IEEE TRANSACTIONS ON COMPUTERS, VOL. 69, NO. 9, SEPTEMBER 2020

Object-Level Memory Allocation and Migration

in Hybrid Memory Systems

, Member, IEEE, Renshan Liu, Xiaofei Liao", Member, IEEE, Hai Jin
Bingsheng He, Member, IEEE, and Yu Zhang™, Member, IEEE

Haikun Liu

Abstract—Hybrid memory systems composed of emerging non-volatile memory (NVM) and DRAM have drawn increasing attention in
recent years. To fully exploit the advantages of both NVM and DRAM, a primary goal is to properly place application data on the hybrid
memories. Previous studies have focused on page migration schemes to achieve higher performance and energy efficiency. However,

, Fellow, IEEE,

1401

those schemes all rely on online page access monitoring (costly), and data migration at the page granularity may cause additional
overhead due to DRAM bandwidth contention and maintenance of cache/TLB consistency. In this article, we present Object-level
memory Allocation and Migration (OAM) mechanisms for hybrid memory systems. OAM exploits a profiling tool to characterize objects’
memory access patterns at different execution phases of applications, and applies a performance/energy model to direct the initial
static memory allocation and runtime dynamic object migration between NVM and DRAM. Based on our newly-developed
programming interfaces for hybrid memory systems, application source codes can be automatically transformed via static code
instrumentation. We evaluate OAM on an emulated hybrid memory system, and experimental results show that OAM can significantly
reduce system energy-delay-product by 61 percent on average compared to a page-interleaving data placement scheme. It can

also significantly reduce data migration overhead by 83 and 69 percent compared to the state-of-the-art page migration scheme
CLOCK-DWF and 2PP, respectively, while improving application performance by up to 22 and 10 percent.

Index Terms—Non-volatile memory (NVM), hybrid memory systems, object migration, memory allocation, data placement

1 INTRODUCTION

MERGING byte-addressable non-volatile memory (NVM)

technologies promise high density, near-zero static energy
consumpution, and low cost per byte compared to DRAM.
Despite these advantages of NVM, it is not a direct replace-
ment of DRAM currently because of the relatively higher
write latency, write energy consumption, and limited write
endurance [1], [2], [3]. A practical way of using NVM is to
architect it in conjunction with commodity DRAM. However,
one primary challenge is how to design smart data placement
strategies to fully exploit the advantages of two memory tech-
nologies and to overcome their drawbacks.

Operating systems (OSes) often have no priori knowledge
to guide the initial data placement in hybrid memory systems.
A naive policy may place hot data on slow memory, and thus
result in poor application performance [4]. Many studies have
proposed page migration techniques to improve memory
access performance and energy efficiency [5], [6], [7], [8], [9],
[10]. Those schemes all rely on the recency and frequency of
page accesses to decide data placement on DRAM or NVM.

e Haikun Liu, Renshan Liu, Xiaofei Lino, Hai Jin, and Yu Zhang are with
the National Engineering Research Center for Big Data Technology and
System, Service Computing Technology and System Lab, Cluster and Grid
Computing Lab, School of Computer Science and Technology, Huazhong
University of Science and Technology, Wuhan 430074, China.

E-mail: {hkliu, rsliu, xfliao, hjin, yuzh}@hust.edu.cn.

e Bingsheng He is with the School of Computing, National University of

Singapore, Singapore 117418. E-mail: hebs@comp.nus.edu.sg.

Manuscript received 14 May 2019; revised 30 Nov. 2019; accepted 26 Jan. 2020.
Date of publication 12 Feb. 2020; date of current version 7 Aug. 2020.
(Corresponding author: Xiaofei Liao.)

Recommended for acceptance by B. Childers.

Digital Object Identifier no. 10.1109/TC.2020.2973134

Unfortunately, today’s commodity x86 hardware does not
support page access counting. Prior hardware-assist page
migration schemes require significant modifications of the
current hardware architectures [5], [6], [11]. Some other work
resorts to OSes for memory access monitoring [12], [13]. A typ-
ical page table entry (PTE) maintained by OS contains an
“accessed” bit. OS can monitor this “accessed” bit and knows
that a page is accessed. However, this single bit is insufficient
to identify whether this page is hot (frequently accessed)
or cold. Thus, software-based memory access monitoring
approaches usually invalidate Translation Lookaside Buffer
(TLB) to track each memory reference [12], [13]. This page
access counting mechanism often incurs significant perfor-
mance overhead. Moreover, page migration usually needs to
take a period of time to detect the hot pages, and thus dimin-
ishes the benefit of page migration. Also, the predicted page
access pattern may not match the future access behavior,
resulting in unnecessary page migrations.

On the other hand, OSes usually are hard to exploit
application-level semantics for fine-grained data migration.
A page may contain a large number of small application
objects, and each may have distinct access pattern. Also, a
hot page may contain only a small fraction of frequently-
accessed objects, while the remaining objects are cold (see
more results in Section 2). As a result, data migration at the
page granularity is not efficient to adapt to different access
patterns of individual objects. Furthermore, huge pages
have been increasingly used for big data applications and
virtualization platforms [13], [14]. The coarse-grained page
migration may even degrade system performance due to
inefficient use of DRAM capacity and bandwidth.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-4290-1408
https://orcid.org/0000-0003-4290-1408
https://orcid.org/0000-0003-4290-1408
https://orcid.org/0000-0003-4290-1408
https://orcid.org/0000-0003-4290-1408
https://orcid.org/0000-0001-6302-813X
https://orcid.org/0000-0001-6302-813X
https://orcid.org/0000-0001-6302-813X
https://orcid.org/0000-0001-6302-813X
https://orcid.org/0000-0001-6302-813X
https://orcid.org/0000-0002-3934-7605
https://orcid.org/0000-0002-3934-7605
https://orcid.org/0000-0002-3934-7605
https://orcid.org/0000-0002-3934-7605
https://orcid.org/0000-0002-3934-7605
https://orcid.org/0000-0002-2052-2231
https://orcid.org/0000-0002-2052-2231
https://orcid.org/0000-0002-2052-2231
https://orcid.org/0000-0002-2052-2231
https://orcid.org/0000-0002-2052-2231
mailto:hkliu@hust.edu.cn
mailto:rsliu@hust.edu.cn
mailto:xfliao@hust.edu.cn
mailto:hjin@hust.edu.cn
mailto:yuzh@hust.edu.cn
mailto:hebs@comp.nus.edu.sg

1402

To make a better data layout in hybrid memory systems, a
recent work employs offline profiling tools to characterize
memory access pattern at the granularity of application
objects, and then guides their static placements on either
DRAM or NVM [15]. This scheme only considers a holistic
view of memory access behaviors, and ignores the potential
variation of memory access patterns, i.e., the object access
frequency (hotness) may change dynamically in different
execution phases. To this end, another work combines static
object placement with dynamic migration of selected
pages [16] to handle these fluctuations. However, it still relies
on hardware extensions in the memory controller to perform
online page access monitoring and migration.

To reduce the performance overhead of online page moni-
toring and migration, we propose Object-level memory Alloca-
tion and Migration (OAM) mechanisms for hybrid memory
systems. Similar to the work [15], [16], OAM exploits an off-
line profiling approach to capture object-level memory
access patterns, and employs a performance/energy model
to guide object memory allocation and migration. Unlike the
studies [15], [16] that only use the profiling traces to generate
a holistic view of object access behaviors, we go further to
analyze objects’ access statistics in a more fine-grained man-
ner. More specifically, we analyze the memory traces in fine-
grained time slots for each object, and adopt our perfor-
mance/energy model to identify different execution phases
in which objects” memory access pattern changes. We find
out the location in applications” source codes where an exe-
cution phase would change in the future, and automatically
inject object migration instructions via static code instrumen-
tation. When the modified program is running, it performs
object migration itself by taking account of the DRAM usage
and the net benefit of data migration.

