IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 6, JUNE 2021

OPTWERB: A Lightweight Fully Connected
Inter-FPGA Network for Efficient Collectives

Kenji Mizutani™, Hiroshi Yamaguchi, Yutaka Urino™, and Michihiro Koibuchi

Abstract—Modern FPGA accelerators can be equipped with many high-bandwidth network 1/Os, e.g., 64 x 50 Gbps, enabled by
onboard optics or co-packaged optics. Some dozens of tightly coupled FPGA accelerators form an emerging computing platform for
distributed data processing. However, a conventional indirect packet network using Ethernet’s Intellectual Properties imposes an
unacceptably large amount of the logic for handling such high-bandwidth interconnects on an FPGA. Besides the indirect network,
another approach builds a direct packet network. Existing direct inter-FPGA networks have a low-radix network topology, e.g., 2-D
torus. However, the low-radix network has the disadvantage of a large diameter and large average shortest path length that increases
the latency of collectives. To mitigate both problems, we propose a lightweight, fully connected inter-FPGA network called OPTWEB for
efficient collectives. Since all end-to-end separate communication paths are statically established using onboard optics, raw block data
can be transferred with simple link-level synchronization. Once each source FPGA assigns a communication stream to a path by its
internal switch logic between memory-mapped and stream interfaces for remote direct memory access (RDMA), a one-hop transfer is
provided. Since each FPGA performs input/output of the remote memory access between all FPGAs simultaneously, multiple RDMAs
efficiently form collectives. The OPTWEB network provides 0.71-usec start-up latency of collectives among multiple Intel Stratix 10 MX

849

FPGA cards with onboard optics. The OPTWEB network consumes 31.4 and 57.7 percent of adaptive logic modules for aggregate
400-Gbps and 800-Gbps interconnects on a custom Stratix 10 MX 2100 FPGA, respectively. The OPTWEB network reduces by 40

percent the cost compared to a conventional packet network.

Index Terms—Interconnection architecture, network topology, circuit-switching networks, fiber optics, FPGAs, collectives

1 INTRODUCTION

ARALLEL data processing using multiple field-program-

mable gate array (FPGA) accelerators with high-band-
width memory, e.g., HBM2, and high-bandwidth network,
becomes a way to compute emerging parallel applications
including deep neural networks [1] or columnar database
[2]. Increasing the parallelism of the dedicated circuits in
the FPGA enables high-throughput data processing, e.g.,
sorting operation [3], [4], [5]. The more significant number
of high-bandwidth memory I/Os would result in the
higher-throughput data processing.

Interconnection networks are the heart of such FPGA accel-
erator systems. However, the communication I/O start-up
latency bottlenecks appeared on a traditional FPGA-accelera-
tor system. In the traditional system, an FPGA accelerator is
attached to a host compute node via PCle, OpenCAPI, or
Cache Coherent Interconnect for Acc. (CCIX). Each communi-
cation stream to a remote FPGA is transferred via a unified
off-chip interconnection network shared by inter-processor or

o Kenji Mizutani and Yutaka Urino are with the Photonics Electronics
Technology Research Association, Tsukuba 305-8569, Japan.
E-mail: k-mizutani@nec.com, y-urino@petra-jp.org.

e Hiroshi Yamaguchi is with the Photonics Electronics Technology Research
Association, Tokyo 153-8505, Japan. E-mail: hyamaguch_cw@nec.com.

e Michihiro Koibuchi is with the National Institute of Informatics, Tokyo
101-8430, Japan. E-mail: koibuchi@nii.ac.jp.

Manuscript received 14 Aug. 2020; revised 12 Mar. 2021; accepted 21 Mar.
2021. Date of publication 24 Mar. 2021; date of current version 17 May 2021.
(Corresponding author: Kenji Mizutani.)

Recommended for acceptance by L. Chen and Z. Lu.

Digital Object Identifier no. 10.1109/TC.2021.3068715

storage communication, e.g., InfiniBand or Ethernet. Each
communication stream is thus packed into multiple packets
that have a complicated structure for the abstraction. Since
both packetization latency overhead and PCle handling over-
head are significant, the inter-FPGA communication start-up
latency typically reaches tens of usec order even on a small
traditional system [29], [30].

Direct interconnection networks are thus attempted on an
FPGA-accelerator system, e.g., Project Catapult v1 [6], Flow in
Cloud (FiC) project [8], EuroEXA project [9], Novo-G# cluster
[10], [30], and Cygnus supercomputer [12]. Fortunately, some
FPGA cards have network ports for fast serial communica-
tions [13]. For example, since a NetFPGA SUME card provides
multiple 100-Gbps network ports, an application user can
design a direct inter-FPGA network. In an FPGA card, Ether-
net networks can be constructed by their Interectual Propertys
(IPs). Similarly, a flow control IP can be linked to data process-
ing in point-to-point communication [14], [15]. However, the
network’s hardware resources including flow control IP are
costly on an FPGA as a link bandwidth becomes large.

Typical data communications between FPGAs have to be
packetized in multiple layers. The data-link layer divides raw
data into multiple flits with control information. The network
layer then adds the destination and source information to a
packet for communication among multiple devices. Packet
processing consumes a large amount of logic to extract the fol-
lowing information from the data lines. In the data-link layer,
backpressure is needed to temporarily stop data from the
source to avoid channel buffer overflow [15]. The backpres-
sure usually requires enough buffers to store packets by the
high-speed static random-access memory (SRAM), though

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-5387-7071
https://orcid.org/0000-0002-5387-7071
https://orcid.org/0000-0002-5387-7071
https://orcid.org/0000-0002-5387-7071
https://orcid.org/0000-0002-5387-7071
https://orcid.org/0000-0001-8254-5562
https://orcid.org/0000-0001-8254-5562
https://orcid.org/0000-0001-8254-5562
https://orcid.org/0000-0001-8254-5562
https://orcid.org/0000-0001-8254-5562
mailto:k-mizutani@nec.com
mailto:y-urino@petra-jp.org
mailto:hyamaguch_cw@nec.com
mailto:koibuchi@nii.ac.jp

850

SRAM is costly. It is reported in [14] that building a reliable
packet network using IPs of Ethernet at 40 Gbps requires
more than 10 percent of resources in both adaptive logic mod-
ules (ALMs) and M20K SRAM blocks (M20Ks) in an Intel
Arria 10 FPGA [14]. These amounts correspond to 6 percent of
ALMs and 4 percent of M20Ks in Intel’s Stratix10 MX2100,
which is the largest of the FPGA with HBM2. A similar hard-
ware-resource problem arises in an accelerator of MPI collec-
tives using a custom packet technology [16], [17]. For 40-Gbps
inter-FPGA communication, 38 percent of the Stratix V
FPGA'’s ALMs are consumed. This amount corresponds to 14
percent of ALMs in Intel’s Stratix10 MX2100. More than 20-
times improvement, 800 Gbps, of the bandwidth is required
to achieve HBM2 equivalent network bandwidth. However,
achieving aggregate 800-Gbps interconnects using the com-
modity IPs is not implementable in terms of the FPGAs” hard-
ware amount because of the required hardware resource
increases in proportion to the bandwidth.

Another problem is the low-radix network topology, e.g.,
2-D torus, in existing direct inter-FPGA networks. Existing
vast network I/O pluggable ports limit the network radix in
an FPGA. The low-radix network has the disadvantage of a
large diameter and large average shortest path length. It is
known that the throughput and latency performance of a
low-radix network is inferior to a high-radix network.

To mitigate the large hardware-resources and the large
path-hop problems, we unburden a complicated packet net-
work in this study. We build an FPGA-to-FPGA synchroni-
zation circuit using a simple single-cycle block signal. Since
the block signal assumes to connect only two devices, a fully
connected network topology is designed with advanced
optical technology. Recently, high-density many 1/Os are
enabled by onboard optics or co-packaged optics for hyper-
scale high-radix top-of-rack switches [18]. We are develop-
ing silicon photonics-based onboard optics, which can
provide many optical I/Os in FPGAs. e.g., 32 or 64 (32x25
Gbps or 64 x25 Gbps) [19]. We design and implement a fully
connected network topology for an inter-FPGA network. It
supports up to 64 FPGAs that would be the maximum num-
ber of optical I/Os at a modern, cost-effective FPGA card
due to its areal density. Optical cables are thin to wire than
electrical cables and can be used to prepare fully connected
wiring sheets for up to dozens of endpoints even though
the volume of the cable increases by N*-N. In the case of a
more significant number of FPGAs, we apply wavelength
division multiplexing (WDM) to an inter-FPGA network to
logically form a fully connected network topology with a
shorter aggregate cable length [20], [21].

At the communication operation layer, we provide a point-
to-point, i.e., send/recv, sendrecv and six collectives, based
on a Single Program Multiple Data (SPMD) model with mes-
sage passing. Collectives are operations that involve commu-
nication of all FPGAs in a group. We provide barrier, scatter,
gather, broadcast, alltoall, and allgather as collectives.

The above inter-FPGA network architecture, OPTWEB, is
so named because many optical links like spider threads
tightly connect all FPGAs. The contribution of this study is
summarized as follows.

1. OPTWEB networks provide separate end-to-end
paths on a fully connected network topology for

IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 6, JUNE 2021

simplifying the network structure in each FPGA. It
enables collectives using one-step one-hop multicast
(Section 3).

2. An OPTWEB network using the custom Intel Stratix 10
MX FPGA cards achieves 0.71-usec start-up latency of
typical collectives. The collectives fully utilize the max-
imum effective bandwidth of each link (Section 4).

3. We discuss and quantify the OPTWEB network in
terms of cost, application-performance estimation,
and scalability (Section 5).

The remainder of this paper is organized as follows. Sec-

tion 2 presents background information on the OPTWEB
networks. Section 6 makes our conclusions and future work.

