
Adaptive Page Migration Policy With Huge Pages
in Tiered Memory Systems

Taekyung Heo , Yang Wang, Student Member, IEEE, Wei Cui,

Jaehyuk Huh ,Member, IEEE, and Lintao Zhang, Senior Member, IEEE

Abstract—To accommodate the growing demand for memory capacity in a cost-effective way, multiple types of memory are

incorporated in a single system. In such tiered memory systems consisting of small fast and large slow memory components,

accurately identifying the performance importance of pages is critical to properly migrate hot pages to fast memory. Meanwhile,

growing address translation cost due to the increasing memory footprints, helped adopting huge pages in common systems. Although

such page hotness identification problems have existed for a long time, this article revisits the problem in the new context of tiered

memory systems and huge pages. This article first investigates the memory locality behaviors of applications with three potential

migration polices, least-recently-used (LRU), least-frequently-used (LFU), and random with huge pages. The evaluation shows that

none of the three migration policies excel the others, as the effectiveness of each policy depends on application behaviors. In addition,

the results show huge pages can be effective even with page migration, if a proper migration policy is used. Based on the observation,

this paper proposes a novel dynamic policy selection mechanism, which identifies the best migration policy for a given workload. It

allows multiple concurrently running workloads to adopt different policies. To find the optimal one for each workload, this study first

identifies key features that must be inferred from limited approximate memory access information collected using accessed bits in page

tables. In addition, it proposes a parallel emulation of alternative policies to assess the benefit of possible alternatives. The proposed

dynamic policy selection can achieve 23.8percent performance improvement compared to a prior approximate mechanism based on

LRU lists in Linux systems.

Index Terms—Tiered memory, page hotness, page migration, huge pages

Ç

1 INTRODUCTION

MEMORY systems are adopting multiple types of memory
with different performance and capacity characteris-

tics to increase the memory size in a cost-effective way.
More expensive fast memory is backed by slower but higher
capacity memory components, forming tiered memory sys-
tems. For capacity-optimized slow memory, non-volatile
memories are already commercially available in the market,
offering � 300 ns latency [1], [2]. In such tiered memory sys-
tems, accurately identifying the hotness of pages is critical
to take advantage of the low-cost emerging memories while
minimizing the performance loss.

Such page migration or replacement policies have been
extensively studied for hardware caches, storage caches,
and page management for virtual memory supports [3], [4],
[5], [6], [7], [8], [9], [10], [11]. However, the emerging tiered
memory systems provide new environments which are dif-
ferent from the prior work. The prior page replacement
problems are restricted for choosing which data should be
selected as victims to make room for new data. An access to

the slow component triggers an immediate promotion of
the data to the fast component (cache). Unlike such replace-
ment problems, the page migration problem must find
which data must reside in the fast memory at a given time,
while the data in the slow memory are accessible not neces-
sarily triggering promotions.

In addition, compared to the storage caching systems,
memory access traces collected from accessed bits in page
tables are quite incomplete and approximate by their
nature. Compared to the traditional page swapping, the
tiered memory systems have much smaller latency and
bandwidth differences between fast and slow memories
than those of the prior DRAM and storage devices. Migra-
tions between the two memory types are much more fre-
quent than the prior studies as the costs of migration are
relatively low. The new environments raise the need for
revisiting the policy space of page migration in the context
of tiered memory systems.

In the mean time, increasing memory footprints caused
excessive misses in translation lookaside buffers (TLBs) for
address translation. To reduce the cost of address transla-
tion, 2 MB huge pages have been adopted in x86 systems,
which reduces TLB misses significantly for applications
which otherwise suffer from the costs of TLB misses. While
huge pages can drastically improve the address translation
efficiency, their interaction with migration policies for tiered
memory systems is yet to be investigated. Improving the
accuracy of hotness measurement for huge pages and the
efficiency of page migration for huge pages for tiered mem-
ory systems have been investigated by the prior studies [12],

� Taekyung Heo and Jaehyuk Huh are with KAIST, Daejeon 34141, South
Korea. E-mail: {taekyung.heo, jhhuh}@kaist.ac.kr.

� Yang Wang, Wei Cui, and Lintao Zhang are with Microsoft Research
Asia, Beijing 100080, China.
E-mail: {t-yangwa, weicu, lintaoz}@microsoft.com.

Manuscript received 20 May 2020; revised 7 Oct. 2020; accepted 1 Nov. 2020.
Date of publication 9 Nov. 2020; date of current version 13 Dec. 2021.
(Corresponding author: Jaehyuk Huh.)
Recommended for acceptance by A. R Alameldeen.
Digital Object Identifier no. 10.1109/TC.2020.3036686

IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 1, JANUARY 2022 53

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0001-8275-2377
https://orcid.org/0000-0001-8275-2377
https://orcid.org/0000-0001-8275-2377
https://orcid.org/0000-0001-8275-2377
https://orcid.org/0000-0001-8275-2377
https://orcid.org/0000-0002-1742-047X
https://orcid.org/0000-0002-1742-047X
https://orcid.org/0000-0002-1742-047X
https://orcid.org/0000-0002-1742-047X
https://orcid.org/0000-0002-1742-047X
mailto:taekyung.heo@kaist.ac.kr
mailto:jhhuh@kaist.ac.kr
mailto:t-yangwa@microsoft.com
mailto:weicu@microsoft.com
mailto:lintaoz@microsoft.com

[13]. This paper explores the migration policy space with
huge pages.

With such huge pages, this paper first investigates three
widely accepted policies for page migration in tiered mem-
ory systems. It evaluates least-recently-used (LRU), least-
frequently-used (LFU), and random policies for their behav-
iors on a range of applications. (i) Our investigation first
shows that none of the policies excels the others for the
range of applications, since each application has a different
memory access behavior preferring a different migration
policy. However, the page migration policies used by recent
tiered memory studies are fixed to a single policy, such as a
variant of LRU lists in Linux systems [13]. (ii) If a proper
migration policy for each application is used, our investiga-
tion shows that huge pages can be effectively used for
migration in tiered memory systems, reaping the benefit of
efficient address translation.

Based on the observation of the migration policy evalua-
tion, this paper proposes a new dynamic policy selection
technique tuned for huge pages in tiered memory systems,
called Adaptive Migration Policy (AMP). AMP constantly col-
lects memory access information using accessed bits in page
tables, and periodically selects the best policy out of the
three potential policies. To identify the best policy for a
given workload, the study first identifies which features of
memory access behaviors are highly correlated to the policy
selection.

The first feature is used to identify workloads favoring
random page placements. When accessed pages exceed the
fast memory capacity, the locality cannot be captured effec-
tively with the tiered memory system. Therefore, the ran-
dom policy, which does not migrate pages actively, results
in the best performance without migration overheads. If the
workload exhibits a certain level of locality, either LRU or
LFU is selected. To select the best one out of the two poli-
cies, AMP maintains a shadow page location states, which
virtually mimics page migration. For example, if the current
best policy is not LFU, the LFU policy is emulated with the
shadow page location, and its effectiveness is tracked with
the emulation. Based on the estimated effectiveness from
the shadow state and the measured effectiveness from the
current memory state, the better policy is selected for the
next round.

Since the proposed technique can be applied for each
memory control group (memcgs) in Linux, workloads in
different memory control groups can select their own best
policy. It allows the consolidated system to choose per-
group optimal migration policies, allowing fine-tuning
migration policies for co-running workloads.

We implement AMP in a Linux system, spanning from
the kernel modification to the user-level components. The
kernel is modified to track the recency and frequency of
page accesses with accessed bits in page tables, and to pro-
vide policy options. The user-level components evaluate the
features for each memory control group and apply the best
policy for each group periodically.

We evaluate AMP in a Linux system with an emulated
tiered memory system. The memory bandwidth of the slow
memory node is throttled and saturated to emulate the slow
memory. AMP can improve the performance of selected
applications by 23.8 percent compared to the LRU lists

adopted in the prior work [13]. Furthermore, AMP can
achieve 10.9, 6.4, 17.6 percent higher performance than
LRU, LFU, and Random, respectively.

The contributions of our study are as follows:

� We find that workloads have diverse preferences on
page migration policies in tiered memory systems,
and we analyze the reason behind the page migra-
tion policy preferences.

� Our investigation shows that huge pages can be
effective with page migration in tiered memory sys-
tems, if a proper migration policy is used.

� We define several features that have a relationship
with the performance of page migration policies: fast
memory hit ratio, page migration stability, and
accessed page ratio. After that, we analyze the corre-
lation between the features and the performance.

� We propose AMP, which dynamically selects a page
migration policy between LRU, LFU, and Random
using the features.

The rest of the paper is organized as follows. Section 2
describes the background of tiered memory and page migra-
tion policies. Section 3 investigates the behaviors of different
pagemigration policies in the tieredmemory system. Section 4
analyzes the critical features for determining the best policy,
and Section 5 presents the implementation. Section 6 presents
the experimental results, and Section 7 discusses the remain-
ing issues. Section 8 concludes the paper.

2 BACKGROUND AND RELATED WORK

This section discusses the page migration problem in tiered
memory systems, with its differences from the prior cache
replacement along with the adoption of huge pages.

2.1 Tiered Memory Systems and Huge Pages

Tiered Memory Systems. A memory system composed of
memories with various performance characteristics is
called a tiered memory system [13]. The future memory sys-
tems are expected to be tiered memory systems due to the
scaling limit of DRAMs. To increase the capacity of mem-
ory systems, memory systems are adopting non-volatile
memories [1], [14], memory disaggregation [15], [16], [17],
[18], and memory compression [19]. Usually, a tiered mem-
ory system is composed of fast memory and slow memory.
Fast memory has a shorter latency and higher bandwidth
compared to slow memory. A tiered memory system can
be managed in hardware or in software. In this study, we
assume a tiered memory system where an OS is responsi-
ble for managing data between two memory types. Data
can be migrated at the page granularity, and the OS makes
the page location and migration decisions.