In summary, we make the following contributions:

1) We provide an offline profiling tool to characterize
applications’” memory access pattern in details, and
propose a performance/energy model to direct the ini-
tial memory allocation and dynamic migration of appli-
cation objects, without any hardware modification and
OS intervention for online memory monitoring.

2) We extend the Glibc library and Linux kernel to pro-
vide new application programming interfaces (APIs)
for hybrid memory management. Programmers can
explicitly allocate DRAM or NVM to application
objects, and migrate them between DRAM and NVM.

3) We develop a static code instrumentation tool to
automatically transform object-level memory alloca-
tion and migration in application source codes, with-
out burdening application programmers.

4) We evaluate OAM in a DRAM-based hybrid memory
emulator with a wide range of workloads. Our experi-
mental results demonstrate the feasibility of object-level
data placement/migration to narrow the performance
gap between NVM and DRAM. The performance dif-
ference between OAM and DRAM-only is only 2 per-
cent on average. OAM is able to significantly reduce
data migration overhead and achieve better perfor-
mance than the state-of-the-art page migration
schemes. For instance, compared to CLOCK-DWEF [5]
and 2PP [16], OAM reduces migration overhead by

IEEE TRANSACTIONS ON COMPUTERS, VOL. 69, NO. 9, SEPTEMBER 2020

—n— dict —e— maxmatch —4— mcf —v— soplex
streamcluster —<«— isort gcc —e— lbm
—*— namd —e+— fluidanimate —e— freqmine —+— canneal

100%

80% -

o

=]

X
1

40% -

Ny

o

X
1

memory references

o% T T T T T
0% 20% 40% 60% 80%

Percent of hot data accessed in pages

Cumulative distribution of

100%

Fig. 1. Cumulative distribution of memory references (Y-axis) versus the
percentage of hot data (X-axis).

83 and 69 percent on average, while improving applica-
tion performance by up to 22 and 10 percent.

The remainder of this paper is organized as follows.
Section 2 introduces the background and experimental obser-
vations that motivate our system design. Section 3 presents
the design and implementation of OAM mechanisms. Experi-
mental results are presented in Section 4. We review the
related work in Section 5 and conclude in Section 6.

2 BACKGROUND AND MOTIVATION

A number of studies have proposed to organize DRAM and
NVM in a cache/memory hierarchy [17], [18], however, this
paper focuses on DRAM/NVM management in a flat-
addressable architecture [6], in which DRAM and NVM are
organized in a single (flat) address space and uniformly man-
aged by OSes. The flat architecture can fully exploit the capac-
ity of both DRAM and NVM, but relies on more sophisticated
data placement policies to improve the performance and
energy efficiency of hybrid main memories. More specifi-
cally, frequently accessed data should be placed in DRAM
because NVM accesses incur relatively higher latency.

In the following, we use LLVM [19] to profile several
representative applications in SPEC CPU2006 [20] and
PBBS [21], and investigate the memory access statistics in
term of data access frequency (hotness), application object
size and lifetime. We have the following key observations.

Observation 1. For many applications, the hot data in each
page only accounts for a small fraction of applications” total
memory footprints, but leads to a large proportion of
applications’ total memory references. As shown in Fig. 1,
the z-axis presents the percentage of frequently-accessed
data traffic (in descending order of access frequency) in
applications’” all memory pages, and the y-axis presents the
cumulative distribution of application’s total memory refer-
ences. For soplex, almost 35 percent hot data accounts for
about 98 percent total memory references. This implies that
migrating the fraction of hot data (variables and objects) in
soplex is more benefical than migration of a whole page.
However, for some applications such as dict, the memory
accesses distribute evenly in the application’s address
space, and thus would benefit less from data migration.

Observation 2. A large portion of application objects are
much smaller than a page. Fig. 2 shows the cumulative

LIU ETAL.: OBJECT-LEVEL MEMORY ALLOCATION AND MIGRATION IN HYBRID MEMORY SYSTEMS

—n—dict —e— soplex —4—isort
—v—gcc maxMatch —<— mcf
Ibm —e— namd—*— streamcluster
—e— fluidanimate —— freqmine —+— canneal

Cumulative distribution

100

200 300 400 500

Object Size (Byte)

Fig. 2. Cumulative distribution function of objects’ size.

distribution function of objects’ size for these applications.
We can find that over 95 percent of objects are less than 50
bytes for dict, isort, gcc, and maxMatch. For soplex, the
fraction of small objects also exceed 85 percent. As the
majority of application-level memory references are
objects and variables, programmers can fully exploit the
application semantic to optimize data placement/migra-
tion at the object granularity. In contrast, a page can con-
tain many objects which may have different access
behaviors, the synthesized page-level access statistics may
become complicated and unpredictable.

Observation 3. A large portion of application objects show a
long lifetime. Although previous studies have demon-
strated that objects of many programs tend to have a rela-
tively short lifetime [15], [22], [23], we find that there are
still a large fraction of long-lived objects for some cases.
Fig. 3 shows the cumulative distribution function of
objects’ lifetime for some applications. We find that almost
all objects in gcc, isort, and soplex have a lifetime longer
than 1000 seconds. Particularly, the lifetime of all objects
in gccis equal to the application’s total execution time.

Observation 4. A portion of application objects show highly
mutated memory access frequency (hotness) at different
execution phases. Although many objects exhibits relatively
consistent access behavior during their whole lifetime (so-
called immutable objects), there are still a large portion of
objects that show highly mutated access frequencies at dif-
ferent execution phases (so-called mutable objects), as
shown in Table 1. This implies there is still large room to
optimize data placement via object migration at runtime.

—a— dict—e— isort—4— soplex—v— gcc—— canneal
maxMatch—o— Ibm—<«— namd—*— mcf
—+— streamcluster—e— fluidanimate—<«— freqmine

5 100% - g ,’_* -4 W&p

S sl W7 N

3 80%- J / f

3 60%-

T || [T

= 40%_ <{ FHHHHE || / ’

o Joad / of ' d

=] e w

g 20%__ T o—fo—fo-0-0 o/ | ‘.’

O 0% -**M ggxui-’n:nm
8 32 128 512 2048 8192 32768

Lifetime (s)

Ei

g. 3. Cumulative distribution function of objects’ lifetime.

1403

TABLE 1
The Proportion of Mutable Objects

Application mutable objects(%) Application mutable objects(%)

dict 46% isort 33%
maxmatch 449 mcf 45%
gcc 42% soplex 22%
Ibm 32% namd 9%
canneal 28% fluidanimate 35%
freqmine 31% streamcluster 12%

In summary, Observations 1 and 2 clearly show that
data access monitoring and memory allocation/migration
should be on objects, rather than pages. Observations 3 and
4 imply that a careful design on object migration is needed
in hybrid memory systems.

3 DESIGN AND IMPLEMENTATION

In this Section, we first introduce the system overview of
OAM, and then present the details of offline memory profiling,
utility-based performance/energy model, object classification
and execution phase identification, initial object memory allo-
cation and runtime object migration mechanisms.

3.1 System Overview

Fig. 4 shows an overview of our Object-level memory Alloca-
tion and Migration schemes for hybrid memory systems.
OAM mainly includes two modules: Offline Profiling and
Code Instrumentation (OPCI) and Online Memory Alloca-
tion and Migration (OMAM). In order to place object appro-
priately on DRAM or NVM, OPCI exploits an offline
application profiling tool to analyze memory access pattern
at the granularity of objects, and then use an analytical per-
formance/energy model to make an initial decision on object
placement. This initial placement can significantly reduce
unnecessary data migrations for the immutable objects.
Moreover, for mutable objects, we need to determine when
and where these objects should be migrated to further opti-
mize the data placement at runtime. This requires more fine-
grained memory access profiling to accurately identify dif-
ferent execution phases of applications.

Since DRAM is usually insufficient in hybrid memory sys-
tems, we should also consider DRAM resource utilization
when an object is created. Although the utility model suggests
that an object is preferred to be allocated in DRAM, we should
make sure that there is enough DRAM resource for holding
this object. Thus, the OMAM module appropriately allocates
NVM or DRAM to an object according to current DRAM
resource utilization and the object placement decisions.