2 BACKGROUND INFORMATION

2.1 Onboard Optics and Co-Packaged Optics (CPO)
Optical technology integration to chip package, co-pack-
aged optics (CPO), is a promising technology for switch
ASICs and commodity FPGA/CPU/GPUs. Hyperscale
datacenters highly demand a top-of-rack high-radix high-
throughput single-chip switch. Broadcom releases the
design of Tomahawk 3 Ethernet switch ASIC (12.8 Tbps) in
2018, Tomahawk 4 (25.6 Tbps) in 2019. It is expected that a
switch ASIC will reach 51.2 Tbps in the first half of the
2020s. In current Ethernet switches, electric SERDES conver-
sion consumes significant power, and the broad area of the
aggregate 1/O pluggable ports increases the onboard wire
length. To mitigate both problems, the optical technology
should be tightly coupled with a switch ASIC. In this con-
text, onboard optics are needed to support up to 40 Tbps
switch ASIC [22], and CPO commercially becomes mature
before 51.2-Tbps switch ASIC is deployed.

The similar integration occurs in FPGAs. DARPA PIPES
project is attempting to enable aggregate signaling rates to
100 Tbps by CPO [23]. In Japan, we have developed
onboard optics using Optical I/O Core for 100-Gbps trans-
ceiver (4x25 Gbps), and we have integrated these optics
into a custom Intel Stratix 10 FPGA card [19]. Optical 1/O
Core is commercially available from AIO CORE Corpora-
tion [24]. In this study, we use our onboard optics for the
inter-FPGA communication.

2.2 Target FPGA

This study targets an FPGA that is equipped with high-band-
width memory and high-bandwidth optical transceivers for
distributed data processing. Leading FPGA manufacturers,
Intel and Xilinx, have FPGAs with HBM2 as the wide-band
memory. The Stratix10 MX 2100 has the most substantial logic
of an Intel’s FPGA with HBM2. In this study, we design and
implement the OPTWEB network on Intel Stratix 10 MX
FPGA 2100 cards with our onboard optics.

The maximum number of interconnected FPGAs is cur-
rently 64 by our technology-driven design (see Section 5.3) of
the OPTWEB network. The existing direct inter-FPGA net-
work usually targets up to dozens of FPGAs (see Section 2.3.2),
and a more significant FPGAs are communicated via an inter-
CPU network via PCle [12]. Although we consider that 64
FPGAs are reasonable when an FPGA accelerator system is
stored on a chassis, we illustrate the extension to connect a
larger number of FPGAs (see Section 5.3).

MIZUTANI ET AL.: OPTWEB: A LIGHTWEIGHT FULLY CONNECTED INTER-FPGA NETWORK FOR EFFICIENT COLLECTIVES 851

2.3 Existing Inter-FPGA Networks
2.3.1 Data-Link Layer

An Ethernet frame has two types of control data: one for
network and one for link. The former includes the informa-
tion of destination, source, and data size. The latter includes
a preamble to detect the beginning of the packet and an
inter-packet gap (IPG) to provide appropriate spacing
between packets. These are placed at the beginning of the
frame. The frame check sequence (FCS) is added to the end
of the frame, and is used for verification with parity-check
or cyclic redundancy codes.

Packets could be lost, and out-of-order delivery could
occur on an inter-FPGA Ethernet implementation. This
becomes a problem when dealing with successive data in
direct memory access (DMA). The other implementation
issue for distributed data processing is a channel buffer over-
flow [14], [15]. To avoid a channel buffer overflow, a switch-
ing technique should be carefully designed. Cut-through
switching that can send the header before receiving the tail is
commonly used in high-performance interconnection net-
works. The cut-through switching requires particular hard-
ware logic to handle a credit-based flow signal between two
endpoints of the link for avoiding channel overflow [14], [15].
This is usually achieved by providing dedicated control bits
in the payload to achieve synchronization between endpoints.
This requires a mechanism to extract the control bits flowing
from the data lanes in the FPGA.

2.3.2 Network Layer

The inter-FPGA networks can be built using IPs, e.g., Ether-
net PHYs. However, the amount of logic for supporting a
commodity packet network becomes a design bottleneck on
an FPGA as the network bandwidth becomes large, as
described in Section 1. Building a packet network using
Ethernet IPs with the flow control would not be feasible
with the high-bandwidth 1/Os, e.g., 800 Gbps enabled by
onboard optics or CPO on an FPGA.

Another approach to designing an inter-FPGA network
is to include a lightweight router without Ethernet IPs on an
FPGA. The Catapult-vl node uses SerialLite 3 (SL3) with
optical transmission technology, e.g., QSFP 40 Gbps, for the
communication. The inter-FPGA network follows a packet
structure for a low-radix network topology, 6x82-D torus
[6]. Cygnus supercomputer ranked in 264 on top500 as of
June 2019 takes an 8 x82-D torus for the inter-FPGA network
using SL3. Novo-G# also takes a torus in a typical configura-
tion. The torus network requires a router that operates input
buffering, routing computation, virtual-channel allocation,
switch arbitration, and flit crossbar transfer on each FPGA.
A router consumes a vast hardware resource of each FPGA.

Another problem is the path hops on their low-radix torus
networks. Path hops directly affect the communication
latency. Indeed, Cygnus and Catapult-vl network consume
200 ns per hop [12] and 400 ns per hop [6], respectively. The
low-radix networks take a large diameter and a large average
shortest path length (ASPL), and generate large total path
hops of packets on a multicast operation [7].

A unique inter-FPGA network relies on circuit switching.
Static time-division multiplexing in Flow-in-Cloud (FiC)
project [8] and the optical circuit switching in Noctua [11]

implement circuit switching. In a Noctua supercomputer,
optical circuit switching connects the 40-Gbps QSFP port of
each FPGA. It establishes an end-to-end path before starting
the communication using 5320 optical circuit switches. Both
circuit-switching implementations simplify the packet net-
work structure. They are efficient when the number of com-
munication source-and-destination pairs is small and
predictable. However, we consider that such a case is not typi-
cal in the inter-FPGA network for distributed data processing.

2.3.3 Collective

For distributed data processing, the support of collectives is
essential. In [26], a PC cluster consisting of 128 nodes with
1024 GPUs completed a training phase of ImageNet in 15
minutes. It is reported that 20 percent of the execution time
is consumed for communication at 128 nodes, and its ratio
would be more significant as the scale becomes large. The
importance of collectives, e.g., allreduce, is also illustrated
for deep learning training by [27].

GPU-to-GPU Remote DMA (RDMA) is often used for
improving the performance of Al learning through distrib-
uted data processing. Since low start-up latency communi-
cation is required to accelerate learning, InfiniBand and
NVLINK are frequently used. However, with these technol-
ogies, it is reported that the start-up latency is about 10 usec
even for point-to-point communication. The start-up latency
of collectives also increases with a large number of con-
nected nodes [28].

The collectives between FPGAs are also being considered.
It is reported that speeding up a gather operation is difficult
on existing inter-FPGA networks. Surprisingly, it is reported
that inter-CPU communication via PCle is faster than an
inter-FPGA communication because of the bottleneck of the
data input part in an inter-FPGA 2-D torus network [29]. It is
also reported that an inter-FPGA 2-D torus network consumes
several tens of usecs for MPI multicast and reduction opera-
tions [30]. The delay usually becomes higher in the collective
than that in point-to-point communication.

Unicast-, tree- and path-based multicast techniques are
typical implementation methods for multicast in intercon-
nection networks [41]. Unicast-based multicast consists of a
large number of unicasts to deliver a message to all the des-
tinations. In the tree-based multicast, a spanning tree whose
root is a source node is built. Each message is then for-
warded along the spanning tree. The tree-based multicast
would minimize the total path hops of the messages [31]. A
path-based multicast sends data along a path that includes
all destinations, and thus requires an efficient multicast-
path search, e.g., Hamiltonian cycle for multicast. It mini-
mizes the number of messages on a multicast. The tree- and
path-based methods require a particular function to for-
ward the message on FPGAs, and it would not be light-
weight. In this study, we implement the unicast-based
multicast for collectives on the inter-FPGA network.

3 OPTWEB NETWORK ARCHITECTURE

We propose a network architecture called OPTWEB. A typi-
cal configuration of conventional and OPTWEB networks is
compared in Figs. 1a and 1b. Each key element of the OPT-
WEB network approach is explained hereafter.

852

commumcat'o"l barrier, send/recy, sendrecv, broadcast, scatter, gather, alltoall, allgather I

Operation
Layer Many-step 1-step 1-hop multicast
multi-hop multicast (No packet contention)
link FPGA A=
A T T board %ﬂ
/
Network / L) » = =
Layer 9 Data
= y g 4 4
2-D mesh network <--- Flow control

Fully connected network

Packet transfer Raw block transfer

Packet signal-level inter-FPGA control Stream signal-level inter-FPGA control

CLK
e AL, - (200 Mz)
Data-Link (>10GHz) Packet

Data Active {

Layer iy,
o NN DN o000 | ()
Data(~ 1500 B) Data[23:16] ’s'
I Control signal Data[15:8] |
Data[7:0) | /
. Flow/synchronization signal 4 T
Control signal Data(64B ~ 128 MB)

Large amount of hardware logic
(a) Conventional packet network

Small amount of hardware logic
(b) OPTWEB network

Fig. 1. Outline of network design.

3.1 Network Design
3.1.1 Data-Link Layer

Synchronization is necessary for communication between
FPGAs. We introduce simple inter-FPGA communication
synchronization in each link for small hardware resources.
The simple inter-FPGA communication synchronization
distinguishes data and control signals. As shown in Fig. 1b,
the link connections have a control lane (Data Active) to
determine whether the data lane is activated or not every
clock cycle. The control signal assumption is conventional
since the equivalent of the start of packet (SOP), or the end
of packet (EOP) control signal is provided in Intel’s FPGAs,
as well as Xilinx FPGAs.