Huge Pages for Efficient Address Translation. Future mem-
ory systems are expected to have TBs of memory with vari-
ous latency and bandwidth [20]. In a memory system with a
huge amount of memory capacity, address translations
become a critical problem. Modern computer systems adopt
virtual memory for efficient memory management. There-
fore, virtual addresses should be translated to physical
addresses to access data, and the mappings are maintained
in a page table. The page table resides in main memory, and

54 IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 1, JANUARY 2022

translation lookaside buffers (TLBs) cache page table entries
to avoid costly memory accesses. The memory capacity that
can be translated by a TLB is called TLB reach. The problem
is that the TLB size is limited to thousands of entries to
shorten the access latency to TLBs. This limits the TLB reach
of TLBs. The TLB reach can be increased with huge
pages [21], [22]. While a single TLB entry can cover a 4 KB
address space with 4 KB base pages, a TLB entry can cover
several MBs or GBs with huge pages.

Previously, huge pages had several performance issues
such as the increased page fault latency, memory bloating,
unfair huge page allocations, and losing the page sharing
opportunities [23]. Thanks to the recent studies to mitigate
the problems [23], [24], [25], huge pages are becoming a via-
ble option. Moreover, a multi-threaded page migration
mechanism for transparent huge pages [13] makes migrat-
ing pages at the huge page granularity feasible. Therefore,
in this study, we use 2 MB huge pages as a default page
migration unit.

2.2 Page Migration Policies in Tiered Memory
Systems

In this paper, we define a page migration policy as a policy
that decides page locations in tiered memory systems, and
it is used interchangeably with page hotness selection. Page
migration policies try to fill fast memory with performance-
critical hot pages. The page migration problem differs from
the traditional cache replacement or page swapping, since
any access to the slow memory does not necessarily trigger
the promotion of the page to the fast memory. In hardware
caches, memory blocks are immediately inserted to the
cache for handling misses. The page swapping also requires
to move a swapped out page from the storage to the mem-
ory to resolve the page fault. Unlike the cache replacement
problems, the page migration problem needs to address
which part of memory should reside in the fast memory,
while the data in the slow memory are still accessible with-
out migrating to the fast memory.

In addition, the cost and performance characteristics of
tiered memory systems should be considered in the design
and implementation of page migration policies. For exam-
ple, maintaining an LRU stack is costly for virtual memory
and architectural caches. In virtual memory, CLOCK
approximates LRU with a single reference bit [26]. In CPU
caches, tree-based pseudo-LRU is used to lower the area
overhead [27], [28]. Likewise, cache replacement policies
should be adopted to tiered memory systems with the con-
sideration of the cost and performance characteristics. In
this section, we summarize the prior studies on page migra-
tion policies.

�1 Recency-based policies. Native Linux systems have
LRU lists to reclaim pages under memory pressure.
The native LRU lists approximate LRU with two
LRU lists. One is the active list, and the other is the
inactive list. The membership of pages is controlled
by the heuristic implemented in the kernel. The ker-
nel uses the accessed bits of pages and page types to
update the membership of pages. Each page has an
accessed bit in the page table entry (PTE). When a
page is accessed, the corresponding accessed bit is

set. As the goal of LRU lists is to reclaim pages under
memory shortage, the native LRU lists do not update
the membership of pages in non-memory pressure
conditions.�2 Frequency-based policies. Access frequency has been
widely adopted in the page management for tiered
memory systems. In modern processors, the exact
access frequency of a page cannot be obtained due to
the lack of hardware support. Instead, access fre-
quency can be estimated using accessed bits. The
accessed bit of a page is periodically checked and
recorded to a per-page bit vector. An access fre-
quency can be calculated by averaging the number
of bits set in the bit vector. HeteroVisor [29] tracks
the access frequency of pages to decide page loca-
tions between fast die-stacked DRAMs and slow off-
chip DRAMs. If the access frequency of a page
exceeds a predefined hot page threshold, the page is
classified as hot and migrated to the fast die-stacked
DRAM. On the other hand, Thermostat [12] finds the
access frequency threshold using a user-specified
maximum allowable slowdown.�3 Limiting the promotion rate. In a tiered memory sys-
tem where pages have to be migrated from slow
memory to fast memory on every page access to
slow memory, limiting the number of page migra-
tions from slow memory to fast memory is a way to
guarantee the performance slowdown [19]. The rate
of pages migrated from slow memory to fast mem-
ory within a time window is defined as the promotion
rate. Lagar-Cavilla et al. find the relationship between
the page access recency and promotion rate, and the
pages that are expected to show a low promotion
rate are identified by measuring the access recency
of a page.

2.3 Other Prior Work for Cache Replacement

In the prior cache replacement, unlike page migration, the
promotion to the cache is immediately triggered while han-
dling misses. Therefore, the hotness selection within the
cache is focused on which data should be evicted as victims
to make room for newly inserted data. For selecting the vic-
tims, there have been many different approaches with their
own advantages and disadvantages. In this section, we
summarize the prior studies on cache replacement policies.

�1 Recency-based policies. Themost common cache replace-
ment policy is the Least Recently Used (LRU) replace-
ment policy [3]. LRUmaintains an LRU stack, which is
sorted by the access recency. The most recently
accessed page is placed at the top of the LRU stack,
and the least recently accessed page is placed at the
bottom.Once a page is referenced, the page is removed
from its position andmoved to the top of the stack. On
cache evictions, LRU replaces the least recently
accessed page. Although LRU works well for most
memory access patterns, LRU fails with scanning
memory access patterns and loops. Scanning memory
access patterns access pages only once and never use
them again. Therefore, caching recently accessed
pages wastes the cache space. Loops that access pages

HEO ETAL.: ADAPTIVE PAGE MIGRATION POLICY WITH HUGE PAGES IN TIERED MEMORYSYSTEMS 55

larger than the cache size evict pages that are accessed
in the near future. Prior studies try tomitigate the limi-
tations of LRU by identifying the anomalies [30], [31],
[32].�2 Frequency-based policies. Least Frequently Used (LFU)
tracks the access frequencies of pages and evicts a
page with the least access frequency. Although LFU
has an advantage that it can exploit the long-term
access history, it has several disadvantages. LFU can
make a wrong decision in the initial stage due to the
lack of access history. Moreover, LFU may hold stale
pages that are not hot anymore due to their previous
access history.�3 Adaptive policies. There have been many prior studies
to improve the hit ratio of caches [4], [7], [10], [33],
[34], [35]. Among the prior studies, we focus on the
adaptive selection of cache replacement policies [5],
[6], [8], [9], [11], [36], [37]. Abstractly, ARC [8] and
CAR [9] partition a cache into two partitions for
recently accessed pages and frequently accessed
pages. The partition sizes are dynamically adjusted
based on the workloads’ behavior. A few prior stud-
ies adopt machine learning techniques to choose a
cache replacement policy adaptively [6], [37]. In
CPU caches, set dueling has been proposed to
dynamically choose a policy between two competing
policies [11]. Cache sets are divided into dedicated
sets and follower sets. A small number of sets are
allocated to dedicated sets, and the dedicated sets
are managed with two competing policies to evalu-
ate the performance of the policies. The policy that
performs better is applied to the follower sets.

3 MIGRATION POLICIES WITH HUGE PAGES

3.1 Migration Policies

To determine which pages should be placed in the fast
memory, the page hotness selection mechanism consists of
two components. First, it must record the access history of
each huge page. The second component chooses hot pages
based on the access histories of all pages. In this section, we
investigate the page migration policies using huge pages
(2 MB). Improving the accuracy of hotness measurement for
huge pages and facilitating the page migration for huge
pages for tiered memory systems have been investigated by
the prior studies [12], [13]. This paper explores the migra-
tion policy space with huge pages.

Although the main reason for using huge pages is to mit-
igate the cost of TLB misses, it also allows reducing the com-
plexity of page managements for migration. We track the
access information for each huge page to reduce the over-
head of tracking the information. In addition, it also reduces
the latency to select hot pages, as the number of candidate
pages is significantly reduced by huge pages. A possible
downside of using huge pages in tiered memory system is
the potential waste of some fast memory, when only a small
subset of huge pages are actively accessed. However, this
paper is focused on page management based on huge pages,
since huge pages were effective across all benchmark appli-
cations in our study, as shown in Section 3.3.

Tracking Access History. To record the access history of
each page, we use the accessed bit in each page table entry,
which is set by the processor hardware. Fig. 1 illustrates
how the page history information of each page tracked. For
each huge page, we record two types of access information,
age and history. Every five seconds, the kernel checks the
accessed bit of each huge page to update its age and history.
Once the information is updated, the accessed bit in the
page table entry is reset.

Age represents the recency of access for a page. As shown
in the figure, if the accessed bit is set during the 5-second
period, the page age is reset to 0. If the accessed bit is not set
(no access for the last five seconds), its age is increased by 1.
Therefore, the age of a page means when the last access for
the page occurred at 5-second granularity.

History (accessed bit vector) represents the accessed bit vec-
tor for each page for the past n periods. Fig. 1 shows that six
bits are used for the access history. A new accessed bit is
pushed to the tail of the vector. Although the accessed bit
vector can be used for representing age, we use a separate
age variable to record the age of longer periods without
incurring a long bit vector for each page. The detailed
accessed bit vector covers a shorter time range than the age
variable. In this paper, we use 64 bits for each huge page for
the accessed bit vector.

As will be discussed later, the proposed memory man-
ager allows adjusting how much fast memory and slow
memory can be used for each application group. If the num-
ber of application groups is set to one, all applications share
the entire fast and slow memory.