As described in Fig. 4, we provide several application pro-
gramming interfaces (DRAM _alloc, NVM _alloc, DyMalloc
and MigrateToX) for object-level memory allocation/migra-
tion. DRAM _alloc and NVM _alloc are used to allocate
DRAM and NVM, respectively. DyMalloc takes DRAM
resource utilization into account to determine whether an
object should be placed on DRAM or NVM. MigrateToX (X
denotes DRAM or NVM) is used to migrate objects between
DRAM and NVM. The details of DyMalloc and MigrateToX
are described in Sections 3.5 and 3.6, respectively. We
develop a static code instrumentation tool to modify the

1404

Offline Profiling and Code Instrumentation (OPCl)

IEEE TRANSACTIONS ON COMPUTERS, VOL. 69, NO. 9, SEPTEMBER 2020

Online Memory Allocation and Migration (OMAM)

Object
Access
Pattern

Code

Decision

Object Source Modified
Placement Code Execu

table

Object Analysis and

~— — DRAM Resource Utilization

DRAM_alloc

DyMalloc

NVM_alloc

Profiling Tool

Utility Models

Operating System Main Memory

Fig. 4. An overview of object-level memory allocation and migration in hybrid memory system.

application source code with these APIs, and generate the
modified executable codes automatically. In this way,
OMAM migrates mutable objects between DRAM and NVM
at runtime by the applications themselves, without modifica-
tions of hardware and OSes.

3.2 Object-Level Memory Access Profiling

We exploit the compiler infrastructure LLVM-3.8.1 to pro-
file application’s memory references. The generated trace
file records every objects’ memory access information,
including access frequency, lifetime and size.

At first, we use LLVM to generate Intermediate Represen-
tation (IR) from the source codes. To count object-level mem-
ory references, we exploit LLVM PASS to traverse all load/
store/malloc/calloc/mmap instructions and insert probes
in the IR. We run the executable file generated from the mod-
ified IR, and collect all objects’ access information in a trace
file by LLVM PASS automatically. Generally, it is more costly
to profile applications with more LOCs. However, if an
application with less LOCs have more LOOP statements, its
profiling cost may be even heavier than that of applications
with more LOCs. Moreover, the trace size also depends on
the input dataset. A large size of dataset usually generates
more memory trace. We note that our profiling scheme still
works if there are only binary codes available. Since OAM
tracks memory allocation/access on the basis of LLVM IR,
we can exploit some other tools such as “llvm-mctoll” to stat-
ically (ahead-of-time compilation) translates binaries and
executables to LLVM IR.

The memory trace contains 5-item tuples including
“memory access type, virtual address, object name, object type,
and access time”. It is easy to count objects’ total memory
references and lifetime with the trace. Because an object may
contain child objects, we identify the child objects by check-
ing the parameters of GetElementPtr instructions in LLVM.
For a given object, the number of memory references is the
sum of its all child objects” memory access counts.

The trace file contains all memory allocation/access
instructions, however, only a portion of them result in
actual data traffic to the main memory. The reason is that
the on-chip cache can filter a large amount of memory
accesses to hot data. In order to evaluate the impact of cache
filtering on actual memory access statistics, we develop a
cache simulator that can model different cache architec-
tures [24], including hierarchy, cache sizes, associativities
and replacement policies. Generally, the cache size and
associativity both have a significant impact on the cache
performance. A cache with higher associativity usually suf-
fers less cache misses, however, it increases power, chip
area, and latency for checking whether the accessed data is

hit on a cache set. On the other hand, a cache with a larger
size improves the cache hit rate, at the expense of larger
cost, power, chip area, and latency. Because the CPUs in
our experiments have 25 MB 16-way set-associative LLC,
we model a 16-way set-associative LLC managed by a
pseudo-LRU replacement algorithm. We configure the LLC
size assigned to applications to be 16 MB empirically in con-
sideration of that a portion of LLC capacity may be occu-
pied by the OS and system software. In practice, the cache
parameters such as size, associativity can be easily config-
ured in our cache simulator by users.

The cache simulator takes the trace file generated by
LLVM as a input, and filters programs’ all virtual addresses
that are hit in the simulated cache. The remaining virtual
addresses reflect cache misses or cache eviction operations,
and result in actual memory accesses to main memory.
Fig. 5 shows the distribution of all data accesses on the
cache and main memory for different applications. We find
that the on-chip cache is able to filter 68 percent of total
memory references on average. For gcc, even 87 percent
data accesses are filtered. As a result, applications” memory
access patterns may be very different when the impact of
cache filtering is considered. Some very hot data may be
always hit in the cache, and only results in a very small
number of data accesses to main memory. Thus, it is unnec-
essary to migrate those data from the NVM to the DRAM.
With our cache filter, we can obtain real memory access sta-
tistics on the NVM, and avoid unnecessary object migra-
tions at runtime.

3.3 Utility Model for Object Placement

Because the asymmetric performance and energy features
between DRAM and NVM, performance and energy con-
sumption are two major concerns when we decide to place
an object on DRAM or NVM [9], [10], [15]. We propose an
utility function to calculate the benefit of placing objects on
DRAM or NVM during a given time period (7}), as shown

[Memory Write K Memory Read [XJ Cache Write = Cache Read

§100%

Sl N N NN
2 80%-

o

T 60%-

[2]

(%]

8 40% =

o — — —
© — — 1 — — — — —
© 20%4 =] — — — — — — — |
© = O] B = e = = H
0 g%l = T . - : e :

N Q O) < X
R 8¢ e ((\c,\@\e‘ a&“‘% « 0@0‘\8% eo((\e,'f)
\‘e,'b ,\\\)\6 [¢)

Fig. 5. Effect of cache filtering.

LIU ETAL.: OBJECT-LEVEL MEMORY ALLOCATION AND MIGRATION IN HYBRID MEMORY SYSTEMS

in Equation (1). This is a general model to take into account
both memory performance and energy consumption.

) _ Dyv(X) - By (X)
U(X) = Up(X) - Up(X) = DD\;ZLL(X) ' ED]:ZL;J(X) ’

where Up(X) and Ug(X) reflect the utility of memory
latency and energy consumption, respectively, Dxyar(X)
and Dpray(X) are the total access delay of object X on
NVM and DRAM, respectively. Enyy(X) and Epgan(X)
are the total energy consumption of object X on NVM and
DRAM, respectively.

If applications need to meet certain performance con-
strains, we can simply set Up(X) = 1 and only consider the
utility of memory latency. Of course, we can only consider the
memory energy consumption by setting Up(X) = 1. In this
paper, we exploit the energy-delay-product (EDP) model to
balance memory energy consumption and access delay. For a
given threshold e (¢ > 1), U(X) > eimplies DRAM is a pref-
erable site for placing object X, and a larger U(X) means
more benefit when placing object X on DRAM. In contrast,
U(X) < e implies the object X should be placed on NVM.
Correspondingly, we deem object X as a hot object if U(X) is
larger thane.

Generally, the total access delay D, of object X on a spe-
cific memory medium o is mainly determined by memory
access latency and total memory access counts. It can be cal-
culated by Equation (2)

1

Dy(X) = Co(X) - Dy + Cop(X) - Dy,)

where o represents different memory medium (i.e., DRAM
or NVM), and C,(X) and C,,(X) are memory read and write
counts in a given time period T;, respectively. D, , and D, ,,
are the average read and write latencies of the memory
medium o, respectively.