A source FPGA sends data (Clk 3 in Fig. 1b) after it sends
a single-cycle active signal (Clks 0-2). When a single-cycle
active signal is received at a destination FPGA, it is treated
as a notification from the other FPGA. When two-cycle or
longer active signals are received at the destination FPGA,
the first clock data (Clk 3) is removed, and the rest data
(Clks 4~n) is passed to a DMA controller (DMAC). Unlike a
packet structure, we do not have to send the destination
and source FPGA identification because we provide a sepa-
rate end-to-end path (see Section 3.1.2).

We provide no link-level backpressure flow control.
Besides the link-level design, the communication operation
layer handles communication instructions for avoiding a
channel buffer overflow (see Section 3.3).

3.1.2 Network Layer

Network topology would ideally have a low diameter and low
average shortest path length. In this context, we take an ideal
fully connected network topology by using up to 64 1/Os per
FPGA enabled by onboard optics or CPO. The physical imple-
mentation of a fully connected network topology depends on
the number of FPGAs, as shown in Fig. 2. Optical fiber can
transmit broadband signals with low loss and can be easily
connected among FPGA cards. The number of optical fibers
becomes N(N-1), where the number of FPGAs is N, if direct
cabling is taken as shown in Fig. 2a. The direct cabling would
support up to a dozen of FPGAs in terms of the cable density.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 6, JUNE 2021

(b) P-OH

(a) Direct cabling (c) W-OH

Fig. 2. Three physical implementations of a fully connected network.

When connecting a more significant number of FPGAs, we
introduce the concept of Optical Hub in Figs. 2b and 2c [20].
The function of the Optical Hub is an optical shuffle circuit
with passive optical components that physically connect the
FPGAs in a star structure [33]. The Optical Hub does not
provide the arbitration function. It can be a fiber sheet
(Fig. 2b) or wavelength router (Fig. 2c). The former, called
Parallel Optical Hub (P-OH), is a fiber sheet that realizes the
fully connected network topology with high-density fiber
optic wires. Connecting nodes and Optical Hub with N 2N-
core-MPO (Multi-fiber Push On) /MPO ribbon fiber logi-
cally allows for a fully connected network topology. The lat-
ter, called Wavelength Router Optical Hub (W-OH), is the
cyclic wavelength division multiplexing (WDM) technolo-
gies that have been developed in the telecommunications
field [34]. With WDM technology, two single-mode fibers
connect the node and Optical Hub for bidirectional commu-
nication [20], [21]. In this case, only 2N optical fibers or
N 2-core-cables are needed between Optical Hub and all
FPGAs. Its total length becomes short compared to the case
of Fig. 2a.

Our fully connected network topology provides separate
end-to-end paths that behave like circuits using the same
number of I/Os as the number of FPGAs. A source FPGA
thus sends different messages to all the FPGAs simulta-
neously. Notice that the routing function is simple for any
fully connected network implementations because each
path can correspond to a cable or a wavelength.

3.1.3 Communication Operation Layer

The fully connected network topology provides a one-hop
communication to all nodes simultaneously. Since we take a
unicast-based multicast as described in Section 2, we can
provide a one-step one-hop multicast. It is expected that the
communication latency of the multicast is close to that in
point-to-point communication.

We assume the Single Program Multiple Data (SPMD)
model with message passing. We support eight point-to-
point and collective operations, i.e., barrier, send/recv, sen-
drecv, scatter, gather, broadcast, alltoall, and allgather. For
each inter-FPGA communication, the starting address of the
sent data, the starting address of the received data, the data
size, the source and the destination nodes, and the group of
nodes for collectives are specified by a communication
instruction at FPGAs.

3.2 Network Interface Design

Fig. 3 shows a block diagram of the network interface on an
FPGA. The HBM2 is located on the silicon interposer beside

MIZUTANI ET AL.: OPTWEB: A LIGHTWEIGHT FULLY CONNECTED INTER-FPGA NETWORK FOR EFFICIENT COLLECTIVES 853

$3 Connection with Memory-mapped IF

Fully-Connected Network
<> Connection with Streaming IF —

Command
Sequencer

/ User Application Logic %
10 10 10 10 10 0 10 0

Distributed Switch

Changeover Switch

l\ I

Memory-bus Structure

Streaming IF Connections

Fig. 3. Block diagram of the network-interface design in the FPGA.

an FPGA in the FPGA package. The HBM2 has several mem-
ory I/Os (M#i, i = 0, ..., N-1). Each memory I/O is accessed
via a memory-mapped interface, and connected to the
M_DMAC, which consists of multiple DMACs (D#i,i =0, ...,
N-1) in order to eliminate the influence of the host
by offloading of computation and communication. The
DMACs are prepared for the number of connected FPGAs.
Then, basically, the D#n in the FPGA#m is connected to the
D#m in the FPGA#n during collectives. However, in commu-
nications where data is copied and distributed, such as broad-
cast and allgather, any D#i on source FPGA can be used. One
DMALC is selected, and then the distributed switch copies the
data and then distributes it. These DMACs connect to the dis-
tributed switch by stream interfaces (IFs) without address
lines. This is because each FPGA can capture address infor-
mation from communication instructions and because the
address space in each FPGA corresponds to one to one. It is
connected to the user application logic and the distributed
switch through the changeover switch. We can switch the
connection of M_DMAC to/from user application logic and
that to/from the remote FPGA by using the changeover
switch. The command sequencer manages this operation. An
FPGA is connected to all the other FPGAs via the distributed
switch. Each key element of the network-interface design is
explained hereafter.

3.2.1 Distributed Switch

Fig. 4 shows a detailed block diagram of the distributed
switch and M_ DMAC when four FPGAs are interconnected
(we omit the changeover switch). Each D#i consists of a
reading block (R#i) that retrieves data from the memory
and a writing block (W#i) that writes data to the memory.
At the memory side of the distributed switch, 2N stream IFs
are prepared and connected to these R#i and W#i with
stream IFs where N is the number of FPGAs. Similarly, at
the network side of the distributed switch, N stream IFs are
prepared for the data transmission, and the remaining N
stream IFs are prepared for the data reception. Then, Link
IP is placed between the distributed switches of different
FPGAs. SL3 or Interlaken is used as link IP. These link IPs
allow for signal transmission of several 10 Gbps per line,
and enable higher bandwidth communication using multi-
ple signal qualities. These rates are enough for the current

FPGA M DMAC Distributed Switch
#o Distributor Nx1 SW

[Link 1P
M Link Synchronization IP

> To FPGA #1
> To FPGA #2
> To FPGA #3

— From FPGA #1
— From FPGA #2
— From FPGA #3

Fig. 4. Block diagram of the distributed switch and M_DMAC.

network design using a 100(4x25)-Gbps transceiver. The
amount of hardware logic for such Link IP can be smaller
than that of a conventional packet processing method
because no flow control is required.

The distributed switch records the connection pattern
between the network port and Memory I/Os in each collec-
tive. To support the multiple (local and remote) memory
accesses simultaneously, a distributor is placed in each IF at
the sending side. Then, an Nx1 switch is used in the latter
stage to select multiple distributors’ data. On the other
hand, an NxN switch is placed at the receiving side to sup-
port any memory access pattern. These directional switches
enable a direct connection between any DMACs in different
FPGAs. In the local data movement within an FPGA, we set
to connect an output of the Nx1 switch at the sending side
to an input of the NxN switch at the receiving side.

3.2.2 Command Sequencer

The command sequencer is prepared to offload the distrib-
uted data processing of the FPGA from the host. The com-
mand sequencer is connected to the control register of the
distributed switch, the dispatcher of the M_ DMAC, and the
control part of the application user logic and changeover
switch. Instructions from the host to each functional part
are stored in the command sequencer. Then, the command
sequencer sends instructions to each functional part in turn.

Communication types are specified as instructions in an
SPMD model. The starting address of the sent data, the
starting address of the received data, the data size, the
source and the destination nodes, and the group nodes are
specified as the instruction’s arguments of the communica-
tion. When RDMA is performed, the communication path is
set up by specifying the dispatcher, the control register, and
the changeover switch.

3.2.3 Memory-Bus Structure

The M_DMAC and memory I/Os are prepared for all
FPGAs. A full crossbar switch is a common way to connect
all I/Os to retrieve data from any memory space. Xilinx pro-
vides crossbar switches as a default in the FPGA with
HBM2. Xilinx alternatively provides multiple 4x4 crossbar
switches to reduce hardware resources. However, when
multiple crossbars are interconnected for memory read/
write operation, the same end-to-end bandwidth as I/O
bandwidth is not guaranteed [35].

854

$3 Connection with Memory-mapped IF
<> Connection with Streaming IF

Memory I/O Sequencer

(PCIE)

- i
Read Block 5
R #i ;

H Write Block

—
! Re:d Block >
[#i+1 :

: D#i +1 : :

! Write Block

—— | —

Fig. 5. Memory-bus block diagram between memory 1/Os and M_DMAC.

To mitigate this bandwidth problem, we take a different
implementation. Fig. 5 shows a block diagram of our mem-
ory-bus configuration between memory 1/Os and M_DMAC
for ensuring high read /write throughput. We prepare two
independent IFs with the same memory capacity in one mem-
ory I/O. HBM2 has a feature that allows one memory I/O as
two pseudo channels for enabling two separate IFs. Two IFs
of the memory I/O are connected to one D#i and PCle with a
2x2 crossbar switch. This configuration is considered to be
the smallest configuration that can read the written data.
Even in this minimal configuration, the occupation of the
memory-mapped bus by the DMACs makes it possible to
ensure high throughput with simultaneous read / write opera-
tions in bidirectional communication in each FPGA.

3.3 Behavior

Fig. 6 illustrates the communication flow. Since we assume
the SPMD model, the source and the destination FPGAs fol-
low the same flow. The command sequencer issues and for-
wards an instruction, i.e., barrier, send/recv, scatter, gather,
broadcast, allltoall, or allgather, to the control register of the
distributed switch and the dispatcher of the M_DMAC.