Every five seconds, the access information of all huge
pages are updated, and the set of pages which must be in
the fast memory are determined. For the pages which are
selected for the fast memory, but not already in the fast
memory, the migration of the pages are initiated. Since we
use huge pages, this step does not incur significant over-
heads. First, the number of huge pages for a given applica-
tion footprint is 512 times smaller than that of base pages.
Therefore, tracking and sorting huge pages cause only a
small extra overhead during the five second period. Second,
if a good migration policy is selected, only a small fraction
of pages are migrated to the fast memory, since it is likely
that many hot pages are already in the fast memory.

Migration Policies. Among various page migration poli-
cies, we investigated the workloads’ preference on policies
of LRU, LFU, and Random.�1 LRU tracks the access recency
of pages with ages, and the most recently accessed pages are
migrated to the fast memory. Using the age information for
all pages, pages with the lowest ages are considered hot.�2
LFU tracks the access frequency of pages, and the most

Fig. 1. Tracking page age and access frequency using accessed bits.

56 IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 1, JANUARY 2022

frequently accessed pages are located in fast memory. The
access frequency is obtained with the per-page accessed bit
vectors, by averaging the number of bits set in the bit vector.�3 Random simply fills the fast memory first, once the fast
memory is filled, the slow memory is allocated. In Random,
if a page located in the fast memory is freed, a random page
from the slow memory is migrated to the fast memory.

3.2 Results

Methodology. We find the workloads’ preferences on page
migration policies by measuring the performance of work-
loads on an emulated tiered memory system. If a policy can
accurately identify hot pages, the policy can present a
higher performance compared to the other policies. We
compose a tiered memory system on a NUMA system by
throttling the memory bandwidth of one node. The band-
width-throttled node becomes a slow memory node. 2 MB
transparent huge pages are used, and pages are migrated at
the huge page granularity. In the rest of paper, fast memory
ratio is the ratio of the fast memory over the entire memory
footprint, which is set to 50 percent in the evaluation of this
section. 4B is used to track the page age, and 8B is used to
track the access frequency. We evaluate the performance of
page migration policies with selected workloads from SPEC
CPU 2017 [38], CloudSuite [39], NPB [40], and graph500 [41].
In the remaining part of this section, we describe the reason
behind the page migration policy preferences.

Fig. 2 presents the normalized performance of workloads
with various page migration policies. We measure the exe-
cution time, and the performance is the reverse of execution
time. The performance is normalized to the performance
with the 100 percent fast memory ratio. Workloads can be
classified into four groups: LRU-favor, LFU-favor, Random-
favor, and neutral, as shown in the figure.�1 LRU-Favor. Workloads with strided memory access pat-
terns favor LRU. Strided memory access patterns sequentially
access pages with the same distance betweenmemory accesses
with low data reuse. Therefore, keeping frequently accessed
pages in fast memory may degrade the performance. LRU can
keep the recently accessed pages in fastmemory, increasing the
probability of accessing fast memory. mcf, cactus, and cg.

D.x have strided memory access patterns. mcf has a pointer
chasing in price_out_impl as shown in Code 1 [42]. The
pointer chasing pattern of mcf is actually a strided memory

access pattern because the data structures are sequentially
located in a virtual address space [42], [43]. cactus strides
over one dimension of a matrix while working on a multi-
dimensional matrix [44]. cg.D.x calculates the eigenvalues of
a sparse matrix using the conjugate gradient method. It oper-
ates on a large matrix, and the matrix is accessed sequentially
with lowdata reuse [45].

Code 1. A Function That Shows a Strided Memory
Access Pattern in mcf

1 long price_out_impl(network_t *net)

2 {

3 ...

4 iterator = first_list_elem->next;

5 while (iterator) {

6 arcin = iterator->arc;

7 tail = arcin->tail;

8 ...

9 iterator = iterator->next;

10 ... } ...

11 }

LFU-Favor. Workloads with frequently accessed data
structures favor LFU. For the workloads, LFU can keep the
frequently accessed hot data in fast memory, and it can pro-
tect the fast memory from being polluted by recently
accessed cold data. Graph-analytics runs the PageRank
algorithm, and it updates the ranks of neighbor vertices
while walking on vertices. A vertex with more neighbors
tends to be accessed more frequently. LFU can identify the
vertices with more neighbors and keep them in fast mem-
ory. The first subfigure of Fig. 3 shows the temporal change
of access frequencies of pages of graph-analytics. The
access frequencies of pages are tracked by checking the
accessed bits of pages on every one epoch, whose length is
four seconds. The size of the per-page accessed bit vector is
8-bit. The pages with higher access frequencies are drawn at
the bottom, and the pages with lower access frequencies are
illustrated at the top of the figure. Graph-analytics has
several scanning memory access patterns. We emphasize
one of the scanning patterns with an ellipse in the figure.
LRU fails to keep frequently accessed hot pages in fast
memory due to the scanning patterns.

In-memory-analytics runs the alternating least
squares algorithm. It trains a model multiple times with

Fig. 2. Normalized performance of workloads with various page migration policies.

HEO ETAL.: ADAPTIVE PAGE MIGRATION POLICY WITH HUGE PAGES IN TIERED MEMORYSYSTEMS 57

various parameters to find the best parameters. On every
training, the training dataset is loaded by scanning the data-
set. LFU can keep the frequently accessed trained model in
fast memory. graph500 runs the breadth-first search (BFS)
algorithm multiple times. On every BFS, graph500 vali-
dates the result with the validate_result() function.
Therefore, the graph is accessed frequently, and graph500

favors LFU.
Random-Favor. Workloads with low locality favor Ran-

dom. First, workloads that have pages with similar access
recency or frequency prefer Random. If all pages are equally
recently accessed or frequently accessed, migrating pages
with LRU or LFU adds the performance overhead without
benefit, and Random can eliminate the overhead. lbm and
lu.D.x prefer Random because of this reason. lbm runs
the Lattice Boltzmann Method to simulate fluids. lbm allo-
cates grids that represent three dimensions. lbm sweeps the
grids multiple times within a short time to simulate fluid
collisions. As a result, the pages of lbm show similar access
recency and frequency. The second subfigure of Fig. 3 illus-
trates the temporal change of access frequencies of lbm,
showing homogeneous page access frequencies. Second,
workloads with random memory access patterns favor Ran-
dom. LRU nor LFU cannot find hot pages from workloads
with random memory access patterns. deepsjeng has a
random memory access pattern. deepsjeng is a chess
solver, and it has a hash table for the alpha-beta tree search-
ing to find the next move. Memory accesses to the hash table
show a random pattern.

Neutral. Workloads with mixed memory access patterns
show a neutral preference on page migration policies.
bwaves has mixed memory access patterns. The last subfig-
ure of Fig. 3 shows the temporal change of access frequen-
cies of bwaves. The execution of bwaves is composed of
two phases. The first phase accesses the frequently accessed
data continuously, favoring LFU (pattern A). The second

phase accesses the remaining working set with a strided
memory access pattern, favoring LRU (pattern B). As a
result, bwaves does not have a large performance gap
between policies.

3.3 Huge Pages With the Prior Modified LRU Lists

A prior study proposed to reuse the LRU lists in the native
Linux kernel to identify hot pages and migrate them to fast
memory [13]. The study periodically scans the LRU lists to
update the membership of pages. In the following sections,
we call the LRU lists the modified LRU lists. The modified
LRU lists classify pages in the active list as hot, and pages in
the inactive list as cold. The modified LRU lists migrate the
pages in the active list to fast memory and pages in the inac-
tive list to slow memory. We use the modified LRU lists as
the baseline migration policy to compare against the pro-
posed technique in this paper.

In this subsection, we present that the performance of the
modified LRU lists is parameter-sensitive. The modified
LRU lists have two parameters: active list scanning ratio
and inactive list scanning ratio. The (in)active list scanning
ratio determines how many pages are scanned from the list
on every scan. While scanning pages, the accessed bits of
pages are checked, and the membership of pages is
updated. If half of the pages in a list are scanned, the scan-
ning ratio is 50 percent. By default, the modified LRU lists
scan 50 percent of the active list and inactive list on every
five seconds [46]. We evaluate the performance of work-
loads while varying the scanning ratios of lists from 0 to 100
percent with a 20 percent step. Experiments are run with 2
MB transparent huge pages.

Fig. 4 shows the normalized performance of selected
workloads with various combinations of the active list scan-
ning ratio and inactive list scanning ratio. We use the same
experiment environment and definition for the performance
that we use in Section 3.2. The cells with high performance

Fig. 3. Temporal change of access frequencies of pages. Pages are sorted by their access frequency, and the pages with higher access frequencies
are drawn at the bottom with a darker color.

Fig. 4. Normalized performance of workloads with various parameter combinations when the modified LRU lists are used.

58 IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 1, JANUARY 2022

are drawn with a darker color, and the cells with low perfor-
mance are drawn with a lighter color. The parameter combi-
nation that shows the best performance is different for each
workload. Note that the performance gap between the best
and worst parameter combinations is 60 percent in
graph500, showing the parameter-sensitivity of the modi-
fied LRU lists.

The problem originates from the inappropriate applica-
tion of LRU lists to a tiered memory system. The original
goal of LRU lists is to reclaim pages under memory pres-
sure. Therefore, the pages in the inactive list become page
reclamation candidates. It does not mean that the pages in
the inactive list are cold. In the native LRU lists, pages in the
inactive list are moved back to the active list again if the
pages are accessed. However, in the modified LRU lists,
pages in the inactive list are migrated to slow memory,
assuming that all pages in the inactive list are cold.
Although the cold-classified pages will be migrated back to
fast memory when they are accessed, the performance deg-
radation cannot be avoided. Therefore, the latest proposal,
the modified LRU lists are not the best option for tiered
memory systems. In the following sections, we run the mod-
ified LRU lists with the default parameters (50%, 50%) [46].

