, the schedule rJS is not a valid job shop
schedule for IJS .

We nowprove that the critical path length lenðGÞ ofG is
no more than D. Suppose for contradiction that lenðGÞ >
D. This critical path ofG defines a total order of the execu-
tion of the computation segments in the critical path, which
follows exactly the total order of the operations of a job and
a shop in rJS. Therefore, this contradicts to the fact that the
makespan of schedule rJS for IJS isD. tu
Based on Lemmas 2 and 3, we get the following theorem:

Theorem 9. An a-approximation algorithm for the job shop
scheduling problem JZþnjjCmax can be used to construct a
dependency graph G with lenðGÞ � a� lenðG	Þ, where G	 is
a dependency graph that has the shortest critical path length for
the input instance IMS of theMMSS makespan problem.

Proof. Suppose that D	 is the optimal makespan for IJS . By
Lemma 2, we know that D	 � lenðG	Þ. By Lemma 3, we
know that D	 � lenðG	Þ. Therefore, D	 ¼ lenðG	Þ. Sup-
pose that the algorithm derives a solution for IJS with a
makespan D. By the a-approximation for IJS and
Lemma 3, we know D � a� D	. Therefore, by Lemma 3
and above discussions, lenðGÞ � D � aD	 ¼ a� lenðG	Þ.tu

Lemma 4. Let G	 be defined as in Theorem 9. The optimal make-
span for the input instance IMS of the MMSS makespan prob-
lem is at least

max
X
ti2T

Ci

M
; lenðG	Þ

( )
: (8)

Proof. The lower bound
P

ti2T
Ci
M is due to the pigeon hole

principle. The lower bound lenðG	Þ is due to the defini-
tion with an infinite number of processors. tu

Theorem 10. Applying list scheduling for the dependency graph
G with lenðGÞ � a� lenðG	Þ results in a schedule with an
approximation ratio of aþ 1 for the MMSS makespan problem
under semi-partitioned scheduling, where G	 is defined in
Theorem 9.

Proof. According to Theorem 1 and Section 4 in [19], by
applying list scheduling, the makespan of IMS for the
MMSSmakespan problem is at most

lenðGÞ þ
X
ti2T

Ci

M
� a� lenðG	Þ þ

X
ti2T

Ci

M

� ðaþ 1Þ �max
X
ti2T

Ci

M
; lenðG	Þ

( )
:

The resulting schedule is a semi-partitioned schedule
since two computation segments of a task can be exe-
cuted on different processors. By Lemma 4, we conclude
the theorem. tu
Since the 1950s [10], [27], job/flow shop scheduling prob-

lems have been extensively studied. Although the problems
are NP -complete in the strong sense (even for very restric-
tive cases), algorithms with different properties have been
reported in the literature. If time complexity is not a major
concern, applying constraint programming as well as mixed
integer linear programming (MILP) or branch-and-bound
heuristics can derive optimal solutions for the job shop
scheduling problem. In such a case, based on Theorem 10,
our DGA has an approximation ratio of 2 for the MMSS
makespan problem.

4.2 Remarks

At first glance, it may seem impractical to reduce the MMSS
makespan problem to another very challenging problem,
i.e., job shop scheduling, in the first step of our DGA algo-
rithms. However, an advantage of considering the job shop
scheduling problem is that it has been extensively studied
in the literature, related results can directly be applied, and
commercial tools, like the Google OR-Tools, 3 can be uti-
lized, as we did in our evaluation. In addition, due to
Lemma 2, constructing a good dependency graph implies a
good schedule for IJS .

The last n job shops, i.e., shops Z þ 1; Z þ 2; . . . ; Z þ n, in
IJS , are in fact created just to match the original job shop
scheduling problem. From the literature of flow and job
shop scheduling, we know that these additional n job shops
can be removed by introducing delay (li;j in Section 2.3). If
the first computation segment ui;1 of task ti is a non-critical
section, this implies a non-zero release time ri of task ti in
IJS .