When the instruction to the distributed switch is a bar-
rier, no local memory access occurs. Thus, it immediately
sends a simple control signal, i.e., the signal at Clk 0-2 in
Fig. 1b, to the other FPGAs. Each FPGA completes barrier
when it receives control signals from all FPGAs.

When the other instruction is issued, we extract the type of
communication, the group to be communicated, and the data
size from the communication instructions. We then identify
the path for data transfer by the former two parameters. If the
data size exceeds the receive buffer prepared for eager com-
munication, rendezvous communication is performed. In ren-
dezvous, the destination FPGAs send simple control to all
source FPGAs. At the source FPGA, the data is sent out from
the distributed switch after confirming that all relevant con-
trol signals are received. Otherwise, eager communication is
performed. The distributed switch counts the data on both
the sending and receiving sides. It then notifies the command
sequencer when all the data has been sent or has been
received. After receiving all data, the simple control signal
is sent to the source FPGA. Thus, the distributed switch
counts the communication data volume to detect the comple-
tion of communication. Based on the completion of the
communication, the command sequencer executes the
next communication. Sequential execution of communication

IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 6, JUNE 2021

s)

Start)

M_DMAC,
Distributed Switch

Instruction

Others

Comm. type
Barrier | Reserve link group |
v
(Al Directional switching SIS
In Distributed Switch | e
Send

~ <= Receive buffer

> Receive buffer
Send simple

ontrol signal

simple control signal

Received

| Complete data |
transmission

(Destination) Send s"f“"e
control signal

Control signal
eception statu.
Received

Command Sequencer

signal
ion status

Notification

Received

Notification

End

Fig. 6. Communication flow in both source and destination FPGAs.

instructions does not require no extra memory for temporary
storing upcoming communication data because all the com-
munication data is stored in the memory of FPGAs in each
communication step.

An OPTWEB network achieves collision-free communi-
cations because of neither collision on a link nor collision on
DMACs. We prepare the DMACs with the same number of
connected FPGAs and more. Thus, no collisions occur
between DMA and memory controllers by taking different
memory spaces for transmitted and received data. No colli-
sions also occur between DMACs and memory.

To achieve high bidirectional throughput, we take strip-
ing data placement on multiple memory banks. If the data
address is placed consecutively in one memory space, the
memory bandwidth is not enough to operate that data with
the wire speed. The physical top address (Pa) in each strip-
ing data is computed from the relative top address (Ra) in a
communication instruction, as shown in (1).

Pa (i)= Ra + 2K xi,i = 0, 1, ---, N—1, (1)

where K and i is the capacity of memory in each memory IF
and the identification number of connected FPGAs, respec-
tively. The striping data placement is applied to multiple
memory banks when data is sent to or received from multi-
ple FPGAs simultaneously. This makes it possible to read
and write data from multiple D#n in parallel.

The introduction of the striping data placement with
multiple D#i does not increase the start-up latency. Each
DMAC has the address translation mechanism based on
Equation (1). By indicating the relative top address to the
dispatcher of the M_DMAC, each DMAC automatically
accesses the memory under the physical top address. This
placement provides low-latency collectives similar to point-
to-point communication, and can maximize the effective
bandwidth in some collectives.

MIZUTANI ET AL.: OPTWEB: A LIGHTWEIGHT FULLY CONNECTED INTER-FPGA NETWORK FOR EFFICIENT COLLECTIVES 855

1st: Scatter A
@™
)
B gy D]
Ez‘.l
nd-
2nd: Gather

Fig. 7. Multipath routing from FPGA #0 to #2.

3.4 Multipath Routing

The main drawback of an OPTWEB network is a low band-
width path between two FPGAs due to a fully connected
network topology. For example, when an FPGA network
bandwidth is 400 Gbps in total, the link bandwidth to
another FPGA becomes 25 Gbps on a 16-node OPTWEB
network.

To increase the communication bandwidth between two
FPGAs, multiple indirect two-hop paths can be optionally
taken via intermediate FPGAs in parallel, which is called
multipath routing [20]. In the multipath routing, point-to-
point communication is replaced with the scatter and gather
collectives handled by the command sequencer, as shown in
Fig. 7. Then, the command sequencer sequentially performs
the two collectives.

Multiple one-hop transfers in the multipath routing use
different network resources, e.g., buffers in the distributed
switch and the DMAC. Each communication data is stored
in the memory of a destination FPGA. Thus, the cyclic chan-
nel dependency never occurs on the multi-path routing.
Besides, a maximum number of one-hop transfers is limited,
e.g., up to two. Therefore, in the multi-path routing, a dead-
lock or a livelock does not occur.

The two collective communications are executed consec-
utively by the command sequencer in each FPGA. Then, a
distributed routing can be implemented, as shown in the
control flow in Fig. 6.

The multipath routing improves the average link utiliza-
tion, especially when only a few FPGAs communicate with
each other because a point-to-point communication can use
all links. Since a collective consists of multiple point-to-
point communications, the multipath routing can be
applied for collectives. In the case of broadcast, the data is
divided and scattered to each FPGA, and the divided data
is shared by allgather. We hereafter call the original one-
hop path the direct path to distinguish it from the multipath
enabled by the multipath routing.

4 PERFORMANCE EVALUATION

4.1 Experimental Setup

In an OPTWEB network, the number of memory 1/Os is
equal to the number of FPGAs. We use a Stratix10 MX
FPGA with two HBM2s with a large number of memory I/
Os. These HBM2s have 16 memory 1/Os (32 pseudo IFs),
and a total memory capacity of 8 GiB. This FPGA has 64
GXT transceivers with up to 28.3 Gbps. We fabricated new
FPGA accelerator cards, and built a prototype accelerator
system as shown in Fig. 8. Each FPGA card has eight small

FPGA with HBM2 5((’4‘;"(!;’;/ ';')‘k
(Stratix10 MX) P
m Eill<

X

Optical I/O Core
(25 Gbps x8ch x8p,
Bidirectional)

SEER
i
N7
L EZE

Fig. 8. Evaluation prototype system with four FPGA cards.

and high-density optical transceivers (4x25- Gbps transmit-
ting and 4x25-Gbps receiving), Optical I/O Core, devel-
oped at PETRA [24], and mass-produced by AIO Core.
These optical transceivers were connected to the GXT trans-
ceivers on an FPGA as pluggable embedded optical mod-
ules, and achieve error-free transmission, i.e., the bit error
rate was less than 1072, between two FPGAs without error
correction. This FPGA card enables the aggregate 800-Gbps
network bandwidth.

We used Intel Quartus Prime Pro version 19.4 for the
synthesis and implementation of our designs, which we
developed in Verilog. We used the existing memory I/Os
for HBM2 and SerialLite3 (SL3) [36] to realize the configura-
tion shown in Figs. 2 and 3. We provided an end-to-end
path in which all components provide almost the same
bandwidth. There were 256 data lanes in each pseudo chan-
nel of HBM2. Therefore, each path in Fig. 4 was unified to
256 lanes at 200 MHz. This makes it possible to connect at
the maximum of 51.2 Gbps for each connection. The above
design eliminates the need for extra frequency conversion
circuitry between the IPs and can reduce hardware resource
utilization. Then, we developed the distributed switch,
M_DMAC, and the command sequencer. The distributed
switch and M_DMAC were designed with a 50-Gbps
(2x25-Gbps) for connecting up to eight FPGAs. We evalu-
ated the communication characteristics of the four FPGAs
except for the multipath routing in Section 4.3.4.

The latency through the distributed switch was about ten
cycles. A 16-KiB reception buffer was provided in the mid-
dle of the data line to enable low latency communication by
eager communication. An FPGA card used a physical band
of bidirectional 50 Gbps by bundling two optical trans-
ceivers’ maximum bandwidth of 25 Gbps. To entirely pro-
vide 50-Gbps throughput, each IP core was used. The
operating frequency of the SL3 was set to 355 MHz with
64B/67B physical layer encoding, thus providing 50-Gbps
unidirectional bandwidth. Error Correction Code with one-
bit correction and two or more bits detection was used in
SL3. Therefore, the effective bandwidth of SL3 became 45
Gbps [36].

4.2 Preliminary Results of Barrier Operation

To demonstrate RDMA on collectives, the M_ DMAC and
the distributed switch have eight ports to connect eight
FPGAs. In the prototype accelerator system, four ports are
used for four FPGAs. In an OPTWEB network, the com-
mand sequencer of the FPGA directly instructs each func-
tional part. Therefore, we implemented a counter function
in the command sequencer to measure the communication

856

8 — * HO & #I
g B#| & #2
= 0.l

= AHO & #2
k=] XH0 & #3
= * * °

-) ¢ N

E o & #3
" o001

Ist 2nd 3rd 4th
Barrier instruction

Fig. 9. Synchronization time jitters on barrier operation.

time of each communication instruction. The counter works
at 200 MHz. When measuring the execution time at each
communication instruction, the time jitter between FPGAs
needs to be taken into account. The delay in communication
is sub usec, and the time jitter between the FPGAs should
be at most a few tens of nsec.

Our simple synchronization mechanism attempts to min-
imize the time jitter between FPGAs. Fig. 9 shows the time
jitter between FPGAs estimated from the total time when
the barrier operation is executed consecutively. Initially, we
set to adding 1 msec delay to #2 and 2 msec to #3 for the
behavior verification. In the OPTWEB network, the first exe-
cution of the barrier operation, the slowest FPGA #3 finishes
early, and the other FPGAs finish after receiving the control
signal from #3. Therefore, there is a timing difference of
about 0.3 usec between the FPGAs, which is equivalent to
the migration delay of the control signal. As shown in
Fig. 9, the timing difference becomes less than 20 nsecs.

Then, after running the barrier twice, we start each com-
munication operation multiple times in succession to mea-
suring its performance. In the next subsection, we measure
the average time it took to complete the transmission (T7)
and the time it took to complete the communication (T>) in
Fig. 6. The signal migration delay between FPGAS (T igration)
can be approximated by (T»-T7)/2 with minimum data
transmission.