Fig. 5 presents the performance of the modified LRU lists
with the base page size (4 KB), and huge page size (2 MB).
The performance is normalized to that with the ideal mem-
ory which consists of only fast memory. In addition to the
performance of the modified LRU lists, it also shows the
potential performance when the best replacement policy is
selected among the aforementioned three policies. The
results show that the huge page can improve the perfor-
mance by 23.5 percent on average with the modified LRU
lists. There are two potential advantages of huge pages.
First, it reduces TLB misses by the increased translation
capability. Second, page migration also uses huge pages,

and thus when spatial locality exists, it can prefetch a large
chunk of data from the slow to fast memory. However, the
modified LRU lists do not provide good identification of
page hotness, compared to the potential best policy. The
best policy can excel the modified LRU lists by 33.71 and
23.5 percent, compared to the modified LRU list with the
base and huge page sizes, respectively.

3.4 The Homogeneity of Huge Page Hotness

One of the key requirements of migrating pages at the huge
page granularity is the homogeneity of hotness in a huge
page. To show how much of a 2 MB page is actually
accessed, we present the results of the homogeneity of page
hotness by measuring the number of accessed 4 KB base
pages within an accessed huge page. We define the ratio as
the huge page access ratio. If a workload exhibits a high
level of hotness homogeneity, the rest of the base pages
within a huge page are likely to be accessed, when a base
page in the huge page is accessed. The time interval is deter-
mined by the multiplication of the accessed bit check inter-
val (4-second) and the length of the per-page bit vector
(8-bit). As the accessed bits of base pages in a huge page
cannot be tracked in the current system, for this analysis,
we use 4 KB base pages to track the accessed bits of pages.
Based on the access statistics on base pages, we infer how
many base pages within a huge are accessed in each time
interval. Fig. 7 presents the huge page access ratio of work-
loads. On average, our workloads have huge page access
ratios higher than 92 percent, justifying the huge-page-
granular migrations.

4 ADAPTIVE PAGE MIGRATION POLICY SELECTOR

We present AMP, which adaptively selects a page migration
policy preferred by a workload. AMP chooses a page migra-
tion policy between LRU, LFU, and Random. In this section,

Fig. 5. Performance of the modified LRU lists with 4KB (base) and 2MB
(huge) page sizes, compared to the potential best policy.

Fig. 7. Huge page access ratio of workloads.

Fig. 6. Feature-performance scatter charts.

HEO ETAL.: ADAPTIVE PAGE MIGRATION POLICY WITH HUGE PAGES IN TIERED MEMORYSYSTEMS 59

we define features and analyze the relationship between
features and performance. At last, we present the main algo-
rithm of AMP based on the feature analysis.

4.1 Feature Analysis

Correlation Analysis. We define three features that are possi-
bly related to the workloads’ preferences on page migration
policies: fast memory hit ratio, page migration stability, and
accessed page ratio.

The fast memory hit ratio is the number of accessed pages
in fast memory divided by the total number of pages. We
assume that a page migration policy that can identify hot
pages better shows a higher fast memory hit ratio.

The page migration stability is the number of stable pages
divided by the number of total pages. The locations of pages
are updated periodically in the baseline page migration pol-
icies. A page is regarded as stable if the page location has
not been changed compared to the previous location. The
page migration stability presents the page migration cost of
a page migration policy.

The accessed page ratio is the number of accessed pages
divided by the total number of pages. The assumption
behind this feature is that workloads touch pages as they
progress. If a page migration policy has been successful in
choosing hot pages, a workload can progress faster. There-
fore, the page migration policy may present a higher
accessed page ratio. These features are measured on every
page migration, whose interval is five seconds.

We analyze the relationship between features and the nor-
malized performance of workloads using the Pearson correla-
tion coefficient. We define a feature value gap, which is the gap
between the feature value of the pagemigration policy that per-
forms the best and the feature value of a selected page migra-
tion policy. If the feature plays an important role in the
performance, the lower the gap is, the closer the performance
of the selected policy is to the performance of the best-perform-
ing policy. The performance is the reverse of the execution
time, and it is normalized to the best-performing page migra-
tion policy. We calculate the Pearson correlation coefficient
between the feature value gap and the normalized perfor-
mance. The analysis is conducted on the data that we present
in Section 3.1.

Fig. 6 shows the scatter charts between the feature value
gap and normalized performance. Table 1 presents the
Pearson correlation coefficients. Additionally, it shows
the p-values of the correlation coefficients. The absolute
value of a correlation coefficient presents the strength of the
correlation between the feature and performance. P-values
show statistical significance. A feature is considered to have
a statistically significant correlation if its p-value is lower
than 0.01. Among the features that we have defined, the fast

memory hit ratio shows the strongest correlation (-0.8194)
and the smallest p-value (1.0505 �10�11). The accessed page
ratio has a p-value lower than 0.01, showing that the feature
has a statistically significant correlation. However, the abso-
lute value of the correlation coefficient is smaller than the
fast memory hit ratio’s. On the other hand, the page migra-
tion stability does not have a statistically meaningful rela-
tionship with the performance (p-value ¼ 0.8355).

A Feature for Random-Favor Workloads. We find that hav-
ing a high accessed page ratio is a hint for workloads to
favor the random migration policy. As we have presented
in Section 3.2, random-favor workloads access memory
with a low locality, and they have a huge memory footprint
that exceeds the fast memory size. As a result, random-favor
workloads have a higher average accessed page ratio com-
pared to the other workloads. Fig. 8 presents the average
accessed page ratio of workloads. Random-favor workloads
have average accessed page ratios higher than 80 percent.

4.2 Adaptive Page Migration Policy Selection

AMP adaptively selects a pagemigration policy between LRU,
LFU, and Random using the features that we have analyzed in
the previous subsection. Algorithm 1 describes the pagemigra-
tion policy decision of AMP. AMP classifies a workload as
random-favor if the accessed page ratio of the workload
exceeds the fast memory ratio significantly. The fast memory
ratio is defined as the number of pages in fast memory divided
by the number of total pages. The insight behind this heuristic
is that a workload with a huge working set that exceeds the
cache size may experience a thrashing. If the accessed page
ratio exceeds the fastmemory ratio by 20 percent, AMPchooses
the randommigration policy. The threshold is empirically set.

Otherwise, AMP selects a page migration policy between
LRU and LFU. According to the feature analysis, the fast
memory hit ratio and accessed page ratio have a strong rela-
tionship with the performance. Between the two features,
we choose the fast memory hit ratio because its correlation
is stronger than the other. AMP tracks the fast memory hit
ratios of LRU and LFU simultaneously and chooses a policy
that has a higher average fast memory hit ratio. The key
challenge in tracking the fast memory hit ratios is that only
one page migration policy can be applied to physical tiered
memory. We overcome this problem by emulating a page
migration policy. Fig. 9 illustrates how AMP obtains the fast
memory hit ratios of both policies simultaneously. AMP
applies the page migration policy with the higher average

TABLE 1
Pearson Correlation Coefficients Between Feature Value Gap

and Normalized Performance

Correlation Coeff. P-value

Fast Memory Hit Ratio -0.8194 1.0505�10�11

Migration Stability 0.0322 0.8355
Accessed Page Ratio -0.4975 0.0006

Fig. 8. Average accessed page ratio of workloads.

60 IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 1, JANUARY 2022

fast memory hit ratio to physical tiered memory. At the
same time, pages are migrated virtually with the other pol-
icy. For example, if LRU has a higher average fast memory
hit ratio, LRU is applied to physical pages. At the same
time, LFU is emulated virtually in the kernel without page
migrations. As a result, the kernel can collect the fast mem-
ory hit ratios of both policies. If LFU turns out to have a
higher average fast memory hit ratio, AMP applies LFU to
the physical tiered memory in the next turn. AMP uses the
moving average of fast memory hit ratios, and the window
size is 36-epoch. We empirically find that the moving aver-
age can select a page migration policy accurately and stably.

Algorithm 1. Adaptive Page Migration Policy Selection

1: if accessed page ratio > ðfast memory ratioþ 20%Þ then
2: repl policy ¼ Random
3: else
4: if LRU hit ratio avg > LFU hit ratio avg then
5: repl policy ¼ LRU
6: else
7: repl policy ¼ LFU

Cost of Switching Policies. Switching the policy from one to
another has a negligible cost, as it affects only which pages
need to be in the fast memory. To choose the right policy, the
proposed component tracks the hotness, fast memory hit
ratio, and other information. However, this tracking compu-
tation is done in the background during each interval. An
indirect cost is that some pages in the fast memory which
were promoted by the old policy, may no longer be hot ones
with the new policy. Therefore, gradually the pages are
evicted, and new pages aremigrated by the new policy.

Although the policy switching itself does not have any sig-
nificant direct overheads, the extra information must be
tracked and maintained to choose the right policy. It has some
memory capacity overheads and computational costs. The spa-
tial cost includes the per-page metadata to track hotness (4B
age, 8B access history, 4B access frequency), per-page virtual
page location (4B) to simulate page migrations, and per-policy
features (fast memory hit ratio and accessed page ratio, 4B
each). Themajority of computational costs to simulate the other
policy in the background without actual page migrations. This
cost occurs when it sorts pages to find the relative hotness of
pages. Note that the computation occurs in the background
during each time interval, not during the policy switching.

5 IMPLEMENTATION

We implement AMP in a Linux system. The implementation
of AMP spans from the kernel to the user-level. The kernel
tracks the age and access frequency of pages and provides

several options for page migration policies. Additionally,
features such as the fast memory hit ratio and accessed
page ratio are collected in the kernel. AMP is built on the
memory control groups in the kernel (memcgs). We assume
that the processes in a memcg have the same preferences on
page migration policies. Therefore, memcg is the basic unit
of page migration policy decisions. The fast memory ratio
can be set for each memcg.