In our Google OR-Tools implementation for solving IJS ,
the no overlap constraint has to be taken into consideration
for both machine and job perspectives. For each machine, it
prevents jobs assigned on the same machine from

3. [Online]. Available: https://developers.google.com/optimization/
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overlapping in time. For each job, it prevents sub-jobs for
the same job from overlapping in time. The first constraint
can be achieved by applying the AddNoOverlap method,
by default supported in Google OR-Tools, for each machine.
For the second constraint, instead of creating nþ Z job
shops, we utilize the above concept by creating only Z job
shops and adding proper delays between the operations.
We configure the start time (denoted as ui;j:start) of a com-
putation segment based on the end time (denoted as
ui;j:end) of an earlier computation segment. For notational
brevity, we assign ui;1:start � 0 and ui;0:end ¼ 0. For any j �
2with �i;j ¼ 1:

ui;j:start � ui;j�1:end if �i;j�1 is 1
ui;j:start � ui;j�2:endþ Ci;j�1 if �i;j�1 is 0

�
: (9)

In other words, if ui;j�1 is a non-critical section, the execu-
tion time Ci;j�1 is added directly to the end (finishing) time
of ui;j�2; otherwise ui;j is started after the end time of ui;j�1.

Hence, a proper job shop scheduling problem for IJS is
JZ jrj; ljjCmax, i.e., scheduling of jobs with release time and
delays between operations on Z shops. An a-approximation
algorithm for the problem JZ jrj; ljjCmax can be used to con-
struct a dependency graph. This problem is not widely
studied and only few results can be found in the literature.

For a task system with a flow-shop compatible access pattern,
i.e., the Z mutex locks have a pre-defined total order, the
instance IJS is in fact a flow shop problem. For a special
case with three computation segments per task in which the
second segment is a non-critical section, and the first and
the third segments are critical sections of mutex locks 1 and
2, respectively, the constructed input IJS is a two-stage flow
shop problem with delays, i.e., F2jljjCmax. For the problem
F2jljjCmax, several polynomial-time approximation algo-
rithms are known: Karuno and Nagamochi [24] developed
a 11

6 -approximation, Ageev [1] developed a 1.5 approxima-
tion for a special case when Ci;1 ¼ Ci;3 for every task ti, and
Zhang and van de Velde [45] proposed polynomial-time
approximation schemes (PTASes), i.e., ð1þ �Þ-approxima-
tion for any � > 0.

Specifically, Zhang and van de Velde [45] presented
PTASes for different settings of the job/flow shop schedul-
ing problems in [45]. For any of such scenarios, the approxi-
mation ratio of DGA is at most 2þ � for any � > 0,
according to Theorem 10.

4.3 Extension to Periodic Tasks

The treatment used in [36] to construct dependency graphs
can also be applied here. That is, unroll the jobs of all the
tasks in one hyper-period and then construct a dependency
graph of these jobs. Suppose that the hyper-period H of a
task set is the least common multiple (LCM) of the periods
of the all the tasks in this set. For each task ti that requests
(at least) one resource, we createH=Ti jobs of task ti. For the
‘-th job of task ti, we set its release time to ð‘� 1ÞTi and its
absolute deadline must be no later than ð‘� 1ÞTi þDi. Since
the jobs for one task should not have any execution overlap
with each other, we only need one dedicated shop for them.
Therefore, there are two modifications of the job shop prob-
lem scheduling considered in Section 4:

� The release time constraint is added for each job.
� Instead of optimizing the makespan, the objective is

to minimize the maximum lateness.
And now the studied problem becomes JZþnjrj; li;jjLmax.
Afterwards, a dependency graph for all the jobs in one

hyper-period is generated by solving the aforementioned
flow/job shop scheduling problem. In the end, the sched-
ules are generated offline by applying LIST-EDF or P-EDF,
similar to fame-based task systems. And the generated
schedules will be repeated in the upcoming hyper-periods.