4.3 Results
4.3.1 Effective Bandwidth

Each communication was performed four times with 128
MiB and 64 B placed in each memory area and measured
T1,128 miss T2,128 mis, T1,64 B and T4 B The value of T1,128 miB
represents the transmission delay at 128-MiB data transfer,
while the value of T, 44 p is the communication delay at 64-B
data transfer. First, we estimated Tmigration from Ty 64 g and
To64 B in each collective. We then estimated the effective
bandwidth in transmission from T 125 mip and the effective
bandwidth in reception from T3 128 miB -~ Tmigration- Fig. 10
shows the effective bandwidth in each communication at
128-MiB data transfer. We confirmed that the effective link
bandwidth was about 45 Gbps for all the collectives limited
by SL3 [36].

In collectives, data are moved across all the relevant links
in parallel. In sendrecv operation, which is bidirectional
communication between two FPGAs, the bandwidth is dou-
bled to 90 Gbps in total. In the case of scatter/gather/broad-
cast, the aggregate effective bandwidth per node becomes
135 Gbps, which equals to a multiplication value between

IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 6, JUNE 2021

50(FPGA x2) (FPGA x4)
X T .)
£ 40
$ 30
a ';‘20 O Send
é 6“ 10 W Receive
=0
2 P N S
5 (2 N & & &
[} & & 3 & N 3
& ° < Q)(0'7’ voaw

Fig. 10. Effective link bandwidth of each communication (unidirectional).

the number of links per node and the link bandwidth. The
effective bandwidth of allgather/alltoall, which is bi-direc-
tional communication between all FPGAs, becomes aggre-
gate 270 Gbps per node. Simultaneously, in several FPGAs
with internal data movement, there is an additional 90 Gbps
of data transfer between internal memories.

Fig. 11 shows the data size versus the effective band-
width per link for sendrecv, alltoall and allgather opera-
tions. The horizontal axis is the data size per unidirectional
link. The operation of alltoall/allgather has the same effec-
tive bandwidth as that of sendrecv. This interestingly means
that the collective has the same effective bandwidth as that
of point-to-point communication. The dotted line in the
figure shows the theoretical values of the effective band-
width. It is computed with the start-up latency of 0.8 usec
for the maximum effective bandwidth of 45 Gbps (the
breakdown of the 0.8 usec is given in the next subsection).
Since the evaluated values are interestingly on the analytical
curve, it can be said that we obtain the expected effective
bandwidth.

4.3.2 Start-up Latency

The start-up latency is expressed as the sum of the configu-
ration delay for communication instructions and the migra-
tion delay for data/control signal movement. To clarify the
latency breakdown for each communication, we measured
T1648 as configuration delay and Tgration as migration
delay. These delays were also estimated for the barriers in
the same way. Fig. 12 shows the results of start-up latency
for 64-B data transfer in each communication.

In barrier operation, we obtained a configuration delay of
0.04 pusec and a migration delay of 0.36 psec. This configura-
tion delay is the preparation time for the distributed switch
to recognize the instructions received and sends out the con-
trol signal. This indicates that about seven cycles are needed

Eager 16 KiB Rendezvous
50 i
~ ! \ I J LI
< ! o
= 40 i i
=~
0 A ’
o ';' 30 " | i it
< _g' ; ----theoretical value
202 : + SendRecv
% ; m Allgather
< 10 S a Alltoall
3 :
«@ 0 Ll mn® il) I
0.0l 0.1 | 10 100 1000 10000

Data size [KiB]

Fig. 11. Effective bandwidth of unidirectional link versus data size.

MIZUTANI ET AL.: OPTWEB: A LIGHTWEIGHT FULLY CONNECTED INTER-FPGA NETWORK FOR EFFICIENT COLLECTIVES 857

Eager Rendezvous
| X4 x2 x4 (FPGA)
; 08 [) B Migration
s 0.6 O Configuration
ads
2 0.4
t 02 u
[
n 0
£ 8 £ £ &N £ &L
(\0 Q(' é@ 6\0 0’9 “O‘b &Q/ i?@
‘Z:"’(f_)é\\& & & Q,(,57'6 W Y§@ Y§@

Fig. 12. Start-up latency of collectives and point-to-point communication.

for this configuration. One of these cycles is the time actu-
ally to send out the control signal. On the other hand, the
migration delay is the time it takes for a control signal to
move between FPGAs. This Migration delay includes a
0.15-psec delay in SL3 [36]. The time to transmit the optical
cable is as short as several nanoseconds. Therefore, we think
the remaining 0.21 psec is mainly in-FPGA process time,
including managing the link.

On the other hand, the start-up latency for the 64-B eager
communication is 0.71 usec, with 0.32 usec being configura-
tion delay and 0.39 usec being migration delay. The config-
uration delay in communication requires a time to read/
write data from the memory I/O of HBM2, unlike barrier.
In the case of Xilinx, this time requires about 90 cycles stated
in the specification [37]. The 90 cycles are 0.45 jsec since the
operating frequency of HBM2 is 200 MHz. Interestingly,
the HBM2 internals complete it at 0.32 psec in the prototype
system.

We shift to consider the migration delay, i.e., 0.39 usec.
This delay was more significant than that of barrier opera-
tion with 0.03 usec. This difference is because the data size
was checked in the module near M_DMAC in a distributed
switch. This process adds time for the data to pass through
the distributed switch.

We evaluated the start-up latency of eager and rendez-
vous communications on allgather operation in Fig. 12. It is
possible to switch between the two communications by set-
ting the data size to be switched to a dedicated register.
Therefore, we set the receive buffer size to 0 B, and rendez-
vous communication is performed even with 64-B data size.
The configuration delay increases for the rendezvous pro-
cess. However, the increased latency is marginal, about 0.09
usec. The rendezvous process requires the migration delay
for the control signal. By contrast, in our implementation,
the rendezvous process was performed during the HBM2
processing. We thus mitigate the latency increases in ren-
dezvous communication.

Fig. 13 shows the results of the start-up latency estimated
from the time it takes for the reception and the effective band-
width of SL3. The start-up latency is almost constant regard-
less of data size, i.e., 0.71 usec for eager communications and
0.80 usec for rendezvous communications, as shown in
Fig. 12. However, when data size is more than 1 KiB, we
observe a variation in the start-up latency. We consider that
the marginal bandwidth difference between 51.2-Gbps inter-
nal bus and 50 Gbps of SL3 affects the start-up latency.

We emphasize that the start-up latency with less than 0.90
usec is achieved on the OPTWEB network for a wide range of
data sizes for sendrecv, allgather and alltoall operations.

| Eager 16 KiB Rendezvous
R 0 A A ARED
> oa ﬁ*g:“&:,ﬂ L
g o8 gL tink 1
g 07 o sden ; |
& 506 L 1L : i
. §0.5 T T
=04 i + SendRecv ||
E 8; 1 | = Allgather []]]|
(] . ! 4 Alltoall
0.1 : 1t
0 : [T TT]
0.0l 0.l | 10 100 1000 10000

Data size [KiB]

Fig. 13. Start-up latency versus data-transfer size.

4.3.3 Scalability

To investigate the effect of the number of FPGAs on com-
munication behavior, we performed allgather operation on
two to four FPGAs in terms of the effective bandwidth and
start-up latency characteristics shown in Fig. 14. We observe
that the communication performance was not affected by
the number of FPGAs. This means that the communication
performance per link is constant as the number of FPGAs
increases.

Cygnus supercomputer using Intel Stratix 10 FPGA
including routing module takes 0.5 psec [12] for a neighbor-
ing ping-pong communication. It is difficult to compare
these results due to the different evaluation methods. How-
ever, in the ping-pong evaluation in [12], the communica-
tion of ping-pong is performed in parallel. This means that
the data is cut through in the turnaround FPGA. Hence, we
consider that the start-up latency in [12] to be almost identi-
cal to our 0.71-usec start-up latency.

Existing direct inter-FPGA networks have high per-hop
latency, e.g., 200 ns of Cygnus supercomputer. In the case of
8x82-D mesh, the worst point-to-point communication
start-up latency was 1.87 usec [12]. We expect that collec-
tives require a large number of total path hops in 2-D torus
[7]. We expect that the large start-up latency in collective in
[29] and [30] is due to these effects. Thus, the existing direct
inter-FPGA networks have to accept large start-up latency
as the number of FPGAs increase.

By contrast, the OPTWEB network provides the lowest,
constant start-up latency of collectives, as shown in Fig. 14.
The OPTWEB network increases the effective bandwidth
proportionally with the number of FPGAs. In this context,
we conclude that the OPTWEB has high scalability for sup-
porting collectives.

4.3.4 Multipath Routing

Fig. 15 shows the experimental results of the multipath rout-
ing for point-to-point communication. In the figure, N repre-
sents the number of FPGAs. We implemented it by the
combination of scatter and gather. In the multipath routing,
we take striping data placement on multiple memory banks
as described in Section 3.3. We evaluated the multipath rout-
ing when four and eight FPGAs. Since the multipath routing
uses all network links, it is expected that end-to-end band-
width becomes large as the number of FPGAs increases.

As shown in Fig. 15a, the start-up latency of the multi-
path routing is more than twice as high as that of the direct

858

| 50
> =] ::] ::] .-E
g o8 40T
g X X X 3
8 006 30 &
¢ £
{: S04 4 Aligather Latency 20 '3 g:
8§ 02 X Alltoall Latency 10e
s @ Allgather Bandwidth S

0 + Alltoall Bandwidth o @

| 2 3 4 5
Number of FPGAs

Fig. 14. Start-up latency and bandwidth versus the number of FPGAs.

path, which is 1.87 usec with four paths. This is due to the
additional time for confirming the reception completion.
This processing overhead is imposed for collision-free mul-
tipath routing communications. The communication time of
the multipath routing is shorter than that of the direct path
when the data size is larger than 16 KiB. As a result, the
effective bandwidth becomes 90 Gbps for four FPGAs and
180 Gbps for eight FPGAs, which is an N/2 time higher than
the direct path, as shown in Fig. 15b.