The user-level controller periodically requests the scan of
pages. The request is sent to the kernel by writing to a file
under sysfs. On the request, the kernel scans all pages in the
memcg and checks the accessed bits of the pages. Page age
and access frequency are updated using the accessed bits.
The accessed bits of pages are checked using the page_

is_idle function [47]. After that, the accessed bit of the
page is unset using the set_page_idle function to check
further accesses to the page.

The user-level controller migrates pages between fast
memory and slow memory by requesting to the kernel.
The user-level controller sets the page migration policy, and
the kernel applies the page migration policy. AMP chooses
the random replacement policy if the accessed page ratio
exceeds a predefined threshold. Otherwise, the policy with
a higher average fast memory hit ratio is selected between
LRU and LFU. The kernel reports the fast memory hit ratio
of both policies to the user-level controller. The user-level
controller collects the fast memory hit ratios and calculates
the moving averages of fast memory hit ratios.

Page migration requires exchanges of pages between two
nodes. In the native Linux, page exchanges involve redundant
page (de)allocations, which causes the performance overhead.
The recently proposed optimization can eliminate the over-
head [13]. The proposed optimization exchanges two pages by
changing the mappings and exchanging the contents of pages
without (de)allocating pages. We apply the kernel patch [46]
to reduce the performance overhead of pagemigrations.

6 EVALUATION

6.1 Experiment Setup

We evaluate AMP on a Linux system. The system runs as a
two-socket QEMU virtual machine to emulate a tiered
memory system. The system is composed of fast and slow
memory nodes. The fast memory node has CPU cores, and
its memory is allocated from the normal DRAM. The slow
memory node does not have CPU cores, and its memory is
allocated from a bandwidth-throttled DRAM. We throttle
the memory bandwidth using power throttling [48], and we
saturate the memory bandwidth using membw [49] to meet
the reported latency (346ns) of Optane DC [2]. Table 2
describes the evaluation system configurations.

6.2 Performance of AMP

Fig. 10 shows the normalized performance of workloads with
various page migration policies. We compare the perfor-
mance of workloads with the modified LRU lists, LRU, LFU,
Random, and AMP. For the modified LRU lists, we run the
experimentswith 4 KB base pages and 2MB transparent huge
pages, respectively. The suffix in the legend shows the page
size. b stands for base pages, and hmeans huge pages. For the
other configurations, 2 MB transparent huge pages are used.

Fig. 9. Adaptive page migration policy selection for non-random-favor
workloads.

HEO ETAL.: ADAPTIVE PAGE MIGRATION POLICY WITH HUGE PAGES IN TIERED MEMORYSYSTEMS 61

Table 3 shows the portion of huge page allocation ratio of each
workload, presenting 95 percent on average. The performance
is the reverse of the execution time, and the performance is
normalized to the 100 percent fastmemory ratio. In this exper-
iment, we set the fast memory ratio to 50 percent. On average,
AMP can achieve 10.9, 6.4, 17.6 percent higher performance
compared to LRU, LFU, andRandom, respectively.

Fig. 11a shows the temporal change of average fast mem-
ory hit ratios, and Fig. 11b presents the timeline of page
migration policy selections. cactus, graph500, and lbm

favor LRU, LFU, and Random, respectively. Overall, the
preferred page migration policy has a higher average fast
memory hit ratio during the execution time except for lbm.
For cactus, LRU shows the higher average fast memory

hit ratio. Therefore, cactus selects LRU except for the
warming-up stage. For graph500, LRU has a higher aver-
age fast memory hit ratio in the initial stage. Therefore,
graph500 chooses LRU at first. As time goes by, the aver-
age fast memory hit ratio of LFU beats the LRU’s. After the
point, graph500 chooses LFU. On the other hand, lbm

does not show any difference between the fast memory hit
ratios of LRU and LFU because it favors Random. Fig. 11
shows that AMP can choose a page migration policy using
the average fast memory hit ratios.

6.3 Page Migration Policy Selection Ratio

We measure the AMP’s page migration policy selection
ratio for each workload. Fig. 12 presents the page migration

Fig. 10. Normalized performance of workloads with various page migration policies.

TABLE 3
Huge Page Allocation Ratio in Anonymous Pages

Workload Name 2MB Ratio Workload Name 2MB Ratio

mcf 94% pop2 77%
cactus 92% deepsjeng 97%
cg.D.x 100% lbm 94%
graph-analytics 97% lu.D.x 99%
in-mem-analytics 96% bwaves 98%
graph500 98% Geomean 95%

TABLE 2
System Configurations

Intel Xeon Dual Socket System

OS & Kernel Ubuntu 18.04.2 - kernel 4.15.0
Processors 2-socket E5-2630 v4
Memory DDR4 - 2133MHz
Fast Memory Latency 78ns
Fast Memory BW 32 GB/s
Slow Memory Latency (Emulated) 359ns
Slow Memory BW (Emulated) 5.8 GB/s

Fig. 11. Temporal change of fast memory hit ratios and page migration policy selection timeline.

62 IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 1, JANUARY 2022

policy selection ratio for each workload. Overall, AMP can
choose a preferred page migration policy. For most work-
loads, the preferred page migration policy shows a selection
ratio higher than 80 percent. However, graph-analytics
presents the high selection ratio of LRU, although it prefers
LFU when a policy is chosen statically. It is because the
average fast memory hit ratios of LRU and LFU do not
show a meaningful gap during most of the execution time.
Fig. 13 shows the temporal change of the average fast mem-
ory hit ratios of graph-analytics, and the figure
presents the negligible gap between LRU and LFU. There-
fore, choosing LRU is okay for graph-analytics.
Another reason for a workload to choose a non-favored
page migration policy is the change in page migration pol-
icy preference during the execution, as we have shown in
graph500 in the previous subsection.

6.4 Performance of AMP in Consolidated
Environments

One of the advantages of AMP is that it can apply a different
page migration policy for each memcg, simultaneously.

Even though a set of workloads have different favors on
page migration policies, AMP can offer the preferred page
migration policy for each workload. In this subsection, we
evaluate the performance of AMPwhen multiple workloads
are running simultaneously in different memcgs. We run six
workload mixes that are combinations of workloads with
different page migration policy preferences. The fast mem-
ory ratio is set to 50 percent of the working sets.

Fig. 14 shows the normalized performance of workload
mixes. In the figure, there are seven groups of bar graphs.
The first six groups represent workload mixes, and the cor-
responding workload mix is shown above the figure. The
workloads’ preferences on page migration policies are sum-
marized in the Table 4. The first six groups are composed of
grouped bar graphs. The first bar in a group shows the perfor-
mance of the first workload within a mix, and the second bar
presents the performance of the second workload in a mix.
We use the same definition for the performance that we use in
Section 6.2. The last group of bars shows the geomean perfor-
mance of page migration policies. Each workload shows the
best performance with the preferred page migration policy.
Static policies such as LRU, LFU, and Random cannot offer
the best performance for both workloads in a mix at the same
time. AMP can offer the preferred policy for both workloads
in a mix, achieving 14.7, 8.2, 20.4 percent higher geomean
performance than LRU, LFU, and Random, respectively.

6.5 Sensitivity to the Slow Memory Ratio

We evaluate the sensitivity of AMP to the fast memory ratio.
In the previous experiments, we set the fast memory ratio to
50 percent of workloads’ working set. In this section, we
show that AMP performs better than the other page migra-
tion policies with various fast memory ratios. We measure
the performance of workloads with 30, 50, and 70 percent
fast memory ratios. We use the same workloads, page
migration policies, and the same definition for the perfor-
mance that we use in Section 6.2. Fig. 16 presents the nor-
malized performance of workloads with various page
migration policies. We show the geomean performance of
workloads. Overall, AMP performs better than the other

Fig. 12. Page migration policy selection ratio.

Fig. 13. Moving averages of fast memory hit ratios (graph-
analytics).

Fig. 14. Normalized performance of workload mixes with various page migration policies (consolidated).

TABLE 4
Page Migration Policy Preferences Summary

LRU-favor mcf, cactus, cg.D.x

LFU-favor graph-anal., in-mem-anal., graph500, pop2
Random-favor deepsjeng, lbm, lu.D.x
Neutral bwaves

HEO ETAL.: ADAPTIVE PAGE MIGRATION POLICY WITH HUGE PAGES IN TIERED MEMORYSYSTEMS 63

page migration policies regardless of the fast memory ratio.
AMP shows 4.0, 6.4, 4.1 percent higher performance than
LFU at 30, 50, 70 percent fast memory ratio, respectively.

6.6 Responsiveness to the Phase Transitions

AMP works well for most macro-benchmarks with a grad-
ual transition between phases. A phase is an interval of exe-
cution where the preference on page migration policies is
the same. However, if a phase changes abruptly, AMP may
experience a delay until updating the page migration policy
selection because it uses the moving average of fast memory
hit ratios. In this subsection, we measure the delay until
AMP learns the changes in the page migration policy prefer-
ence on abrupt phase transitions.

We use three types of synthetic benchmarks.
LRU-favor has a strided memory access pattern with four

same-sized working sets. Each working set is sequentially
accessed for four seconds.

LFU-favor has two same-sized working sets. One is a fre-
quently-accessed hot working set, and the other is an infre-
quently-accessed cold working set. The infrequently-

accessed cold working set is divided into 16 subsets, show-
ing a strided memory access pattern with a low access
frequency.

Random-favor allocates memory, and it randomly accesses
all pages. We compose six types of workload mixes with
synthetic benchmarks. Table 5 presents the execution order
of workload mixes.