Please note that such an extension can be applied to any
periodic real-time task system, with the space cost of unroll-
ing all the jobs, and the computation cost of increasing num-
ber of considered jobs to the number of jobs in one hyper-
period.

5 IMPLEMENTATION AND OVERHEADS

In this section, we present details on how we implemented
the dependency graph approach in LITMUSRT to support
multiple critical sections per task. Afterwards, the imple-
mentation overheads are compared with the Flexible Multi-
processor Locking Protocol (FMLP) [4] provided by
LITMUSRT for both partitioned and global scheduling.

5.1 Implementation Details

When implementing our approach in LITMUSRT, we can
either apply the table-driven scheduling that LITMUSRT

provides, or implement a new binary semaphore which
enforces the execution order of critical sections that access
the same resource, since this order is defined in advance by
the dependency graph. A static scheduling table can be gen-
erated over one hyper-period and be repeated periodically
in a table-driven schedule. This table determines which
sub-job is executed on which processor for each time point
in the hyper-period. However, due to the large number of
sub-jobs in one hyper-period and possible migrations
among processors, the resulting table can be very large. To
avoid this problem, we decided to implement a new binary
semaphore that supports all the properties of our new
approach instead.

Since our approach is an extension of the DGA by
Chen et al. [11], and Shi et al. [36], our implementation is
based on the source code the authors provided online [35],
i.e., it is implemented under the plug-in Partitioned EDF
with synchronization support (PSN-EDF), called P-DGA-JS,
and the plug-in Global EDF with synchronization support
(GSN-EDF), denoted G-DGA-JS.

The EDF feature is guaranteed by the original design of
these two plug-ins. Therefore, we only need to provide the
relative deadlines for all the sub-jobs of each task, and
LITMUSRT will automatically update the absolute dead-
lines accordingly during runtime.

In order to enforce the sub-jobs to follow the execution
order determined by the dependency graph, our implemen-
tation has to: 1) let the all the sub-jobs inside one job follow
the predefined order; 2) force all the sub-jobs that access the
same resource to follow the order determined by the graph.

The first order is ensured in LITMUSRT by default. The
task deploy tool rtspin provided by the user-space library
liblitmus defines the task structure, e.g., the execution order
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of non-critical sections and critical sections within one task,
the related execution times, and the resource ID that each
critical section accesses. Moreover, the resource ID for each
critical section is parsed by rtspin, so the critical section
can find the correct semaphore to lock, and in our imple-
mentation we do not have to further consider addressing
the corresponding resources. Afterwards, rtspin emulates
the work load in a CPU according to the task set. A sub-job
can be released only when its predecessor (if any) has fin-
ished its execution. Please note that for sub-jobs related to
critical sections the release time is not only defined by its
predecessor’s finish time inside the same job, but also
related to another predecessor that accesses the same
resource (if one exists).

A ticket system with a similar general concept to [35] is
applied to enforce the execution order. However, due to dif-
ferent task structure which allows to support multiple criti-
cal sections, compared to [35], additional parameters had to
be introduced and the structure of existed parameters had
to be revised. To be precise, we extended LITMUSRT data
structure rt_params that describes tasks, e.g., priority,
period, and execution time, by adding:

� total_jobs: an integer which defines the number
of jobs of the related task in one hyper-period.

� total_cs: an integer that defines the number of
critical sections in this task.

� job_order: an array which defines the total order
of the sub-jobs related to critical sections that access
the same resource over one hyper-period. In addi-
tion, the last Z elements record the total number of
critical sections of the task set for each shared
resource. Thus, the length of the array is the number
of critical sections in one hyper-period plus the num-
ber of total shared resources, i.e., len(job_order)
= total_jobs � total_cs + Z.

� current_cs: an integer that defines the index of the
current critical section of the task that is being
executed.

� relative_ddls: an array which records the rela-
tive deadlines for all sub-jobs of one task.