4.4 Hardware Resource

The three most valuable resources are ALMs (Adaptive
Logic Modules), M20K (high-speed memory), and DSP
(Digital Signal Processing) on an FPGA. We evaluated the
amount of these hardware resources in the proposed config-
uration with 400-Gbps bandwidth. We pick up 400-Gbps
bandwidth because it is the same bandwidth as a modern
NIC card. Evaluation results showed that the utilization of
each resource was 31.4, 5.8, and 0.0 percent, respectively. By
eliminating the backpressure, an OPTWEB network signifi-
cantly reduces the required amount of the M20K for the
high-bandwidth interconnects.

As for the ALMs, it is crucial to estimate the amount of
hardware as the bandwidth increases. Here, we evaluate
the case when the aggregate bandwidth, i.e., 800 Gbps, is
fully used on the FPGA card. The 800-Gbps configuration
was estimated by using two 400-Gbps modules. After
extracting the amount of ALMs used by each IP, we esti-
mated the ALM utilization and their breakdown in Fig. 16.
Compared to the aggregate 400-Gbps interconnect, the utili-
zation of the other IP cores becomes double while the PCle
for connecting to the host, which is independent of the num-
ber of nodes, remained the same.

When the design in literature [14], [16] is directly applied
to 800-Gbps bandwidth, the amount of network resource
surprisingly exceeds the total amount of ALMs in the

1000 e Directpath

250 ——

e o Mullipath N=4 o] e Directpath

S 400 A Multipath N=8 024 | 2200 |=Multipath N=4

g e © 4 Multipath N=8 ;444

= oTA =150 A

© DA i~

o 310 EE > a

é-ﬂ - omsogd® 5100 TR ;Aggﬁﬁa’ac
1 o 11

£ o § 50— Agocecooce

6 m p

© o1 0 eoag® T T
01 1 10 1001000 01 1 10 1001000

Data size [KiB]
(a) Communication time

Data size [KiB]
(b) Bandwidth

Fig. 15. Communication time and bandwidth of the multipath routing.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 6, JUNE 2021

100
90 Others

o mPCle

60 oHBM2

ig @ Memory-mapped IF
DMA
m Distributed Switch

30
20
10

0

ALM utilization [%]

& Seriallite3

400 Gbps 800 Gbps

Fig. 16. ALM utilization for an 800-Gbps network on FPGA.

FPGA. This is not implementable. On the other hand, the
OPTWEB successfully consumes only 26 percent ALMs for
the distributed switch and SL3 due to both simple synchro-
nization and eliminating the backpressure.

ALMs consume 57.7 percent in total by the 800-Gbps net-
work. The remaining part, 42.3 percent of the ALMs, is
available for user application logic including the change-
over switch and the command sequencer. The ALM utiliza-
tion of the user application logic is similar to that of the
distributed switch. Thus, about 40 percent of ALMs are rea-
sonable for providing user application logic.

5 DISCUSSION

5.1 Cost

Beyond the performance evaluation that we have already
investigated in the previous section, another practical con-
cern when deploying an inter-FPGA network is cost. We
compare a conventional packet network and the OPTWEB
network for interconnecting 32 nodes.

5.1.1 Condition

Based on InfiniBand’s price, a 32-node connection of 800
Gbps on each node would be about 9 $/Gbps taken from
the Mellanox online site [38]. Since 32 nodes can fit in a
rack, we assume to use the copper-cable cost. As for the
OPTWEB network, we pick up W-OH using WDM for
implementing a fully connected network topology. The cost
of the optical transceiver itself is set at 1 $/Gbps, which is
possible with silicon photonics [39]. The optical hub itself is
an optical passive component and does not require a trans-
ceiver, which is located only in each FPGA. The cost of an
FPGA is set at 1250 $ per FPGA and the communication cost
of FPGA is calculated from the total hardware resource uti-
lization (ALMs, M20K, and DSP). Light sources and WDM
filters will be needed for the number of FPGAs. We use mul-
tiple WDM filters for cyclic WDM property to ensure link
connection. The market price of these is about 400 $ and 90
$ per unit. However, there is an Erbium-doped fiber ampli-
fier (EDFA) that can amplify wavelength-multiplexed light
with high efficiency and low noise. By using EDFAs (500 $
per unit) and splitters (432 $ per unit) together, these com-
ponents can be shared across multiple links, and the cost
can be reduced to be 3 $/Gbps.

5.1.2 RESULTS

Fig. 17 shows the cost estimation of both networks. The total
cost of W-OH can be reduced to 5.5 $/Gbps. This indicates
that the reduced cost of OPTWEB is about 40 percent

MIZUTANI ET AL.: OPTWEB: A LIGHTWEIGHT FULLY CONNECTED INTER-FPGA NETWORK FOR EFFICIENT COLLECTIVES 859

32 nodes
800 Gbps@1node
@ Electrical Switch
HCA
M DAC cable
OWDM Filter
O Light Source/Optical Amp
@ FPGA
Optical Transceiver

$/Gbps

Conv. Packet
Network

Fig. 17. Cost of conventional packet and OPTWEB networks (32 nodes,
800 Gbps in node).

compared to that of a counterpart InfiniBand network.
InfiniBand supports many functions stated in InfiniBand
Trade Association (IBTA). Supporting many functions lead
to a high cost. By contrast, a custom inter-FPGA network
can be simplified, and it becomes cheaper than InfiniBand.

We shift to compare the wiring cost on the OPTWEB net-
work. The wiring cost is almost constant for moderate link
bandwidth since an optical passive device is used. The two
implementations of a fully connected network topology are
evaluated in Fig. 17. P-OH’s wiring costs were estimated
using fabricating fiber sheets (MPO connections) for 1024
optical fibers. For W-OH, the cost was estimated under the
same condition as the optical components shown in Fig. 17.
P-OH is cheaper than the direct cable method in Fig. 2a
because of the ability of high-density MPO connectors.
Then, we omit a direct cabling implementation in Fig. 18.
However, the cost of P-OH increases with the square of the
number of FPGAs. On the other hand, W-OH’s wavelength
multiplexing technology makes it possible to consolidate
multiplexed wavelength connectors into a single connector.
Furthermore, the wiring cost is proportional to the number
of FPGAs. Thus, we conclude that P-OH should be used by
up to 32 FPGAs, while W-OH is preferred for the larger
number of FPGAs.

5.2 Application Performance Estimation

The ultimate evaluation of an OPTWEB network is to estimate
and compare the execution time of parallel applications. Since
we do not have a conventional packet network of FPGAs, we
estimate the relative performance of conventional packet net-
works (2-D torus, one-switch) and OPTWEB network using
the discrete-event simulator SimGrid v3.12 [43]. A one-switch
packet network connects all FPGAs to a single switch. As
described in Section 2.3.2, to our best knowledge, only Ether-
net switches are commercially available for building FPGA
indirect networks. However, Ethernet’s IPs impose an unac-
ceptably large amount of the logic for high-bandwidth I/O on
an FPGA. In the simulation, we assume an ideal lightweight

200000 rBralleT Optical Hub /s@_
% 150000 |(P-OH) el
g 100000
Q

50000

0

0 8 16 24 32 40 48 56 64 72
Number of FPGAs

Fig. 18. Wiring cost on an OPTWEB network on parallel and wavelength
router Optical Hub networks.

M 2-D torus
o 6 =
2 [= M One-switch
3 4 ?
g ¢ . E1OPTWEB
S 2 1
[‘ '
" mlll el
IS FT Graph MM Avg

Fig. 19. Relative execution time of parallel applications for conventional
packet and OPTWEB networks.

one-switch network that unburdens Ethernet compatibility
for comparison purposes.

Modeling a computing system can be coarse grain in
SimGrid, and we set a computation power of a node to 50
TFlops. For a fair comparison, node bandwidth is set to 800
Gbps on the three networks, i.e., 50-Gbps link on OPTWEB
network while 200 Gbps on 2-D torus. We target the com-
munication behavior of a parallel integer sort (IS), a parallel
fast Fourier transform (FFT) of NAS Parallel Benchmarks,
and a Graph500, and a parallel matrix multiplication (MM).
IS and FT set class C. MM takes an 8192 x 8192 matrix. As
for IS and FT, alltoall is frequently used. Graph500 and MM
frequently used allgahter and broadcast, respectively. In the
evaluation, the OPTWEB network selects direct or multi-
pathdepending on the communication data size and com-
munication type [20]. The larger communication data for
point-to-point and some collectives, e.g., broadcast, should
be transferred by the multipath routing, while the remain-
ing data is transferred along with a direct path. Alltoall is
also performed along with direct paths that use all links on
a fully connected network topology. The threshold data size
is set based on the observation of Fig.15. According to this
policy, only Graph500 and MM use the multipath routing in
our evaluation.

Fig. 19 illustrates the application speedup of each net-
work relative to 2-D torus on 16 nodes. The higher value is
better in the figure. The OPTWEB and one-switch network
achieve six times better than 2-D torus in IS and FT. This is
because high-radix networks provide high alltoall perfor-
mance. On Graph500, the OPTWEB network outperforms
by 4.8x and 1.24x the 2-D torus and one-switch networks,
respectively. Our implementation of Graph500 generates
flat traffic, and the average low-latency communication is
preferred. On MM, the OPTWEB network improves by 3.5x
and 1.5x the 2-D torus and one-switch networks, respec-
tively, because the OPTWEB network efficiently supports
broadcast by the multipath routing. Consequently, the OPT-
WEB network speeds up 7.1 percent on average compared
to the one-switch network.

We conclude that the OPTWEB network is efficient for
the parallel applications that frequently generate collectives.