Fig. 17 illustrates the timeline of page migration policy
selections for each workload mix. Each workload starts
with Random in the warming-up stage, and it selects the
preferred page migration policy after the warming up.
The dashed vertical line shows the transition point, where
the first workload exits and the second workload starts exe-
cution. Except for Mix 1, AMP can follow the preferred
page migration policy within a relatively short delay. Table 6
summarizes the delay until AMP finds the favored page
migration policy after a phase transition. AMP shows the
low responsiveness in Mix 1 because of the stale fast mem-
ory hit ratios kept in moving average. LRU shows the high
fast memory hit ratio in the first workload of Mix 1, and it
takes time for AMP to learn the changes in policy preferen-
ces. Please note that this kind of abrupt phase transitions
are not common in the real world.

6.7 Sensitivity to the Page Migration Interval

Page migration interval is one of the important parameters
in migrating pages in tiered memory systems. There is a
trade-off between responsive migration of hot pages to fast

Fig. 16. Sensitivity to the fast memory ratio.

TABLE 5
Synthetic Benchmark Mixes

Mix 1 LRU-favor! LFU-favor
Mix 2 LFU-favor! LRU-favor
Mix 3 LRU-favor! Random-favor
Mix 4 LFU-favor! Random-favor
Mix 5 Random-favor! LRU-favor
Mix 6 Random-favor! LFU-favor

TABLE 6
The Number of Epochs Until AMP Learns the Changes in the

Preference on Page Migration Policy

Mix 1 27-epoch Mix 2 17-epoch Mix 3 2-epoch
Mix 4 2-epoch Mix 5 3-epoch Mix 6 4-epoch

Fig. 15. Normalized performance of workloads with various page migration intervals.

Fig. 17. Timeline of page migration policy selections.

64 IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 1, JANUARY 2022

memory and page migration cost. In the previous subsec-
tions, the page migration interval is set to five seconds
empirically. In this subsection, we evaluate the sensitivity of
AMP’s performance to the page migration interval with
shorter intervals than five seconds. Fig. 15 presents the per-
formance of workloads with AMP with various page migra-
tion intervals. The performance is normalized to the
performance with the shortest page migration interval,
2-second. Most workloads show similar performance
regardless of the page migration interval. lu.D.x presents
13.8 percent higher performance with 5-second page migra-
tion interval compared to 2-second interval’s. This is
because the memory access pattern of lu.D.x is random,
and most pages are actively accessed. Therefore, frequent
page migrations add mere performance overhead without
increasing the fast memory hit ratio. In-memory-analyt-
ics presents the higher performance with the intervals
shorter than 5-second, implying that the shorter page migra-
tion interval can capture the dynamic nature of hot working
set of in-memory-analytics’s. To summarize, there are
some workloads that are sensitive to page migration inter-
val. However, there is a little gain in shortening page migra-
tion interval, on average.

7 DISCUSSION

Low-Overhead Hotness Tracking Mechanisms. Having a low-
cost hotness tracking mechanism is important in identifying
the hotness of pages. Checking the accessed bits of pages at
a low frequency is one of the solutions to achieve the low
overhead [19]. Although this is a viable solution to identify
swap page candidates, it cannot be applied to migrating
pages in tiered memory because of its low resolution. Alter-
natively, dynamically adjusting the unit of hotness tracking
is a solution to reduce the performance overhead [50]. By
identifying groups of pages that have similar page hotness,
the number of accessed bit checks can be reduced. AMP
achieves the low overhead in hotness tracking by checking
the accessed bits at the granularity of huge pages.

Comparison With HW-Based Migration Mechanisms. The
target memory system of this study is a tiered memory sys-
tem where software is responsible for managing page loca-
tions between memory tiers. Hardware data migration
mechanisms [51], [52], [53] have an advantage in offering
software-transparent fine-grained data migration. However,
the hardware mechanisms require modifications to memory
controllers, which needs support from hardware vendors.
The proposed software mechanism and policies can be
applied without any support from hardware vendors,
which goes well with the current data centers.

The hardware techniques [51], [52], [53] are intended for
a hybrid memory system with a relatively small 3D stacked
DRAM (fast memory) backed by the conventional DRAM
(slow memory). Therefore, the fast memory capacity is
smaller than what is used in general tiered memory where
DRAM and NVM are combined. Thanks to the small fast
memory capacity of 3D stacked DRAM, the HW approach
maintains an extra layer of mapping between the fast and
slow memory spaces, instead of using page tables. With the
HW maintained mapping table, it is possible to migrate
data at smaller granularity than pages in a nimble way.

Those HW approaches access the mapping table slightly dif-
ferently. Some approaches cache the HW-maintained map-
ping table in on-chip SRAM for fast access [51], while the
other approaches look up the fast memory for mapping
information whenever an LLC miss occurs [53]. Both of the
mechanisms were possible since they are designed for the
3D stacked DRAM, which was assumed to be faster than
DRAM for fast lookups of the mapping table, and to have a
small capacity so that the mapping table can be efficiently
cached in SRAM. However, the fine-grained HW mapping
tables may not be scalable enough to cover the combined
capacity of DRAM and NVM, and accessing DRAM first for
mapping information for every LLC miss will slow down
memory access times significantly. In addition, the HW
mapping table has a limited associativity to reduce the size
as much as possible. Therefore, the memory management is
severely restricted, and there are only a few locations data
can be stored either fast or slow memory.

Cost of TLB Shootdowns. When a page table entry is
updated for a process, the Linux kernel sends Inter-Process
Interrupts (IPIs) to the cores running threads of the same
process for TLB shootdowns. Once an IPI arrives, the receiv-
ing core invokes the kernel to execute TLB invalidation. IPIs
are sent to the cores running threads with the same address
space, regardless of whether pages are actually shared or
not [54], [55]. Note that the OS kernel does not track which
pages are shared by what threads within a process. There-
fore, even with a 4 KB base page, an update of a PTE will
send IPIs to the cores running the other threads of the same
address space, even if the other threads do not access the
page and the cores do not have the affected PTE in their
TLBs. The majority of the shootdown cost is for initiating
and responding to IPIs, regardless of TLB hits or misses
during the TLB invalidation. Therefore, huge pages do not
increase the occurrences of TLB shootdowns by data shar-
ing, compared to base pages.

Instead, using huge pages can potentially reduce TLB
shootdown occurrences. If the entire region of a huge page
is accessed, a single shootdown can migrate a 2 MB page.
With 4 KB base pages, 512 shootdowns can occur in the
worst case for a migration of the same 2 MB region. Note
that shootdown IPIs will be sent to the cores running all
threads in the same process, even if a PTE of any base or
huge page is updated. In addition, using huge pages signifi-
cantly reduces TLB misses for many workloads.

Partitioning Fast Memory. Although this study assumes a
case where each workload uses fast memory exclusively,
sharing fast memory can be preferred in a batch execution
environment. Sharing fast memory between multiple work-
loads is similar to partitioning CPU caches between multi-
ple processes. This problem has been studied for several
decades in the computer architecture community. The
insights from cache partitioning studies can be applied to
sharing fast memory in tiered memory systems. Cache par-
titioning has been studied to allocate caches between multi-
ple processes to minimize the miss rate and maximize
throughput [56], [57], to guarantee the fairness between
applications [56], [58], [59], [60], [61], [62], [63], and to pro-
tect the latency-sensitive jobs from batch jobs [64], [65], [66],
[67]. Constructing miss rate curves or utility curves can give
users a hint to allocate fast memory between multiple

HEO ETAL.: ADAPTIVE PAGE MIGRATION POLICY WITH HUGE PAGES IN TIERED MEMORYSYSTEMS 65

workloads [57], [68], [69], [70], [71], [72]. If users already
know the utility curves of workloads, an auction can be
used to allocate fast memory between workloads [73], [74].

8 CONCLUSION

Memory systems are adopting memories with different
latency and bandwidth, comprising a tiered memory sys-
tem. Page migration policies migrate pages to utilize fast
memory with hot pages. We find that workloads have
diverse preferences on page migration policies. We analyze
the reason behind the various preferences on policies, and
we find the relationship between features and performance
of workloads. Based on the analysis, we propose AMP,
which adaptively selects a page migration policy between
LRU, LFU, and Random. AMP can estimate the fast mem-
ory hit ratio of a page migration policy by emulating the
policy without page migrations. AMP can achieve 10.9, 6.4,
17.6percent higher performance than LRU, LFU, and Ran-
dom, respectively. The source code is available at https://
github.com/casys-kaist/AMP.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
for their insightful feedbacks and comments. This work was
supported in part by the National Research Foundation of
Korea under Grant NRF-2019R1A2B5B01069816 and in part
by Institute for Information & communications Technology
Promotion under Grant IITP-2017-0-00466.

REFERENCES

[1] Intel� OptaneTM DC Persistent Memory. Accessed: Jan. 13, 2020.
[Online]. Available: https://www.intel.com/content/www/us/en/
architecture-and-technology/optane-dc-persistent-memory.html

[2] J. Izraelevitz et al., “Basic performance measurements of the Intel
Optane DC persistent memory module,” CoRR, vol. abs/1903.05714,
2019. [Online]. Available: http://arxiv.org/abs/1903.05714

[3] R. L. Mattson, J. Gecsei, D. R. Slutz, andI. L. Traiger,“Evaluation
techniques for storage hierarchies,” IBM Syst. J., vol. 9, no. 2,
pp. 78–117, 1970.

[4] D. Shasha and T. Johnson, “2Q: A low overhead high performance
buffer management replacement algoritm,” in Proc. 20th Int. Conf.
Very Large Databases, 1994, pp. 439–450.

[5] D. Lee et al., “LRFU: A spectrum of policies that subsumes the
least recently used and least frequently used policies,” IEEE Trans.
Comput., vol. 50, no. 12, pp. 1352–1361, Dec. 2001.