The total memory energy consumption E consists of
dynamic and static energy consumption. The dynamic por-
tion is caused by memory read and write operations, while
the static portion is mainly attributed to refreshing opera-
tions for data retention. For DRAM, the static power is usu-
ally a constant, and the static energy consumption is mainly
determined by the duration of time. For NVM, the static
energy consumption is almost zero due to the non-volatility
of NVMs. Given a period of time T;, assume the object X has
C,(X) read operations and C,,(X) write operations on mem-
ory medium o, respectively. Let F,, and E, , denote energy
consumption of a single read and write operation on mem-
ory medium o, respectively. The total energy consumption £
of object X can be calculated by Equation (3)

Eo (X) - CI(X) : Ea,r + CLU(X) : Ea,w + Eo,static~ (3)

3.4 Phase Identification and Object Classification

An application usually contains a number of objects, and
different objects may present different memory access pat-
terns. Basically, these objects can be classified into immutable
and mutable objects. The memory access frequency of immu-
table objects can be simply deemed as a constant. For these
objects, we only need to place them either on DRAM or on
NVM based on our utility function, without considering
object migration at runtime. In contrast, the memory access

1405
> A — Object A
= ===- Object B
2 — — ObjectC
N — ObjectD o
AN
€
0 L :

Time slots Time

Fig. 6. An example of phase identification and object classification.

frequency of mutable objects dynamically changes at differ-
ent execution phases, so a better object placement should
also adapt to such changes. We thus exploit object migra-
tions to achieve better energy-delay-product for those muta-
ble objects.

We describe application execution phase identification
and object classification in the following. At first, we count
read /write operations on each object in a fixed time slot. We
calculate the utility of objects in each time slot according to
Equation (1). Based on the threshold ¢, we divide the objects’
memory access pattern into different phases. We then find
out all time slots in which the object’s utility is larger than e.
If the object’s utility values in two sequential time slots are
larger than ¢, these two time slots can be merged into one exe-
cution phase. However, some objects’ utility values may fluc-
tuate sharply around ¢, and the duration of identified phases
are rather short, as illustrated by object D in Fig. 6. In these
cases, we would merge these short phases into other long
phases if the duration of a phase is too short (for example,
empirically set as one-twentieth of the object’s lifetime). At
last, we classify all objects into immutable and mutable
objects according to the number of phases. For example, if an
object only have one phase, the object is undoubtedly classi-
fied as an immutable object. Otherwise, the object is classi-
fied as a mutable object.

Fig. 6 illustrates an example of phase identification and
object classification. Assume there are four objects A, B, C,
and D, and the curves of utility function are shown in Fig. 6.
The utility value of object A always exceeds ¢, and thus can
be classified as an immutable object. For object B, although it
shows a very short phase in which its utility value is less
than ¢, this phase can be merged into another phase that
spans most of its lifetime. As a result, object B is also classi-
fied as an immutable object. Object C is a mutable object
because it shows two distinct phases according to our object
classification scheme. For object D, we can divide its lifetime
into 10 phases according to the utility function. The utility
values of 5 phases (i.e., 71 — 172,73 —T4,T5 —-1T6,1T7 - 18,
T9 — T10) are larger than e. However, the duration of three
phases (I'2 — 13,74 — T5, and T7 — T'8) are very short, and
thus we can merge them into the adjacent phases. At last,
object D only have 3 phase (11 — 76, 76 — T'9 and T'9 — 1'10)
after phase merging operations. When a phase changes (i.e.,
at the time T6 and T9), we make trade-off between the benefit
and cost of object migration. If the net benefit is positive, we
insert an object migration statement at a proper place where
the phase changes.

1406

Finally, we make an initial decision on object placement.
For immutable objects, if their average utilities are larger
than ¢, these objects would be placed on DRAM. For muta-
ble objects, the average utility of its first phase determines
the site where the object should be placed, and object migra-
tion should be performed at the time when a phase changes.
In Fig. 6, object A, B and D should be allocated on DRAM at
first. Object C should be allocated on NVM in the beginning,
and then should be migrated to DRAM.

3.5 Initial Memory Allocation for Objects

In hybrid memory systems, we assume the expensive DRAM
resource is usually limited and NVM is always sufficient for
all workloads. Thus, the availability of DRAM resource is a
prerequisite for successful DRAM allocation at runtime. We
should take the DRAM resource utilization into account when
allocating memory to an object. We adopt a memory reserva-
tion mechanism to allocate DRAM resource at runtime. The
basic principle is to reserve enough DRAM resource for hotter
objects in the near future when an object is created.

Let U(0O;) denote the utility of object O;, S(O;) denote the
size of object O;, DRAM 4itanie denote the available DRAM
resource, and DRAM, serveq denote the size of DRAM that is
reserved for more hot objects. Let Uppesnois denote the thresh-
old of utility value for which an object should be placed on
DRAM. For a default threshold ¢, only when U(0O;) >¢, the
object O; would be placed on DRAM. Let Utilizationpran
denote the utilization of DRAM resource, and ¢ denote the
threshold of DRAM utilization at which objects are apt to be
placed on DRAMif U(O;) >e.

Algorithm 1. DyMalloc

IHPUtZ DRA]\/[amilable/ DRAA/]r'et.served/ U(Ot)l S(OL)I Uthresholds € 4
1 for each object O; do
2 ifU(O;) < ethen
3 Allocate O; using NVM _alloc ;
4 else
5 if Utilizationpray < (7] then
6
7
8
9

Allocate O; using DRAM _alloc;
Uthreshold — €

else
Find an object O; in the next time slot where its utility
U(O;) is the largest ;
10 DRA]V[TCSGT"L‘Ed — S(OJ)I
11 if (DRA]\/[avuilable — DRAAIreserved) = S(Ol) then
12 Allocate O; using DRAM _alloc;
13 Uihreshold — U(O;) // update the threshold to place
only hotter objects on DRAM;
14 else
15 Allocate O; using NVM _alloc;

Algorithm 1 presents the details of memory allocation for
objects (DyMalloc). For all objects whose utility values are less
than the default threshold ¢, they should be placed on NVM
absolutely. For other objects (U(O;)>¢), if current DRAM
resource is sufficient (Utilizationpray < ¢), we place these
objects on DRAM to improve the DRAM utilization. How-
ever, when the DRAM resource utilization becomes high
(Utilizationpran = @), we find a object O; whose utility U(O;)
is the largest in the next time slot, and reserve DRAM resource
for the hotter object. If the object O; is successfully allocated on

IEEE TRANSACTIONS ON COMPUTERS, VOL. 69, NO. 9, SEPTEMBER 2020

DRAM, we update the threshold Uppyeshoia With current
object’s utility value U(O;), and then in the future only objects
whose utility values are much larger can be allocated on
DRAM. This dynamic utility threshold setting allows our sys-
tem to allocate DRAM only for hotter and more beneficial
objects when the DRAM resource is under high pressure.

We note that the application source code should invoke the
API DyMalloc to allocate memory for each object. When the
program begins to execute, DyMalloc takes into account
the DRAM resource utilization to allocate DRAM or NVM
to objects finally. We extend the Glibc library to provide
DRAM _alloc and NVM _alloc APIs for hybrid memory sys-
tems. Accordingly, we modify Linux kernel to differentiate
NVM pages from DRAM pages in the virtual address space
(VMA). As a result, we divide the main memory into two
regions logically. We mark NVM pages in the VMA, and pro-
vide a new branch NVM _mmap for NVM allocation.

3.6 Object Migration at Runtime

As described in Section 3.4, online migration of mutable
objects is complementary to the initial object memory alloca-
tion. It can further improve object memory access perfor-
mance and energy efficiency. In our system, we employ static
code instrumentation to add object migration instructions in
the application’s source code. At runtime, the application
itself performs object migrations, without any intervention of
operation systems.

To insert object migration instructions in the application’s
source code, the primary question is how to find the accurate
location in the source code. We observe that plenty of inten-
sive memory accesses are mainly attributed to loop state-
ments [25]. As a result, we divide the source code into
several code fragments using loops as breakpoints. At first,
we track objects’ access counts and the timestamps at the
beginning and the end of loops with LLVM. For each object,
we calculate its utility values during the execution of loops.
A sudden change of utility values at the beginning and the
end of an loop implies that the memory access pattern has
changed, and the object should be migrated to another kind
of memory before the loop. We locate this specific loop state-
ment with the timestamp. Finally, we insert object migration
statements at the beginning of loops using LLVM.