Furthermore, we implemented a new binary semaphore,
named as mdga_semaphore, to make sure the execution
order of all the sub-jobs that access the same resource fol-
lows the order specified by the dependency graph.

A semaphore has the following common components:

� litmus_lock protects the semaphore structure,
� semaphore_owner defines the current holder of the

semaphore, and
� wait_queue stores all jobswaiting for this semaphore.
A new parameter named serving_ticket is added to

control the non-work conserving access pattern of the criti-
cal sections, i.e., a job can only lock the semaphore and start
its critical section if it holds the ticket equals to the corre-
sponding serving_ticket.

The pseudo code in Algorithm 1 shows three main func-
tions in our implementation: The function get_cs_order

returns the position of the sub-job in the execution order for
all the sub-jobs that access the same shared resource during
the run-time. In LITMUSRT, job_no counts the number of

jobs that one task releases. In order to find out the exact
position of this job in one hyper-period, we apply a modulo
operation on job_no and total_jobs. Since a job has
multiple critical section and the current_cs represents
the position of the critical section in a job, the index is calcu-
lated by counting the number of previous jobs’ critical sec-
tions and the current_cs in this job. After that, the value
of cs_order is searched from job_order based on the
obtained index. We provide an example with 5 tasks which
share two resources in the supplemental material, available
online.

Algorithm 1. DGA With Multi-Critical Sections
Implementation

Input: New coming task ti{job_no, total_jobs, total_cs,
current_cs, relative_ddls}, and Requested sema-
phore sz{semaphore_owner, serving_ticket,
wait_queue};

Function get_cs_order():
1: current_jobno ti.job_nomod ti.total_jobs;
2: index current_jobno � ti.total_cs+ current_cs;
3: cs_order ti.job_order[index];
Functionmdga_lock():
4: if sz.semaphore_owner is NULL and
sz.serving_ticket equals to ti.cs_order then
5: sz.semaphore_owner ti;
6: Update the deadline for ti;
7: ti starts the execution of its critical section;
8: else
9: Add ti to sz.wait_queue;
Functionmdga_unlock():

10: ti releases the semaphore lock;
11: Update the deadline for ti;
12: ti.current_cs++;
13: if ti.current_cs ¼ total_cs then
14: Set ti.current_cs 0;
15: sz.serving_ticket++;
16: if sz.serving_ticket ¼ num_cs then
17: Set sz.serving_ticket 0;
18: Next task tnext the head of the wait_queue (if exists);
19: if serving_ticket equals to tnext.cs_order then
20: sz.semaphore_owner tnext;
21: tnext starts the execution of its critical section;
22: else
23: sz.semaphore_owner NULL;
24: Add tnext to sz.wait_queue;

The function mdga_lock is called in order to lock the
semaphore and get access to the corresponding resource.
After getting the correct position in the execution order in
one hyper-period by applying function get_cs_order(),
the semaphore’s ownership will be checked. If the sema-
phore is occupied by another job at that moment, the new
arriving job will be added to the wait_queue directly; oth-
erwise, the semaphore’s current_serving_ticket and
the job’s cs_order are compared. If they are equal, the
semaphore’s owner will be set to that job, and the job will
start its critical section; otherwise, the job will be added to
the wait_queue as well. In our setting the wait_queue is
sorted by the jobs’ cs_order, i.e., the job with the smallest
cs_order is the head of the waiting queue. Hence, only
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the head of the wait_queue has to be checked when the
current semaphore owner finishes its execution, rather than
checking the whole unsorted wait_queue.