5.3 Limiting Factors of Scalability

A crucial limiting factor in building an OPTWEB network is
the number of FPGA card I/Os. In this study, we implement
an OPTWEB network on the FPGA card using eight 100-Gbps
(4x25-Gbps) links. This enables to connect 32 FPGAs. There is
still a small room to increase the I/O’s density on an FPGA
card by wavelength multiplexing technology [23]. There is a
constraint on the wavelength bandwidth of about 40 nm that

860

\

’/ I‘\/I \‘ll (\\\ 3 ;
AL ‘.
SR SENR ot
o R -)

Group #3 KE: ") Group #1

FPGA

Group #2

Fig. 20. A 16-node Dragonfly network topology on an OPTWEB network
(g = 4, k = 6) [20]. We omit inter-group links except for the inter-group
links of Group #0.

can be commonly utilized. In the case of a wavelength interval
of 50 GHz (approx. 0.4 nm), we consider that the maximum
number of I/Os can be 64 on a cost-effective FPGA.

Another stringent constraint on the number of FPGAs is
the number of memory I/Os. In this study, two memory I/
Os are used to communicate with a single FPGA. Currently,
the maximum number of HBM2 chips in an FPGA is up to
two, and this becomes a limiting factor in increasing the
number of FPGAs. Fortunately, we would take an alterna-
tive to establish a more significant number of pseudo chan-
nels by splitting one memory I/O into multiple memory I/
Os. We thus consider that the constraint on the memory I/
Os can be mitigated.

We shift to discuss the possibility of increasing the
network performance with 64 FPGAs (64x50 Gbps). In
the early 2020s, faster 1/0O, larger FPGA packages, and
improved circuit design techniques will fill the scale gap
from 32/64x25 Gbps to 64x50 Gbps. In the latest FPGAs,
the bandwidth of the high-speed transceiver on the net-
work side has been accelerated to 57.8 Gbps using pulse
amplitude modulation (PAM) technology [40]. In terms of
the number of network I/Os, each FPGA can support 64
x 50 Gbps. This allows 128 optical fibers to be extracted
from the FPGA chip using Co-Package Optics, which
allows for high-density optical transceiver placement [23].
The number of fiber connectors can be reduced using
WDM technology. In addition, the FPGA chips are getting
larger: the Stratix10 GX 10M is available in a chip 1.7
times larger than the Stratix10 MX 2100 and with five
times the number of ALMs. Considering this background,
we will be able to introduce new FPGAs with more
ALMs and more HBM2s soon, like the other accelerators
[25]. Improvements to the FPGA core architecture are
also expected to improve the operating frequency. In
Intel’s case, the second generation of HyperFlex can be
expected to improve by 40 percent [32]. As a result,
ALMs are also expected to increase by a factor of four.
An OPTWEB network relies on technology-driven design,
and each FPGA has up to 64 connections.

Finally, we consider connecting a larger number of FPGAs
with a diameter-2 network topology. The two-hop indirect
paths can guarantee the reachability on a diameter-2 network
topology. Fig. 20 is a diameter-2 network topology, and it is a
Dragonfly network topology that consists of fully connected

IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 6, JUNE 2021

inter-group and intra-group connections [20]. An FPGA can
communicate with each other through a one-hop or two-hop
path. Given k links of an FGPA and g groups on the above
Dragonfly network topology, it supports up to g(k-g+2)
FPGAs on an OPTWEB network. The Dragonfly network
should have k > 3(g-1) based on the recommendation in [42].
In this case, up to 22 x (64-22+2) = 968 FPGAs can be intercon-
nected for k = 64. Theoretically, allowing n-hop indirect paths
enables diameter-n network topology that exponentially
increases the number of FPGAs on an OPTWEB network.

As described in Section 3.4, the command sequencer
allows collision-free communication on the two-hop indi-
rect paths. Thus, a diameter-2 network topology can be con-
structed with collision freedom among links and DMACs
on an OPTWEB network. Thus, the diameter-2 network
extension is thus feasible with our FPGA network design.

6 CONCLUSION AND FUTURE PROSPECTS

Some dozens of tightly coupled FPGA accelerators form a
parallel computing platform. However, a conventional indi-
rect packet network using Ethernet’s IPs imposes a large
amount of the logic on an FPGA for high-bandwidth inter-
connects. Besides the hardware-resource problem, a low-
radix network topology, e.g., 2-D torus, becomes a problem
in terms of their large path hops on direct inter-FPGA net-
works. The path hop directly increases the communication
latency.

To mitigate both problems, we propose an OPTWEB net-
work that provides a lightweight, fully connected inter-FPGA
network for collectives. We prepare a separate one-hop end-
to-end path for every pair of FPGAs. A raw block data is trans-
ferred with a simple synchronization. The routing informa-
tion, i.e., source and destination FPGA addresses, are not
needed for each communication block data. Since each FPGA
performs input and output of the remote memory access
simultaneously, multiple RDMAs enable the collectives with
almost the same start-up latency, i.e., 0.71 psec between Intel
Stratix 10 MX FPGA cards with our onboard optics, as that
of he point-to-point communication. The start-up latency
would become large in the direct inter-FPGA networks with
low-radix tori as the number of FPGAs increases. By contrast,
the OPTWEB network provides almost constant start-up
latency, ie., 0.71 usec. We also demonstrate that collectives
fully utilize the maximum effective bandwidth of each link on
the OPTWEB network.

OPTWEB network with 800-Gbps bandwidth per FPGA
consumes only 57.7 percent of ALMs on the FPGA. The
OPTWEB network provides a 40 percent lower hardware
cost than conventional packet networks for interconnecting
32 FPGAs.

An OPTWEB network can introduce the multipath rout-
ing for increasing the end-to-end bandwidth between two
FPGAs. We obtain aggregate 180-Gbps point-to-point com-
munication when using eight FPGAs. The two-hop indirect
paths are applicable for interconnecting a larger number of
FPGAs than the number of connections on an FPGA. A
diameter-2 network topology is then supported.

Our future work efficiently integrates simple computa-
tion to the communication operations, e.g., in-network
reduction. Another future work is to provide a productive

MIZUTANI ET AL.: OPTWEB: A LIGHTWEIGHT FULLY CONNECTED INTER-FPGA NETWORK FOR EFFICIENT COLLECTIVES

software environment. OpenCL, a high-level language, has
made it possible to design FPGA circuits. By using a distrib-
uted switch and M_DMAC, we will support arithmetic cir-
cuits provided by OpenCL.

ACKNOWLEDGMENTS

This article is based on results obtained from a project
(JPNP13004) commissioned by the New Energy and Industrial
Technology Development Organization (NEDO). The authors
would like to thank Mr. Ishida of NIPPON SYSTEMWARE
Company Ltd., for his technical suggestion and support on
the synthesis and implementation of the custom FPGA.

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

(7]

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

J. Fowers et al., “A configurable cloud-scale DNN processor for
real-time AL” in Proc. Annu. Int. Symp. Comput. Archit., 2018,
pp- 1-14.

S. Watanabe, K. Fujimoto, Y. Saeki, Y. Fujikawa, and H. Yoshino,
“Column-oriented database acceleration using FPGAs,” in Proc.
IEEE 35th Int. Conf. Data Eng., 2019, pp. 686-697.

N. Samardzic, W. Qiao, V. Aggarwal, M. F. Chang, and J. Cong,
“Bonsai: High-performance adaptive merge tree sorting,” in Proc.
Annu. Int. Symp. Comput. Archit., 2020, pp. 282-294.

H. Miao, M. Jeon, G. Pekhimenko, K. S. McKinley, and F. X. Lin,
“Streambox-HBM: Stream analytics on high bandwidth hybrid
memory,” in Proc. Int. Conf. Architectural Support Prog.. Lang. Oper-
ating Syst., 2019, pp. 167-181.

J. Fang, Y. T. B. Mulder, . Hidders, J. Lee, and H. P. Hofstee, “In-
memory database acceleration on FPGAs: A survey,” VLDB],
vol. 29, no. 1, pp. 33-59, 2020.

A. Putnam et al., “A reconfigurable fabric for accelerating large-
scale datacenter services,” IEEE Micro, vol. 35, no. 3, pp. 10-22,
May/Jun. 2015.

J. Duato, S. Yalamanchili, and L. Ni, Interconnection Networks: An
Engineering Approach, Amsterdam, The Netherlands: Morgan
Kaufmann, 2002.

K. Azegami et al.,, “A STDM (static time division multiplexing)
switch on a multi FPGA system,” in Proc. IEEE 13th Int. Symp.
Embedded Multicore/Many-Core Syst—Chip, 2019, pp. 328-333.

J. Lant,]J. Navaridas, M. Jujan, and J. Goodacre, “Toward FPGA-
based HPC: Advancing interconnect technologies,” IEEE Micro,
vol. 40, no. 1, pp. 25-34, Jan./Feb. 2020.

A. D. George, M. C. Herbordt, H. Lam, A. G. Lawande, J. Sheng,
and C. Yang, “Novo-G#: Large-scale reconfigurable computing
with direct and programmable interconnects,” in Proc. IEEE High
Perform. Extreme Comput. Conf., 2016, pp. 1-7.

T. D. Matteis, J. F. Licht, J. Beranek, and T. Hoefler, “Streaming
message interface: High-Performance distributed memory pro-
gramming on reconfigurable hardware,” in Proc. Int. Conf. High
Perform. Comput, Netw. Storage Anal., 2019, pp. 1-33.

N. Fujita, R. Kobayashi, Y. Yamaguchi, T. Ueno, K. Sano, and
T. Boku, “Performance evaluation of pipelined communication
combined with computation in opencl programming on FPGA,”
in Proc. IEEE Int. Parallel Distrib. Process. Symp. Workshops, 2020,
pp- 450-459.

Xilinx, High Speed Serial, Accessed Aug. 6, 2020. [Online]. Avail-
able: https:/ /www.xilinx.com/products/technology/high-speed-
serial.html

A. Mondigo, T. Ueno, K. Sano, and H. Takizawa, “Comparison of
direct and indirect networks for high-performance FPGA
clusters,” in Proc. Int. Symp. Appl. Reconfigurable Comput. Architec-
tures Tools Appl., 2020, pp. 314-329.