[6] I. Ari, A. Amer, R. B. Gramacy, E. L. Miller, S. A. Brandt, and
D. D. Long, “ACME: Adaptive caching using multiple experts,” in
Proc. Workshop Distrib. Data Struct., 2002, pp. 143–158.

[7] S. Jiang and X. Zhang, “LIRS: An efficient low inter-reference
recency set replacement policy to improve buffer cache perform-
ance,” in Proc. ACM SIGMETRICS Int. Conf. Meas. Model. Comput.
Syst., 2002, pp. 31–42.

[8] N. Megiddo and D. S. Modha, “ARC: A self-tuning, low overhead
replacement cache,” in Proc. 2nd USENIX Conf. File Storage Tech-
nol., 2003, pp. 115–130.

[9] S. Bansal and D. S. Modha, “CAR: Clock with adaptive replacement,”
inProc. 3rdUSENIXConf. File Storage Technol., 2004, pp. 187–200.

[10] S. Jiang, F. Chen, and X. Zhang, “CLOCK-Pro: An effective
improvement of the CLOCK replacement,” in Proc. USENIX
Annu. Tech. Conf., 2005, pp. 323–336.

[11] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, and J. Emer,
“Adaptive insertion policies for high performance caching,” in
Proc. 34th Int. Symp. Comput. Architect., 2007, pp. 381–391.

[12] N. Agarwal and T. F. Wenisch, “Thermostat: Application-
transparent page management for two-tiered main memory,” in
Proc. 22nd Int. Conf. Architect. Support Program. Lang. Operating
Syst., 2017, pp. 631–644.

[13] Z. Yan, D. Lustig, D. Nellans, and A. Bhattacharjee, “Nimble page
management for tiered memory systems,” in Proc. 24th Int. Conf.
Architect. Support Program. Lang. Operating Syst., 2019, pp. 331–345.

[14] Intel memory drive technology. Accessed: Jan. 13, 2020.
[Online]. Available: https://www.intel.com/content/www/us/en/
software/intel-memory-drive-technology.html

[15] J. Gu, Y. Lee, Y. Zhang, M. Chowdhury, and K. G. Shin, “Efficient
memory disaggregation with INFINISWAP,” in Proc. 14th USE-
NIX Symp. Netw. Syst. Des. Implementation, 2017, pp. 649–667.

[16] M. K. Aguilera et al., “Remote regions: A simple abstraction for
remote memory,” in Proc. USENIX Annu. Tech. Conf., 2018,
pp. 775–787.

[17] V. Nitu, B. Teabe, A. Tchana, C. Isci, and D. Hagimont, “Welcome
to Zombieland: Practical and energy-efficient memory disaggre-
gation in a datacenter,” in Proc. 13th Eur. Conf. Comput. Syst., 2018,
pp. 1–12.

[18] K. Koh, K. Kim, S. Jeon, and J. Huh, “Disaggregated cloud mem-
ory with elastic block management,” IEEE Trans. Comput., vol. 68,
no. 1, pp. 39–52, Jan. 2019.

[19] A. Lagar-Cavilla et al., “Software-defined far memory in ware-
house-scale computers,” in Proc. 24th Int. Conf. Architect. Support
Program. Lang. Operating Syst., 2019, pp. 317–330.

[20] K. Keeton, “The machine: An architecture for memory-centric
computing,” in Proc. Int. Workshop Runtime Operating Syst. Super-
comput., 2015, Art. no. 1.

[21] Transparent hugepages. Accessed: Jan. 13, 2020. [Online]. Avail-
able: https://lwn.net/Articles/359158/

[22] J. Navarro, S. Iyer, P. Druschel, and A. Cox, “Practical, transparent
operating system support for superpages,” in Proc. 5th Symp.
Operating Syst. Des. Implementation, 2002, pp. 89–104.

[23] Y. Kwon, H. Yu, S. Peter, C. J. Rossbach, and E. Witchel,
“Coordinated and efficient huge page management with Ingens,”
in Proc. 12th Symp. Operating Syst. Des. Implementation, 2016,
pp. 705–721.

[24] A. Panwar, A. Prasad, and K. Gopinath, “Making huge pages
actually useful,” in Proc. 23rd Int. Conf. Architect. Support Program.
Lang. Operating Syst., 2018, pp. 679–692.

[25] A. Panwar, S. Bansal, and K. Gopinath, “HawkEye: Efficient fine-
grained OS support for huge pages,” in Proc. 24th Int. Conf. Archi-
tect. Support Program. Lang. Operating Syst., 2019, pp. 347–360.

[26] F. J. Corbato, “A paging experiment with the multics system,”
MIT Press, Cambridge, MA, USA, MIT Project MAC Rep. MAC-
M-384, May 1968.

[27] M. Kampe, P. Stenstrom, and M. Dubois, “Self-correcting LRU
replacement policies,” in Proc. 1st Conf. Comput. Front., 2004,
pp. 181–191.

[28] E. Teran, Y. Tian, Z. Wang, and D. A. Jim�enez, “Minimal distur-
bance placement and promotion,” in Proc. 22nd Int. Symp. High
Perform. Comput. Architect., 2016, pp. 201–211.

[29] V. Gupta, M. Lee, and K. Schwan, “HeteroVisor: Exploiting resource
heterogeneity to enhance the elasticity of cloud platforms,” in Proc.
11th Int. Conf. Virt. Execution Environ., 2015, pp. 79–92.

[30] G. Glass and P. Cao, “Adaptive page replacement based on mem-
ory reference behavior,” in Proc. ACM SIGMETRICS Int. Conf.
Meas. Model. Comput. Syst., 1997, pp. 115–126.

[31] Y. Smaragdakis, S. Kaplan, and P. Wilson, “EELRU: Simple and
effective adaptive page replacement,” in Proc. ACM SIGMETRICS
Int. Conf. Meas. Model. Comput. Syst., 1999, pp. 122–133.

[32] J. M. Kim et al., “A low-overhead high-performance unified buffer
management scheme that exploits sequential and looping refer-
ences,” in Proc. 4th Symp. Operating Syst. Des. Implementation, 2000,
Art. no. 9.

[33] J. T. Robinson and M. V. Devarakonda, “Data cache management
using frequency-based replacement,” in Proc. ACM SIGMETRICS
Int. Conf. Meas. Model. Comput. Syst., 1990, pp. 134–142.

[34] E. J. O’neil, P. E. O’neil, and G. Weikum, “The LRU-K page
replacement algorithm for database disk buffering,” in Proc. ACM
SIGMOD Int. Conf. Manage. Data, 1993, pp. 297–306.

[35] Y. Zhou, J. Philbin, and K. Li, “The multi-queue replacement algo-
rithm for second level buffer caches,” in Proc. USENIX Annu.
Tech. Conf., 2001, pp. 91–104.

[36] D. Lee et al., “On the existence of a spectrum of policies that sub-
sumes the least recently used (LRU) and least frequently used
(LFU) policies,” in Proc. ACM SIGMETRICS Int. Conf. Meas. Model.
Comput. Syst., 1999, pp. 134–143.

[37] G. Vietri et al., “Driving cache replacement with ML-based
LeCar,” in Proc. USENIX Workshop Hot Topics Storage File Syst.,
2018, Art. no. 3.

66 IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 1, JANUARY 2022

https://github.com/casys-kaist/AMP
https://github.com/casys-kaist/AMP
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
http://arxiv.org/abs/1903.05714
https://www.intel.com/content/www/us/en/software/intel-memory-drive-technology.html
https://www.intel.com/content/www/us/en/software/intel-memory-drive-technology.html
https://lwn.net/Articles/359158/

[38] SPEC CPU 2017. Accessed: Jan. 13, 2020. [Online]. Available:
https://www.spec.org/cpu2017/

[39] M. Ferdman et al., “Clearing the clouds: A study of emerging
scale-out workloads on modern hardware,” in Proc. 17th Int.
Conf. Architect. Support Program. Lang. Operating Syst., 2012,
pp. 37–48.

[40] NAS parallel benchmarks. Accessed: Jan. 13, 2020. [Online]. Avail-
able: https://www.nas.nasa.gov/publications/npb.html

[41] Graph500. Accessed: Jan. 13, 2020. [Online]. Available: https://
graph500.org/

[42] C.-K. Luk, R. Muth, H. Patil, R. Weiss, P. G. Lowney, and R. Cohn,
“Profile-guided post-link stride prefetching,” in Proc. 16th Int.
Conf. Supercomput., 2002, pp. 167–178.

[43] H. Al-Sukhni et al., “The design of cost-effective stride-prefetching
for modern processors,” Dept. Elect. Comput. Eng., Tech. Rep.,
Freescale Semiconductor, Inc. Austin, TX, Univ. Colorado
Boulder,

[44] R. Panda and L. K. John, “HALO: A hierarchical memory access
locality modeling technique for memory system explorations,” in
Proc. 32nd Int. Conf. Supercomput., 2018, pp. 118–128.

[45] C. Takahashi, et al., “Empirical study for optimization of power-per-
formance with on-chip memory,” in Proc. Int. Symp. High-Perform.
Comput., 2005, pp. 466–479.

[46] Nimble page management for tiered memory systems - GitHub
repository. Accessed: Jan. 13, 2020. [Online]. Available: https://
github.com/ysarch-lab/nimble_page_management_asplos_2019/
blob/5d503c456f1eceed24e4723ef758ce2c38db1ae0/mm/
memory_manage.c#L777

[47] Idle page tracking. Accessed: Jan. 13, 2020. [Online]. Available:
https://www.kernel.org/doc/html/latest/admin-guide/mm/
idle_page_tracking.html

[48] Intel� Xeon Processor E5 v4 Product Family. Accessed: Jan. 13,
2020. [Online]. Available: https://www.intel.com/content/dam/
www/public/us/en/documents/datasheets/xeon-e5-v4-
datasheet-vol-2.pdf

[49] Intel-cmt-cat. Accessed: Jan. 13, 2020. [Online]. Available: https://
github.com/intel/intel-cmt-cat.