Fig. 7 shows an example of code instrumentation for
hybrid memory allocation and object migration. We traverse
all the objects in the static single assignment (SSA) form
based on abstract syntax tree (AST) in LLVM, and change all
malloc in the source codes with DyMalloc. We create objects
using shared_ptr, a smart pointer that retains shared owner-
ship of an object through a pointer. This allows several
shared_ptr objects to share the same object’s memory. The
shared_ptr uses a control block to record all pointers pointing
to the target object and the number of total references. For
example, in Fig. 8, the two pointers pointing to object 3 are
recorded in the control block. The managed object is
destroyed only when the reference counter becomes zero.
For the mutable objects, we use MigrateToX API to copy the
objects to another kind of memory, and then all stored
pointers pointing to the managed object now should point to
the new memory address, as illustrated in Fig. 8. The object
migration instructions are inserted at a proper place (most
likely before loop statements) where the objects’ access

LIU ETAL.: OBJECT-LEVEL MEMORY ALLOCATION AND MIGRATION IN HYBRID MEMORY SYSTEMS

class AA{...};
AA *x1 = (AA*) malloc(sizeof(AA));

for (... , [B

/*x1 is frequently accessed.*/

!

Original Source Code

class AA{...};
shared_ptr_nvm<AA> xI1((AA*)
DyMalloc(utility _x1, reserved_x1, sizeof(AA)));

x1.MigrateToODRAMY();
for (.. 5.5){

/*x1 is frequently accessed.*/

}

Modified Source Code

Fig. 7. An example of static code instrumentation.

pattern changes. In this way, we change the objects” virtual
addresses after migration, and update all the references to
the objects at runtime.

For large objects that are much bigger than a page, the
coarse-grained migrations are relatively costly, and may
even hurt application performance. To address this problem,
we partition the large object into multiple chunks that are
smaller than a page. The complier tool can profile memory
access statistics for each chunk instead of the whole object.
Based on the partitioning-based memory profiling, the mem-
ory allocation and migration schemes described above are
still applicable to the data chunks. One challenging problem
is that the shared_ptr only records all pointers pointing to the
whole object, rather than the partitioned chunks. We thus
extend the APIs of smart pointers to support runtime fine-
grained memory reference tracking and access counting at
the chunk level for large objects. In this way, our method can
still optimize the data placement for large objects.

Object migrations at runtime would cause non-trivial
performance overhead due to memory allocation for the
new object, on-chip cache flushing and TLB shootdown
associated with the old object [18], copying the object data,
freeing the old object, and page table updating. However,
the overhead can be mitigated by overlapping the data
movement with the execution of applications. We use a
helper thread to migrate the mutable objects before the exe-
cution of phase changes. This proactive object migration
scheme takes the data movement off the critical path, and
doesn’t necessarily stall the applications.

We note that programmers are not required to be aware of
the hardware features. They can still use the traditional malloc

—— —» Before migration

— After migration

Fig. 8. An illustration of object migration.

1407

TABLE 2
System Configuration

CPU 2 deca-core Intel Xeon(R) E5-2650 v3 @ 2.30 GHz, 25 MB LLC

DRAM 32 GB, 64 GB/s Bandwidth, 27 ns read latency, 57 ns write latency
PCM 32 GB, 32 GB/s Bandwidth, 39 ns read latency, 342 ns write latency

Power/Energy consumption

DRAM Voltage: 1.2V, Standby: 77 mA; refresh: 160 mA, pre-charge: 37 mA;
Read/Write energy consumption: 1.17 pJ/bit and 0.39 p]/bit;

PCM Read/Write energy consumption: 2.47 pJ/bit and 16.82 pJ /bit;

API to program, and then exploit our offline profiling and
code instrumentation tools to adapt the codes to hybrid mem-
ory systems. Our tools hide the programming difficulty in
hybrid memory environments. Moreover, they can make an
even better decision on object placement than programmers.
Also, our OAM mechanism can easily transform many legacy
applications to hybrid memory systems. The code size
increased by OAM is mainly attributed to object migration
statements, the control blocks for recording all pointers point-
ing to objects, and the helper thread for data movement. For
most application in our experiments, the increased code size
is less than 1 percent.

4 EVALUATION

We evaluate the effectiveness of static memory allocation
and dynamic migration of application objects incrementally.

4.1 Experimental Methodology

Testbed. As the commodity NVMs are still not available, we
evaluate the proposed OAM mechanism using a hybrid
memory emulator (HME) [26], [27], which use a portion of
DRAM to emulate the performance features of NVM. HME
exploits the DRAM thermal control interface provided by
commodity Intel CPUs to limit the maximum memory band-
width, and periodically injects additional software-created
delay (the difference between NVM and DRAM latencies) to
emulate the NVM access latency. Also, HME estimates total
energy consumption of NVM by counting the joules con-
sumed by each NVM read/write operation. Because applica-
tions are executed on real hardware, HME can run workloads
with large memory footprints very fast. In our experiments,
we choose PCM as the representative NVM because it has
been widely studied. The timing and energy parameters of
PCM are referred to the previous work [1], [10]. Table 2
presents the details of system configuration.

Benchmarks. Benchmarks are chosen from problem based
benchmark suite (PBBS) [21], SPEC CPU2006 [20], Parsec
3.0 [28], Graph500 [29], and NUMA-stream [30]. We also
evaluate OAM using some multi-programmed workloads,
as shown in Table 3.

4.2 Effectiveness of Static Memory Allocation

At first, we evaluate application performance improved by the
static memory allocation for objects, without considering
object migrations, namely “OAM w/o migration”. We com-
pare it with page-interleaving, an NUMA memory allocation
policy that places pages on DRAM and NVM alternately. We

1408
TABLE 3

Benchmarks
PBBS dict, isort, maxmatch
SPEC CPU2006 gcc, mcf, Ibm, soplex, namd
PARSEC 3.0 streamcluster, fluidanimate, freqmine, canneal
Other Benchmarks ~ Graph500, NUMA-stream
mix1 namd + freqmine + canneal
mix2 fluidanimate + soplex + streamcluster
mix3 freqmine + canneal + fluidanimate + soplex
mix4 canneal + fluidanimate + soplex + streamcluster

also run all applications in a DRAM-only memory system, and
the experimental results are referenced as an upper bound of
performance optimization for hybrid memory systems.

Fig. 9 shows the execution time and memory energy con-
sumption of 16 applications using “OAM w/o migration”,
“2PP w/o migration” and “DRAM-only” policies, all normal-
ized to the page-interleaving policy. “OAM w/o migration”
scheme can reduce applications” execution time and memory
energy consumption by 33 and 35 percent on average, respec-
tively. “2PP w/o migration” shows a little more reduction of
execution time and memory energy consumption than
“OAM w /o migration” because 2PP exploits the global mem-
ory access statistics for the initial data placement. In contrast,
OAM performs a fine-grained profiling scheme to character-
ize dynamic changes of memory access patterns into different
execution phases, and place the mutable objects on the
DRAM or NVM based on the utility of its first execution
phase. When DRAM is sulfficient for storing all frequently-
accessed objects, the initial placement policy of 2PP achieves
a little higher performance than that of OAM. However, 2PP
can not identify some short phases of frequently accessing an
object that is deemed as cold from a global view, and thus
lose many opportunities for migrating those short-term hot
objects to fast DRAM, as illustrated in Section 4.3 later.