The function mdga_unlock is called once a job has fin-
ished its critical section and tries to unlock the semaphore.
The task’s current_cs is added by one to point to the next
possible critical section in this job. If current_cs reaches
to the total_cs, which means all the critical sections in
this job have finished their execution, then the current_cs
will be reset to zero. Next, the semaphore’s serving_

ticket is increased by 1, i.e., it is ready to be obtained by
the successor in the dependency graph. If serving_

ticket reaches the total number of critical sections related
to this resource in one hyper-period, i.e., num_cs, the
dependency graph is traversed completely, i.e., all sub-jobs
that access the related resource finished their executions of
the critical sections in the current hyper-period, the parame-
ter serving_ticket is reset to 0 to start the next iteration.
Please note, the num_cs can be found in the last Z elements
of job_order according to the related resource id. After
that, the first job (if any) in the wait_queue, named as tnext
is checked. If tnext has the cs_order which equals to the
semaphore’s serving_ticket, the the semaphore’s
owner is set as tnext, and tnext can start the execution of its
critical section. Otherwise, the semaphore owner is set as
NULL, and the task tnext is put back to the corresponding
wait_queue.

Additionally, each sub-job has its own modified dead-
line accordingly, which means each job can have different
deadlines when it is executing different segments. There-
fore, we have to take care of the deadline update during
the implementation. When we deploy a task using rtspin

to the system, we deliver the relative deadline of its first
sub-task as the relative deadline of the whole task. Since
no two continuous non-critical sections are allowed in the
task model, once a sub-job finishes its execution, either
mdga_lock or mdga_unlock is called. If mdga_lock is
called, the new critical section’s deadline is updated by
searching the relative_deadline; if mdga_lock is
called, only the finished critical section can update related
job’s deadline for its successor (if any), since tnext’s dead-
line has been updated when it tries to lock the semaphore
already.

The implementations for the global and partitioned plug-
ins are similar. However, due to the frequent preemption
and/or interrupts in global scheduling, the preemption has
to be disabled during the executions of semaphore related
functions in order to protect the functionalities of aforemen-
tioned functions.

5.2 Overheads Evaluations

We evaluated the overheads of our implementation in the
following platform: a cache-coherent SMP, consisting of
two 64-bit Intel Xeon Processor E5-2650Lv4, with 35 MB
cache and 64 GB main memory. The FMLP supported in
LITMUSRT was also evaluated for comparisons, including
P-FMLP for partitioned scheduling and G-FMLP for global
scheduling. These four protocols are evaluated using same
task sets where each task has multiple critical sections.

The overheads that we tracked are:

� CXS: context-switch overhead.
� RELEASE: time spent to enqueue a newly released

job into a ready queue.
� SCHED: time spent to make a scheduling decision,

i.e., find the next job to be executed.
� SCHED2: time spent to perform post context switch

and management activities.
� SEND-RESCHED: inter-processor interrupt latency,

including migrations.
The overheads are reported in Table 2, which shows that

the overheads of our approach and those of P-FMLP,
G-FMLP are comparable. Furthermore, the implementations
provided in [36], called P-LIST-EDF and G-LIST-EDF, were
evaluated to examine the overhead and reported in Table 2.
The direct comparison between P-LIST-EDF and P-DGA-JS
(G-LIST-EDF and G-DGA-JS, respectively) is not possible
because they are designed for different scenarios, depend-
ing on the number of critical sections per task. The reported
overheads in Table 2 for our approach are for task sets with
multiple critical sections per task, whilst the overheads for
P-LIST-EDF and G-LIST-EDF were for task sets with one
critical section per task. Regardless, they are in the same
order of magnitude.

6 EVALUATIONS

We evaluated the performance of the proposed approach by
applying numerical evaluations for both frame-based task
sets and periodic task sets, and measuring its overheads.

6.1 Evaluations Setup

We conducted evaluations on M = 4, 8, and 16 processors.
Based on M, we generated 100 synthetic task sets with 10M
tasks each, using the RandomFixedSum method [14]. We
set

P
ti2T Ui ¼M and enforced Ui � 0:5 for each task ti,

where Ui ¼ Ci
Ti

is the utilization of a task. The number of
shared resources (binary semaphores) Z was either 4, 8, or
16. Each task ti accesses the available shared resource ran-
domly between 2 and 5 times, i.e.,