[50] S. Park, Y. Lee, and H. Y. Yeom, “Profiling dynamic data access
patterns with controlled overhead and quality,” in Proc. 20th Int.
Middleware Conf. Ind. Track, 2019, pp. 1–7.

[51] J. Sim, A. R. Alameldeen, Z. Chishti, C. Wilkerson, and H. Kim,
“Transparent hardware management of stacked DRAM as part
of memory,” in Proc. 47th Int. Symp. Microarchitect., 2014,
pp. 13–24.

[52] J. B. Kotra, H. Zhang, A. R. Alameldeen, C. Wilkerson, and
M. T. Kandemir, “CHAMELEON: A dynamically reconfigurable
heterogeneous memory system,” in Proc. 51st Int. Symp. Microarch-
itect., 2018, pp. 533–545.

[53] C. C. Chou, A. Jaleel, and M. K. Qureshi, “CAMEO: A two-level
memory organization with capacity of main memory and flexibil-
ity of hardware-managed cache,” in Proc. 47th Int. Symp. Micro-
architect., 2014, pp. 1–12.

[54] N. Amit, A. Tai, andM.Wei, “Don’t shoot down TLB shootdowns!,”
in Proc. 15th Eur. Conf. Comput. Syst., 2020, pp. 1–14.

[55] M. K. Kumar et al., “LATR: Lazy translation coherence,” in Proc.
23rd Int. Conf. Architect. Support Program. Lang. Operating Syst.,
2018, pp. 651–664.

[56] L. R. Hsu, S. K. Reinhardt, R. Iyer, and S. Makineni, “Communist,
utilitarian, and capitalist cache policies on CMPs: Caches as a
shared resource,” in Proc. 15th Int. Conf. Parallel Architect. Compila-
tion Techn., 2006, pp. 13–22.

[57] M. K. Qureshi and Y. N. Patt, “Utility-based cache partitioning: A
low-overhead, high-performance, runtime mechanism to partition
shared caches,” in Proc. 39th Int. Symp. Microarchitect., 2006,
pp. 423–432.

[58] S. Kim, D. Chandra, and Y. Solihin, “Fair cache sharing and parti-
tioning in a chip multiprocessor architecture,” in Proc. 13th Int.
Conf. Parallel Architect. Compilation Techn., 2004, pp. 111–122.

[59] T. Y. Yeh and G. Reinman, “Fast and fair: Data-stream quality of
service,” in Proc. Int. Conf. Compilers Architect. Synthesis Embedded
Syst., 2005, pp. 237–248.

[60] J. Chang and G. S. Sohi, “Cooperative cache partitioning for chip
multiprocessors,” in Proc. 25th Int. Conf. Supercomput., 2007,
pp. 402–412.

[61] X. Wang and J. F. Mart�ınez, “ReBudget: Trading off efficiency vs.
fairness in market-based multicore resource allocation via runtime
budget reassignment,” in Proc. 21st Int. Conf. Architect. Support
Program. Lang. Operating Syst., 2016, pp. 19–32.

[62] V. Selfa, J. Sahuquillo, L. Eeckhout, S. Petit, and M. E. G�omez,
“Application clustering policies to address system fairness with
Intel’s cache allocation technology,” in Proc. 26th Int. Conf. Parallel
Architect. Compilation Techn., 2017, pp. 194–205.

[63] J. Park, S. Park, andW. Baek, “CoPart: Coordinated partitioning of
last-level cache and memory bandwidth for fairness-aware work-
load consolidation on commodity servers,” in Proc. 14th Eur. Conf.
Comput. Syst., 2019, pp. 1–14.

[64] H. Cook,M.Moreto, S. Bird, K. Dao, D.A. Patterson, andK.Asanovic,
“A hardware evaluation of cache partitioning to improve utilization
and energy-efficiency while preserving responsiveness,” in Proc. 40th
Int. Symp. Comput. Architect., 2013, pp. 308–319.

[65] H. Kasture and D. Sanchez, “Ubik: Efficient cache sharing
with strict QoS for latency-critical workloads,” in Proc. 19th Int.
Conf. Architect. Support Program. Lang. Operating Syst., 2014,
pp. 729–742.

[66] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and C. Kozyrakis,
“Heracles: Improving resource efficiency at scale,” in Proc. 42nd Int.
Symp. Comput. Architect., 2015, pp. 450–462.

[67] H. Zhu and M. Erez, “Dirigent: Enforcing QoS for latency-critical
tasks on shared multicore systems,” in Proc. 21st Int. Conf. Archi-
tect. Support Program. Lang. Operating Syst., 2016, pp. 33–47.

[68] D. K. Tam, R. Azimi, L. B. Soares, and M. Stumm, “RapidMRC:
Approximating L2 miss rate curves on commodity systems for
online optimizations,” in Proc. 14th Int. Conf. Architect. Support Pro-
gram. Lang. Operating Syst., 2009, pp. 121–132.

[69] X. Zhang, S. Dwarkadas, and K. Shen, “Towards practical page
coloring-based multicore cache management,” in Proc. 4th Eur.
Conf. Comput. Syst., 2009, pp. 89–102.

[70] N. Beckmann and D. Sanchez, “Jigsaw: Scalable software-defined
caches,” in Proc. 22nd Int. Conf. Parallel Architect. Compilation
Techn., 2013, pp. 213–224.

[71] X. Hu, X. Wang, Y. Li, Y. Luo, C. Ding, and Z. Wang, “Optimal
symbiosis and fair scheduling in shared cache,” IEEE Trans. Paral-
lel Distrib. Syst., vol. 28, no. 4, pp. 1134–1148, Apr. 2017.

[72] Y. Xiang, X. Wang, Z. Huang, Z. Wang, Y. Luo, and Z. Wang,
“DCAPS: Dynamic cache allocation with partial sharing,” in Proc.
13th Eur. Conf. Comput. Syst., 2018, pp. 1–15.

[73] O. A. Ben-Yehuda, E. Posener, M. Ben-Yehuda, A. Schuster, and
A. Mu’alem, “Ginseng: Market-driven memory allocation,” in
Proc. 10th Int. Conf. Virt. Execution Environ., 2014, pp. 41–52.

[74] L. Funaro, O. A. Ben-Yehuda, and A. Schuster, “Ginseng: Market-
driven LLC allocation,” in Proc. USENIX Annu. Tech. Conf., 2016,
pp. 295–308.

Taekyung Heo received the BS degree in com-
puter engineering from Sungkyunkwan Univer-
sity, Seoul, South Korea, and the MS degree in
computer science from KAIST, Daejeon, South
Korea. He is currently working toward the PhD
degree with the School of Computing, KAIST,
Daejeon, South Korea. His research interests
include memory systems, computer architecture,
and accelerators.

Yang Wang (Student Member, IEEE) received
the BS degree from the University of Electronic
Science and Technology of China, Chengdu,
China. He is currently an internship with Microsoft
Research Asia. His research interests include com-
puter architecture and general-purpose graphics
processing unit architecture.

HEO ETAL.: ADAPTIVE PAGE MIGRATION POLICY WITH HUGE PAGES IN TIERED MEMORYSYSTEMS 67

https://www.spec.org/cpu2017/
https://www.nas.nasa.gov/publications/npb.html
https://graph500.org/
https://graph500.org/
https://github.com/ysarch-lab/nimble_page_management_asplos_2019/blob/5d503c456f1eceed24e4723ef758ce2c38db1ae0/mm/memory_manage.c#L777
https://github.com/ysarch-lab/nimble_page_management_asplos_2019/blob/5d503c456f1eceed24e4723ef758ce2c38db1ae0/mm/memory_manage.c#L777
https://github.com/ysarch-lab/nimble_page_management_asplos_2019/blob/5d503c456f1eceed24e4723ef758ce2c38db1ae0/mm/memory_manage.c#L777
https://github.com/ysarch-lab/nimble_page_management_asplos_2019/blob/5d503c456f1eceed24e4723ef758ce2c38db1ae0/mm/memory_manage.c#L777
https://www.kernel.org/doc/html/latest/admin-guide/mm/idle_page_tracking.html
https://www.kernel.org/doc/html/latest/admin-guide/mm/idle_page_tracking.html
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/xeon-e5-v4-datasheet-vol-2.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/xeon-e5-v4-datasheet-vol-2.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/xeon-e5-v4-datasheet-vol-2.pdf
https://github.com/intel/intel-cmt-cat.
https://github.com/intel/intel-cmt-cat.

Wei Cui received the BS degree from the Nanjing
University of Science and Technology, Nanjing,
China, and the MS degree from Peking University,
Beijing, China. He is currently a senior research
SDE with Microsoft Research, Asia, Beijing. His
research interests include computing accelerators,
AI platform, and system optimization.

Jaehyuk Huh (Member, IEEE) received the BS
degree in computer science from Seoul National
University, Seoul, South Korea, and the MS and
PhD degrees in computer science from the Uni-
versity of Texas, Austin, Texas. He is currently a
professor with the School of Computing, KAIST.
His research interests include computer architec-
ture, parallel computing, virtualization, and sys-
tem security.

Lintao Zhang (Senior Member, IEEE) received
the BS degree in physics from Peking University,
Beijing, China, and the PhD degree in computer
engineering from Princeton University, Princeton,
New Jersey. He is currently a research manager
with Microsoft Research Asia. His research inter-
ests include system issues in very large-scale,
distributed systems.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

68 IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 1, JANUARY 2022

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