We find that there are about 13 percent performance gap
between “OAM w/o migration” and the DRAM-only policy
because a large portion of cold data is still placed on NVM to
save energy consumption. Compared to the DRAM-only sys-
tem, “OAM w/o migration” is able to reduce memory
energy consumption by 51 percent on average. These results
demonstrate that our initial data placement policy of OAM is
effective for improving the performance and energy effi-
ciency of hybrid memory systems. The execution time of lbm

7] Time: OAM w/o Migration —s— Energy: OAM w/o Migration
XX Time: 2PP w/o Migration —a— Energy: 2PP w/o Migration

B3] Time: DRAM-only —*— Energy: DRAM-only <.,
0

100%

140%

80%1 120%

60%- 100%

40%- 80%

60%

20%

Norm. Execution Time

40%

0% -

Norm. Memory Energy Consumption

Akt
O

<3\(} *(\ \g\\ goo ‘(\0‘ \‘0‘(\ Q %‘5\ ‘(\\(\
«? “e'a‘&\)\é

Fig. 9. Normalized execution time and energy consumption, all relative to
the NUMA page-interleaving policy.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 69, NO. 9, SEPTEMBER 2020

Page-Interleaving: |:| Write on NVM [I] Read on NVM [l Write on DRAM :] Read on DRAM
OAM w/o Migration: R Write on NVM R Read on NVM [RB] Write on DRAM XY Read on DRAM

133; I§I\|\ N l\‘l%pl I“l NI

o

o

£ 80%

>

2 70% \

= N

B 60% y N

Q 500 NN | R NN N

e 2% NE NN NINER LN \ N

= % <,\\\\<\\\\ N N

s o MR ARE N RAR A

T 20% &I\\\\\\\\\\\\\\

5 2% INENININ NN NN NN NN N NN

£ 10% NININI N NN NN NN NINN NN

O INENENENENENENENENENENENENENENEN
S S LT O 2@ A NP>
FEF TSI TS
& SE©
G}QJQ\)

Fig. 10. Distribution of reads/writes on NVM and DRAM.

and mcf is significantly reduced by 83 and 46 percent, respec-
tively, because they are both memory-intensive applications
and hot objects are placed on fast DRAM with OAM. In con-
trast, the page-interleaving policy places about one half of
hot data on slow NVM, and thus significantly degrades
application performance. As namd is a CPU-bound applica-
tion, and there are a few memory accesses during the execu-
tion, the static memory allocation scheme leads to very
limited performance improvement, but reduces 56 percent
of memory energy consumption. For the page-interleaving
policy, we find that namd performs much more NVM write
operations than that of Ibm, as shown in Fig. 10. Because the
energy consumption of NVM writes is about 40 times higher
than that of DRAM writes, namd can achieve more energy
saving than Ibm by delivering more memory write opera-
tions from NVM to DRAM. For dict and isort, “OAM w/o
migration” introduces very limited performance improve-
ment because they show random memory access patterns
and there are very few hot objects. Generally, our utility
model guided data placement scheme can significantly
improve the performance of memory-intensive applications
with good data locality, and can also reduce memory energy
consumption of applications by placing cold data on NVM.

To better understand the performance gain of our mem-
ory allocation scheme, Fig. 10 shows the distribution of
read /write instructions on DRAM and NVM for each appli-
cation. For the page-interleaving policy, memory accesses
are almost evenly distributed on DRAM and NVM because
pages are interleaved on the two memory nodes. However,
we find over 80 percent total execution time of Ibm is spent in
accessing to NVM because NVM is several times slower than
DRAM. For “OAM w/o migration”, since hot objects are
placed on DRAM, almost 70 percent memory read/write
operations are distributed on DRAM. As a result, “OAM w/
o migration” achieves much better application performance
and lower energy consumption.

4.3 Effectiveness of Online Object Migration
In the following, we further evaluate the effectiveness of online
object migration for mutable objects. Because C is not an
object-oriented programming language, and our mechanism
only provides object-level migration interfaces for applications
that are written in C++, we only evaluate 6 applications writ-
ten in C++ and 4 multi-programmed workloads.

Fig. 11 shows the execution time of these workloads using
OAM with object migration, all normalized to OAM without

LIU ETAL.: OBJECT-LEVEL MEMORY ALLOCATION AND MIGRATION IN HYBRID MEMORY SYSTEMS

) OAM w/o Migration XX OAM w/ Migration

£ 100%

i

5 90%-

5

S 80%-

i

S 70%

N

= 60%-

£

6 50% T

z 7 o5 (@ o o
& X 'A“\ e o

& &\“‘

Fig. 11. Normalized execution time

object migration. Compared to the static memory allocation
scheme, object migrations can further improve application
performance by 11 percent on average. Our utility-based
object placement model uses Energy-Delay Product as a met-
ric to decide which kinds of memory objects should be placed
on. As shown in Fig. 12, OAM without migration can achieve
51 percent reduction of EDP on average, and OAM with
migration can further reduce EDP by 10 percent on average,
all relative to the page-interleaving policy. This implies that
many hot objects are already placed on DRAM during the ini-
tial memory allocation. However, the mutable objects can still
benefit more from object migration at runtime.

4.4 Comparison of OAM With Page
Migration Schemes

To evaluate the efficiency of object-granularity data migra-
tion, we compare OAM with two state-of-the-art page migra-
tion schemes— CLOCK-DWEF [5] and 2PP [16]. CLOCK-DWF
is a write recency-aware page replacement algorithm for
hybrid memory architectures [5]. 2PP is a memory manage-
ment system that combines static object placement with
dynamic page migration [16]. We also refer to a DRAM-only
system as the upper boundary of application performance.
We implement CLOCK-DWF and 2PP in a hybrid memory
simulator-NVMain integrated with a fast x86-64 simulator—
zsim [18]. We note that 2PP exploits an in-house hardware/
software coordinated platform-HMTT to collect memory
trace of applications [16]. Instead, we use LLVM as a replace-
ment of HMTT for the offline memory profiling.

These systems all use 4 KB page for migration. Because
CLOCK-DWF and 2PP all rely on architectural simulators
to model the hybrid memory management, it is extremely
costly to run programs from the beginning to the end in the
simulator. Instead, we only run programs with a fixed num-
ber of instructions (4 x 10'°), and then report the perfor-
mance metric instructions per cycle (IPC). In this way, we
can compare all results from simulator (CLOCK-DWF and

80%
70%
60%1
50% 1
40%-
30%-
20%
10%

0%

ZZ2 OAM wio Migration (XY OAM w/ Migration

EDP Reduction

) e .o L > SR
R \\s%\"’ \«\'A\ T @ @ e?
S e@«\o \\)\é{b(\ @ o OO
&2}

Fig. 12. Reduction of Energy Delay Product (EDP).

1409

ZZ2 CLOCK-DWF EEN 2PP XX OAM

%

70%

Normalized Migration Traffic

«\\“ 0 & @ @ b P
I

Ei

g. 13. Normalized data migration traffic.

2PP) and real systems (OAM and DRAM-only) using the
same metric. We evaluate CLOCK-DWF and 2PP with the
same configuration described in Section 4.1.

Fig. 13 shows the data migration traffic using CLOCK-
DWEF, 2PP and OAM, all normalized to the footprints of these
workloads. OAM can significantly reduce the migration traf-
fic by 42 and 22 percent on average compared to CLOCK-
DWF and 2PP, respectively. For each write operation on
NVM pages, CLOCK-DWF would first migrate the NVM
pages to DRAM. Thus, CLOCK-DWF always guarantees
that every write request is responded by a page in DRAM.
This mechanism introduces many page migration operations
whose costs may even larger than the gained benefits.
Because 2PP exploits an offline profiling scheme to make a
better initial placement for objects, it is able to reduce the
data traffic of page migration by 26 percent on average. How-
ever, 2PP still performs data migration at the granularity of
pages, which is mostly more coarse-grained than objects. In
contrast, OAM only migrates mutable objects when the
memory access pattern changes, and thus can further reduce
the migration traffic by 22 percent on average.

Fig. 14 shows that OAM can also improve applications’
IPC by 9 and 4 percent on average compared to CLOCK-
DWEF and 2PP, respectively. All results are normalized to
the system using only DRAM. We find that the performance
gap between OAM and the DRAM-only system is only 5
percent on average. This implies that most data are placed
on the right memory medium at a proper time, and the per-
formance overhead of object migration is much less than 5
percent. For CPU-intensive applications such as namd,
streamcluster, and fluidanimate, the normalized IPC of those
schemes are similar to each other because these applications
show very good data locality. For freqmine, canneal, and
other multi-programmed workloads, OAM achieves much
higher performance improvement than CLOCK-DWF and
2PP. OAM outperforms CLOCK-DWF and 2PP by up to 22

0 V7] cLoCK-DWF S 2PP B8] OAM[___| DRAM

@)
< :
¢
3 a
3 /
®©
g /
S g
z g
' S A8 @ o &
I ‘Q\—,\@m\& S5 @ @ o e
& e o
Fig. 14. IPC normalized to the DRAM-only system.