P
�i;j 2 ½2; 5�. The total

length of the critical sections
P

�i;j¼1 Ci;j is a fraction of the
total execution time Ci of task ti, depended on H 2
f½5%� 10%�; ½10%� 40%�; ½40%� 50%�g. When considering
shared resources in real-time systems, the utilization of criti-
cal sections for each task in classical settings is relatively
low. However, with the increasing computation demand in
real-time systems (e.g., for machine learning algorithms),
adopted accelerators, like GPUs, behave like classical
shared resources (i.e., they are non-preemptive and mutu-
ally exclusive), but have a relatively high utilization. Hence,
we chose possible settings of H that cover the complete
spectrum. The total length of critical sections and non-

TABLE 2
Overheads of Protocols in LITMUSRT
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critical sections are split into dedicated segments by apply-
ing UUniFast [14] separately. For task ti, the number of criti-
cal sections Numcs equals to

P
�i;j, and the number of non-

critical sections Numncs ¼ Numcs þ 1. In the end, the gener-
ated non-critical sections and critical sections are combined
in pairs, and the last segment is the last non-critical section.
We evaluated all resulting 27 combinations ofM, Z, andH.

The dependency graph is generated by applying:

1) The method in Section 4 with the objective to mini-
mize the makespan, denoted as JS. We utilized the
constraint programming approach provided in the
Google OR-Tools to solve the job shop scheduling
problem,

2) The extension to multiple critical sections sketched
in [36], denoted as PRP. To check the feasibility of the
generated dependency graph, one simulated schedule
with respect to the dependency graph is generated.

We name these algorithms by combining:

1) JS/PRP: the two different dependency graph genera-
tion methods.

2) LEDF/PEDF: to schedule the generated graph, we
used the LIST-EDF in [36] (LEDF) or partitioned EDF
(PEDF) in [37], and a worst-fit partitioning algorithm.

3) P/NP: preemptive or non-preemptive schedule for
critical sections.

We also compare our approach with the following protocols
regarding their schedulability by applying the publicly
available tool SET-MRTS in [12] with the same naming:

� Resource Oriented Partitioned PCP (ROP-PCP) [22]:
Binds the resources on dedicated processors and
schedules tasks using semi-partitioned PCP.

� GS-MSRP [41]: THe Greedy Slacker (GS) partitioning
heuristic for spin-based locking protocol MSRP [16],
using Audsley’s Optimal Priority Assignment [2] for
priority assignment. (LP) analysis for global FP
scheduling using the FMLP [4].

� LP-GFP-PIP: LP-based global FP scheduling using
the Priority Inheritance Protocol (PIP) [13].

� LP-PFP-DPCP [6]: DPCP [33] with a Worst-Fit-
Decreasing (WFD) task assignment strategy [6]. The
analysis is based on a linear-programming (LP).

� LP-PFP-MPCP [6]: MPCP [32] with a Worst-Fit-
Decreasing (WFD) task assignment strategy as pro-
posed in [6]. The analysis is based on a LP.

� LP-GFP-FMLP [4]: FMLP [4] for global FP schedul-
ing with a LP analysis.

Note that a comparison to the original DGA in [11] is not pos-
sible, since the approach in [11] is only applicable when there is
one critical section per task. We also launched the evaluation
of the Priority Inheritance Protocol (PIP) [13] based on LP,
but we were not able to collect the complete results because
validating a task set took multiple hours. However, accord-
ing to [11], [36], [43], the PIP based on LP performs similar
to LP-GFP-FMLP.

6.2 Evaluation Results for Frame-Based Tasks

For frame-based task systems, we set T ¼ D ¼ 1 for all the
tasks, i.e., the execution time of each task is the same as its

utilization. We tracked the number of dependency graphs
calculated with PRP where the ratio of PRP=JS is less than
a certain factor. The results are shown in Fig. 1, where F
represents the number of infeasible dependency graph for
the PRP method due to cycle detection. The job-shop based
dependency graph generation method clearly outperform
the method extended from the original DGA. In addition,
the failure rate of the PRP is increasing when the length of
critical sections is increased, i.e., Figs. 1a, 1b, and 1c. The
other results show similar trends and are thus omitted due
to space limitation.