A. Mondigo, T. Ueno, K. Sano, and H. Takizawa, “Scalability anal-
ysis of deeply pipelined tsunami simulation with multiple fpgas,”
IEICE Trans. Inf. Syst., vol. E102-D, no. 5, pp. 1029—1036, 2019.

J. Stern, Q. Xiong, A. Skjellum, and M. C. Herbordt, “A novel
approach to supporting communicators for in-switchprocessing
of MPI collectives,” in Proc. Workshop Exascale MPI, 2019, pp. 1-10.
Q. Xiong, C. Yang, P. Haghi, A. Skjellum, and M. Herbordt,
“Accelerating MPI collectives with FPGAS in the network and
novel communicator support,” in Proc. 28th IEEE Int. Symp. Field-
Programmable Custom Comput. Mach., 2020, Art. no. 215.

[18]

[19]

[20]

[21]

[22]

[23]

[24]
[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]
[39]

[40]

[41]

[42]

[43]

861

B. Buscaino, J. M. Kahn, and B. D. Taylor, “Coherent co-packaged
optical interfaces for next-generation electrical switches,” in Proc.
IEEE Photon. Conf., 2019, pp. 1-2.

T. Nakamura et al., “Fingertip-size optical module, “optical I/O
core”, and its application in FPGA,” IEICE Trans. Electron.,
vol. E102-C, no. 4, pp. 333-339, 2019.

Y. Urino, K. Mizutani, T. Usuki, and S. Nakamura, “Wavelength-
routing interconnect “optical hub” for parallel computing sys-
tems,” in Proc. HPC Asia, 2020, pp. 81-91.

R. Proietti et al., “Scalable optical interconnect architecture using
AWGR-based TONAK lion switch with limited number of wave-
lengths,” J. Lightw. Technol., vol. 31, no. 24, pp. 4087-4097, 2013.
COBO, Accessed: Aug. 6, 2020. [Online]. Available: https://www.
onboardoptics.org/

M. Wade et al., “TeraPHY: A chiplet technology for low-power,
high-bandwidth in-package optical 1/O,” IEEE Micro, vol. 40,
no. 2, pp. 63-71, Aug. 2019.

AIO CORE, Accessed Aug. 6, 2020. [Online]. Available: http://
www.aiocore.com/

NEC SX Aurora TSUBASA, Accessed: Aug. 6, 2020.[Online].
Available: https:/ /www.nec.com/en/global/solutions /hpc/sx/
T. Akiba, S. Suzuki, and K. Fukuda, “Extremely large minibatch
SGD: Training resnet-50 on imagenet in 15 minutes,” in Proc. Neu-
ral Inf. Process. Syst., 2017, pp. 1-4.

B. Klenk, N. Jiang, G. Thorson, and L. Dennison, “An in-network
architecture for accelerating shared-memory multiprocessor
collectives,” in Proc. Int. Symp. Comput. Archit., 2020, pp. 996-1009.
A. Liet al., “Evaluating modern GPU interconnect: PCle, NVLink,
NV-SLI, NVSwitch and GPUDirect,” IEEE Trans. Parallel Distrib.
Syst., vol. 31, no. 1, pp. 94-110, Jan. 2020.

T. Ueno, T. Miyajima, A. Mondigo, and K. Sano, “Hybrid network
utilization for efficient communication in a tightly coupled FPGA
cluster,” in Proc. Int. Conf. Field-Programmable Technol., 2019,
pp- 363-366.

J. Sheng, Q. Xiong, C. Yang, and M. C. Herbordt, “Application-
aware collective communication (extended abstract),” in Proc.
IEEE Annu. Int. Symp. Field-Programmable Custom Comput. Mach.,
2016, Art. no. 197.

J. Sheng, Q. Xiong, C. Yang, and M. C. Herbordt, “Collective com-
munication on FPGA clusters with static scheduling,” SIGARCH
Comput. Archit. News, vol. 44, no. 4, pp. 2-7, 2016.

Intel Agilex FPGAs and SoCs, Accessed: Aug. 6, 2020.
[Online]. Available: https://www.intel.com/content/www/
us/en/products/programmable/fpga/agilex.html

K. Abe and T. Ishigure, “Low loss multimode polymer shuffling
optical waveguide for high-density optical circuit,” in Proc. IEEE
CPMT Symp., 2017, pp. 153-154.

H. Nakamura et al., “40Gbit/s-class-A-tunable WDM /TDM-PON
using tunable B-Tx and cyclic AWG router for flexible photonic
aggregation networks,” in Proc. Eur. Conf. Exhib. Opt. Commun.,
2012, pp. 1-3.

Z. Wang, H. Huang, J. Zhang, and G. Alonso, “Shuhai: Bench-
marking high bandwidth memory on FPGAS,” in Proc. IEEE 28th
Annu. Int. Symp. Field-Programmable Custom Comput. Mach., 2020,
pp- 111-119.

“Serial lite III streaming intel FPGA IP core user guide, Updated for
Intel® Quartus® Prime Design Suite: 18.1.1,” Accessed: Apr. 3. 2021.
[Online]. Available: https://www.intel.com/content/dam/www/
programmable/us/en/pdfs/literature/ug/ug_slite3_streaming.pdf
“AXI high bandwidth memory controller v1.0,” Accessed: Aug. 6,
2020, [Online]. Available: https://www.xilinx.com/support/
documentation/ip_documentation/hbm/v1_0/pg276-axi-hbm.pdf
Mellanox Switches, Accessed: Aug. 6, 2020, [Online]. Available:
https:/ /store.mellanox.com/ categories /switches.html

R. Soref, “The achievements and challenges of silicon photonics,”
Adv. Opt. Technol., vol. 2008, 2008, Art. no. 472305.

“Intel stratix 10 NX FPGA,” Accessed: Aug. 6, 2020. [Online]. Avail-
able: https://www.intel.com/content/www /us/en/products/pr-
ogrammable/fpga /stratix-10/nx.html

A. Y. Al-Dubai, M. Ould-Khaoua, and L. M. Mackenzie, “Trade-offs
between latency, complexity, and load balancing with multicast algo-
rithms,” IEEE Trans. Comput., vol. 59, no. 2, pp. 159-173, Feb. 2010.

J. Kim, W.]. Dally, S. Scott, and D. Abts, “Technology-driven,
highly-scalable dragonfly topology,” in Proc. Int. Symp. Comput.
Archit., 2008, pp. 77-88.

“SIMGRID simulation of distributed computer systems,” Accessed:
Nov. 16,2020. [Online]. Available: https:/ /simgrid.org/

https://www.xilinx.com/products/technology/high-speed-serial.html
https://www.xilinx.com/products/technology/high-speed-serial.html
https://www.onboardoptics.org
https://www.onboardoptics.org
http://www.aiocore.com/
http://www.aiocore.com/
https://www.nec.com/en/global/solutions/hpc/sx/
https://www.intel.com/content/www/us/en/products/programmable/fpga/agilex.html
https://www.intel.com/content/www/us/en/products/programmable/fpga/agilex.html
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug_slite3_streaming.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug_slite3_streaming.pdf
https://www.xilinx.com/support/documentation/ip_documentation/hbm/v1_0/pg276-axi-hbm.pdf
https://www.xilinx.com/support/documentation/ip_documentation/hbm/v1_0/pg276-axi-hbm.pdf
https://store.mellanox.com/categories/switches.html
https://www.intel.com/content/www/us/en/products/programmable/fpga/stratix-10/nx.html
https://www.intel.com/content/www/us/en/products/programmable/fpga/stratix-10/nx.html
https://simgrid.org/

862

Kenji Mizutani received the dual PhD degree in
semiconductor engineering from Nagoya Univer-
sity, Nagoya, Aichi, Japan, in 2003. In 2003, he
joined NEC Corporation, where he worked on
optical devices and optical telecommunication
systems. Since 2014, he has been a senior
researcher with PETRA, developing optical inter-
connect technology.

Hiroshi Yamaguchi received the BE degree in
electronic engineering and the ME degree in elec-
trical engineering from Tokyo Denki University,
Tokyo, Japan, in 1986 and 1989, respectively. In
1989, he joined NEC Corporation, Fuchu, Japan,
where he worked on the development on electri-
cal circuit. He is currently a chief researcher with
Photonics and Electronics Technology Research
Association, Fuchu, Japan, on a temporary basis.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 6, JUNE 2021

1 Yutaka Urino received the BE degree in commu-
nication engineering and the ME degree in elec-
tronic engineering from Tohoku University, in
1985 and 1987, respectively. In 1987, he joined
NEC Corporation, Kawasaki, Japan, where he
worked on research and development of optical
waveguide devices and subsystems. He is cur-
rently a chief researcher with Photonics and Elec-
tronics Technology Research Association on a
temporary basis. He is one of the coauthors of
Silicon Photonics 11l (Springer). He was the recipi-
ent of the Best Paper Award at international conferences, including the
OEC’88 and the OECC’98. His current research interests include silicon
photonics, optical interconnects, and parallel computing. He is a topical
editor of the Optical Review.

Michihiro Koibuchi (Senior Member, IEEE)
received the BE, ME, and PhD degrees from
Keio University, Yokohama, Kanagawa, Japan,
in 2000, 2002, and 2003, respectively. He is cur-
rently an associate professor with the National
Institute of Informatics and SOKENDAI, Tokyo,
Japan. His research interests include the areas
of high-performance computing and interconnec-

tion networks. He has authored or coauthored
‘ . 100 referred technical conference and journal
papers, including nine in the IEEE Transactions
on Parallel and Distributed Systems, five in the IPDPS, four in the
HPCA, and three in the IEEE Transactions on Computers. He is a senior
member the IEEE Computer Society, the IPSJ, and the IEICE.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