1410

272 CLOCK-DWF BN 2PP XXH OAM

20%
16%]
12%

8% NN

4% N .-

0% g
q,o\)\e

Data Migration Overhead

© o
((\\‘\ 0\
0\\) ’b(\\((\ ‘eo\

\@"’6\ W

Fig. 15. Normalized data migration overhead.

and 10 percent. Because the footprint of these workloads are
very large and more hot data should be migrated to DRAM.
Object migration provided by OAM is much more light-
weight than the page migrations, and thus introduces less
performance overhead than CLOCK-DWEF and 2PP.

Fig. 15 shows the “pure” data migration overhead caused
by CLOCK-DWEF, 2PP and OAM, all normalized to the
applications’ total execution time. As OAM analyzes the
object-level memory access pattern in the offline profiling
stage, to make a fair comparison, the runtime cost of page
access counting and hot page identification for CLOCK-DWF
and 2PP are not included in the results. The overhead includes
memory allocation for the new object, on-chip cache flushing
and TLB shootdown related to the old object, copying the
object data, freeing the old object, and page table updating. As
CLOCK-DWEF and 2PP introduce more data migration opera-
tions at the page granularity, OAM can significantly reduce
the data migration overhead by 83 and 69 percent on average
compared to CLOCK-DWF and 2PP, respectively.

4.5 Adaptability to Different Datasets and Scales

In the following, we evaluate the adaptability of OAM to dif-
ferent datasets and problem scales using Graph500 and
NUMA-STREAM as case studies. Graph500 reflects very poor
temporal/spatial data locality and thus can be exploit to evalu-
ate the memory access latency. NUMA-stream benchmark is a
multi-threaded program particularly designed for evaluating
the memory bandwidth of high performance computers.

At first, we evaluate the adaptability of OAM using differ-
ent datasets. We run Graph500 with different inputs, using
data placement and migration decisions generated by a rela-
tively small dataset. Fig. 16 shows the execution time of
Graph500 with different inputs, all relative to the page-inter-
leaving scheme. The input “Graph_n” denotes a graph with
2" vertices. Particularly, “Graph_26” contains about 64 mil-
lion vertices and 16 GB raw data. With the increase of dataset
sizes, OAM shows more reduction of execution time. Because

o Page-interleaving B OAM w/o Migration [OAM w/ Migration

E 100%

S 80%

5

S 60%

i

D 40%

N 000

é 20%

5 0% ©) N L B © N

2 K K S 9 2 b5 o

G""Q\(\/ G‘QQ\(\/ O(AQ‘(\/ G(QQ\\/ 0‘?&“\ G"‘)Q\\ Oeo((\

Fig. 16. Execution time of Graph500.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 69, NO. 9, SEPTEMBER 2020

271 Page-Interleaving Bl OAM w/o Migration B OAM w/ Migration

Normalized Execution time

Number of threads

Fig. 17. Execution time of NUMA-stream.

larger inputs can increase memory references exponentially,
and more data accesses can benefit from our memory alloca-
tion and object migration schemes correspondingly. Com-
pared to the page-interleaving scheme, OAM with migration
can improve application performance by up to 29 percent.
This implies that our profiling-based OAM scheme is also
effective for different datasets and scales.

Second, we study whether OAM is scalable for different
problem of scales. Fig. 17 shows the normalized execution
time of multi-threaded NUMA-stream with increasing
threads. For NUMA-stream, more threads imply larger
memory bandwidth consumption. However, all threads in
NUMA-stream with different inputs show relatively stable
performance. This implies that the OAM scheme is also
effective when the problem scale changes.

4.6 Sensitivity to Different NVM
Performance Features

Recently, Intel has announced the only commercially available
NVM device-Intel Optane DC Persistent Memory Module. Its
read latency is about 169-305ns, about 2-3 times higher than
that of DRAM (81 ns). Surprisingly, the write latency of
Optane DC is measured as 94 ns compared to 86 ns for
DRAM [31]. Its read and write bandwidths are about 2.4-
7.6 GB/s and 0.5-2.3 GB/s per DIMM, respectively. In this sec-
tion, we explore the sensitivity of OAM to real NVM devices
by setting the NVM read/write latencies and bandwidth
according to the performance features of Intel Optane DIMMs.

Fig. 18 shows how the different setting of NVM access
latencies affect the application performance. Since the write
latency of Intel Optane memory is almost similar to that of
DRAM, OAM would not migrate write-intensive objects to
fast DRAM according to our utility models. As a result, the
migration traffic is mainly attributed to read-intensive objects
in the “Optane + DRAM” hybrid memory system. As shown
in Fig. 19, the migration traffic is significantly reduced by using
Intel Optane DIMMs as a replacement of PCM. However,

V7] Optane+DRAM RN PCM+DRAMEEER DRAM-only

N|
|

Normalized IPC
;\\\\\\\\\\\\‘v‘
1]
n\\\\\\\\\\\

-+
--q
SSNSSN

RISSASRSISNSNN
(o2
RIS SSNSSSSSRSSASNN

ES S S S S S SN S S SN
AN NSNS ANSSNN]
BSOS S S SSNNNRN

“‘“‘\“““ﬁ

--
v_) DRSS SN SSRNSANN]

ESSSSSSSAARSSAN]

--

RS S SNSRI SN

Fig. 18. OAM sensitive to different NVM features.

LIU ETAL.: OBJECT-LEVEL MEMORY ALLOCATION AND MIGRATION IN HYBRID MEMORY SYSTEMS

70%
60%+-
50%
40%
30%4
20%4]
10%

0%+

Optane +DRAM XX PCM+DRAM

Norm. Migration Traffic

Fig. 19. Data migration traffic of OAM using different NVM devices, all
normalized to the footprint of applications.

OAM achieves similar application performance for the two
memory systems, because it can adapt to different perfor-
mance characteristics of NVM devices to identify hot objects
and place them on the proper memory medium.

5 RELATED WORK

We summarize the related work in two categories.

5.1 Memory Allocation in Hybrid Memory Systems
There have been a number of studies on memory allocation for
hybrid memory systems. Youngwoo et al. [32] propose a page
allocator for hybrid memories based on access patterns of pro-
grams’ memory segments. It simply assumes all data in heap
and stack segments are frequently accessed (hot), and thus
allocates pages in the heap and stack segments on DRAM,
while data in other segments is allocated on NVM. WAlloc [33]
is a wear-aware memory allocator for reducing write opera-
tions on NVM. HEAPO [34], and Makalu [35] all provide
programming interfaces for NVM allocation with data consis-
tency guarantee. All these studies are orthogonal to OAM.
They only provide programming interfaces for NVM, and
leave decision making of data placement to programmers.
OAM not only offers programming interfaces for hybrid
memory systems, but also provides a profiling tool and an
utility model to direct object memory allocation/migration.
Some studies propose offline profiling schemes to guide
the initial data placement in hybrid memory systems [15],
[36]. Hassan et al. [15] exploit an offline profiling tool to direct
object memory allocation on hybrid memories. This work
mainly targets to embedded systems and applications.
Dulloor et al. develop an offline profiling tool to classify mem-
ory access patterns into sequential, random and pointer chas-
ing, and propose a data placement runtime called X-Mem [36]
to map objects to different data structures, which are placed
on separate memory regions. Wu et al. leverage online profil-
ing and performance models to characterizes objects” access
patterns, and develop a runtime system called Unimem [4] to
place data objects on hybrid memories. However, Unimem is
only applicable to MPI-based HPC applications that can be
easily decomposed into different phases according to MPI
operations. In contrast, OAM is applicable for all general-
purpose applications written in C++. Tahoe [37] characterizes
memory access patterns of task-parallel programs based on
machine learning and analytical models, and make the best
data placement decisions in hybrid memory systems. The
object placement schemes proposed by these studies are only
based on objects’ global access characteristics. They do not

1411

consider the dynamic change of objects” access patterns in
fine-grained execution phases at runtime.