In our schedulability evaluation, we considered synthetic
task sets under the aforementioned settings, testing the utili-
zation level from 0 to 100%�M in steps of 5 percent. The
acceptance ratios of LP-PFP-DPCP and LP-PFP-MPCP are
zero for all configurations, even for utilization levels �
20%�M. Hence, we omitted them in Fig. 2. Additionally,
considering the readability of the figure, we only show PRP-
LEDF-P, which has the best performance for the approaches
where dependency graphs are generated by PRP.

Fig. 2 shows that our approach outperforms the other
non-DGA based methods significantly for all evaluated set-
tings, and performs slightly better than the methods using
PRP. Figs. 1 and 2 also show that a better dependency
graph, i.e, a shorter critical path, not always results in better
schedulability in the second step of the DGA.

6.3 Evaluation Results for Periodic Tasks

We applied constraint programming to solve the job shop
problem JZ jrj; ljjLmax and construct the dependency graph.
We extended the settings for frame-based task sets in Sec-
tion 6.2 to periodic task systems by choosing the period Ti

randomly from a set of semi-harmonic periods, i.e., Ti 2
f1; 2; 5; 10g, which is a subset of the periods used in

Fig. 1. Comparison of critical paths from the two graph generation
methods.
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automotive systems [20], [25]. We used a small range of
periods to generate reasonable task sets with high utiliza-
tion of the critical sections, which are otherwise by default
not schedulable.

Due to space limitation, only a subset of the results is pre-
sented in Fig. 3. When the utilization of critical sections is
high, i.e., H ¼ ½40%� 50%� in Fig. 3c, or under medium uti-
lization when the number of processor and shared resources
are relative high, i.e.,M ¼ H ¼ 16 in Fig. 3f, our approaches
outperforms the other methods significantly. However,
when the utilization of critical sections is low, i.e., H ¼
½5%� 10%� in Figs. 3a and 3b, ROP-PCP outperformed the
proposed approaches. The reason is that the constraint pro-
gramming of the problem JZ jrj; ljjLmax has the objective to
minimize the maximum lateness, but ignores the execution
order of the sub-jobs that do not have any influence on the
optimal lateness, which may lead to lower performance
when the utilization of the non-critical sections is high.
When the utilization of critical section is medium, i.e., H ¼
½10%� 40%�, and the number of processor is relative small
i.e., M ¼ f4; 8g, the newly proposed DGA-based methods
and the extension PRP-LEDF-P both outperform all the
other methods significantly, but their relation differs
depending on the utilization value.

7 CONCLUSION AND FUTURE WORK

We have removed an important restriction, i.e., only one
critical section per task, of the recently developed depen-
dency graph approaches (DGA). Regarding the computa-
tional complexity, we show that the multiprocessor
synchronization problem is NP -complete even in very

restrictive scenarios, as detailed in Section 3. We propose a
systematic design flow based on the DGA by using exist-
ing algorithms developed for job/flow shop scheduling
and provide the approximation ratio(s) for the derived
makespan.

The evaluation results in Section 6.2 show that our
approach is very effective for frame-based real-time task
systems. Extensions to periodic task systems are presented
in Section 4.3, and the evaluation results show that our
approach has significant improvements, compared to exist-
ing protocols, in most evaluated cases except light shared
resource utilization. This paper significantly improves the
applicability of the DGA by allowing arbitrary configura-
tions of the number of non-nested critical sections per task.

In this paper, we focus on the long-standing problem of
resource sharing of periodic tasks and on providing a
good solution for this most adopted real-time task model.
As a result, we achieved a solution that outperforms the
methods in the literature which can be applicable to this
task model. In the future, we plan to explore the possibility
to apply the dependency graph approach on sporadic task
systems, which do not have predefined arrival times of
jobs.
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