2PP [16] is a software/hardware cooperative framework
for object placement in hybrid memory systems. 2PP also
exploits offline profiling to direct the initial object placement.
However, the runtime data migration at the page granularity
is relatively coarse-grained than objects, and still relies on
hardware extension for page-level access monitoring. More-
over, 2PP only considers the global memory read-write ratios
of applications and the available DRAM capacity for the ini-
tial data placement. If an object should be preferably allo-
cated in the DRAM but there is not enough memory space
available at runtime, it is still initially placed in the NVM but
marked as divergent so that it can be migrated to DRAM
when there is free DRAM available at runtime.

5.2 Data Migration in Hybrid Memory Systems

Page Access Counting. Page migration relies on page access
monitoring to identify the hot (cold) pages. A large body of
work relies on hardware extensions for page access counting.
Gaurav et al. [6] propose a small cache in the memory con-
troller to record write counts of selected pages, and migrate
pages whose write counts exceed a given threshold from
NVM to DRAM. Luiz et al. [8] propose hardware-assistant
Rank-based Page Placement (RaPP) to rank pages according
to page access frequency and write intensity, and migrates
top-ranked pages to fast DRAM. Meswani et al. [38] propose
a hardware counter in TLB which assists OS to identify hot
pages for migration in hybrid memory architectures. These
studies all require to modify/extend the hardware for page
access monitoring.

Page Migration Algorithms. Soyoon et al. [5] argue that the
frequency of memory writes is better than the temporal local-
ity in predicting future memory writes, and propose a page
replacement algorithm called CLOCK-DWF. Reza et al. [9]
consider both memory writes and reads to model the benefit
of page migration, and select the victim pages using two Least
Recently Used (LRU) queues for DRAM and NVM individu-
ally. There are also some other page replacement algorithms
based on LRU, such as LRU-WPAM [39], MHR-LRU [7].
Yoon et al. [40] propose to place data that frequently misses in
row buffers on DRAM to speed up data accesses. Yang
et al. [10] take page access frequency, row buffer locality and
memory level parallelism into consideration, and propose a
page-utility based performance model to direct page migra-
tions in hybrid memory systems. Khouzani ef al. [11] take both
program segments and DRAM conflict into consideration to
allocate/migrate pages in hybrid memory systems. A key limi-
tation of the above page migration approaches is that they all
rely on significant hardware modification to monitor memory
access statistics. These studies also ignore application-level
semantics and migrate pages according to temporal memory
access patterns, which may result in unnecessary page migra-
tions. In contrast, our proposal avoids any hardware and OS
level modifications, and provides global optimization on data
placement at the object granularity.

There is only a few work of page migration implemented
in OSes. Modern OSes such as Linux only support some
page migration primitives in Non-Uniform Memory Access
(NUMA) architectures [41]. Zhang et al. [42] exploit an OS-level
page migration scheme to improve NVM write performance

1412

and endurance. Memos [43] introduces an OS-level page access
profiling module and page migration engine to optimize data
placement in hybrid memory systems. Memif [44] is a pro-
tected OS service for asynchronous, DMA-accelerated page
migration in hybrid memory systems. HeteroOS [45] provides
an OS-managed hybrid memory migration solution in virtuali-
zation environments. These studies all need to overhaul OS
kernel mechanisms to support page migration, and the soft-
ware overhead is usually rather high. In contrast, OAM pro-
vides an offline profiling tool to analyze objects’ memory
access patterns, and a static code instrumentation tool to mod-
ify the application source code, without any intervention of
OSes and hardware. OAM also avoids the performance over-
head of memory monitoring at runtime.

6 CONCLUSION

To mitigate the overhead of online page access monitoring
and the cost of page migration in hybrid memory systems, we
propose object-level memory allocation and migration mecha-
nisms. OAM exploits offline profiling techniques to collect
application memory access statistics, and classify the objects
as stable and variable objects according to their memory access
patterns. We propose an utility model that takes into account
both memory access performance and energy consumption to
direct the object placement on NVM or DRAM. For stable
objects, the model-directed initial memory allocation is good
enough. For variable objects, as their memory access patterns
may change at different execution phases, OAM identifies the
change of different phases and migrates objects to the other
kind of memory accordingly. Experimental results show that
OAM can significantly reduce data migration overhead by 83
and 69 percent compared to the state-of-the-art page migra-
tion schemes CLOCK-DWF and 2PP, respectively, while
delivering higher application performance.

ACKNOWLEDGMENTS

This work was supported by the National Key Research
and Development Program of China under Grant No.
2017YFB1001603, and National Natural Science Foundation
of China under Grant No.61672251, 61732010, and 61825202,
61929103.

REFERENCES

[11 B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting phase
change memory as a scalable dram alternative,” in Proc. 36th
Annu. Int. Symp. Comput. Archit., 2009, pp. 2-13.

[2] M. Arjomand, M. T. Kandemir, A. Sivasubramaniam, and C. R. Das,
“Boosting access parallelism to PCM-based main memory,” in Proc.
43rd Int. Symp. Comput. Archit., 2016, pp. 695-706.

[3] L.Zhang, B. Neely, D. Franklin, D. Strukov, Y. Xie, and F. T. Chong,
“Mellow writes: Extending lifetime in resistive memories through
selective slow write backs,” in Proc. 43rd Int. Symp. Comput. Archit.,
2016, pp. 519-531.

[4] K. Wu, Y. Huang, and D. Li, “Unimem: Runtime data manage-
menton non-volatile memory-based heterogeneous main memo-
ry,” in Proc. Int. Conf. High Perform. Comput. Netw. Storage Anal.,
2017, pp. 58:1-58:14.

[5] S. Lee, H. Bahn, and S. H. Noh, “CLOCK-DWF: A write-history-
aware page replacement algorithm for hybrid PCM and DRAM
memory architectures,” IEEE Trans. Comput., vol. 63, no. 9,
pp- 2187-2200, Sep. 2014.

[6] G. Dhiman, R. Ayoub, and T. Rosing, “PDRAM: A hybrid pram
and dram main memory system,” in Proc. 46th Annu. Des. Autom.
Conf., 2009, pp. 664—469.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 69, NO. 9, SEPTEMBER 2020

[7]

(8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]
[21]
[22]
[23]
[24]

[25]
[26]

[27]

[28]

[29]
[30]

[31]

[32]

[33]

[34]

[35]

K. Chen, P. Jin, and L. Yue, “A novel page replacement algorithm
for the hybrid memory architecture involving PCM and DRAM,,”
in Proc. 11th IFIP Int. Conf. Netw. Parallel Comput., 2014, pp. 108-119.
L. E. Ramos, E. Gorbatov, and R. Bianchini, “Page placement in
hybrid memory systems,” in Proc. Int. Conf. Supercomput., 2011,
pp- 85-95.

R. Salkhordeh and H. Asadi, “An operating system level data
migration scheme in hybrid DRAM-NVM memory architecture,”
in Proc. Des. Autom. Test Eur. Conf. Exhib., 2016, pp. 936-941.

Y. Li, S. Ghose, J. Choi, J. Sun, H. Wang, and O. Mutlu, “Utility-
based hybrid memory management,” in Proc. IEEE Int. Conf. Clus-
ter Comput., 2017, pp. 152-165.

H. A. Khouzani, F. S. Hosseini, and C. Yang, “Segment and con-
flict aware page allocation and migration in DRAM-PCM hybrid
main memory,” IEEE Trans. Comput.-Aided Des. Integr. Circuits
Syst., vol. 36, no. 9, pp. 1458-1470, Sep. 2017.

J. Gandhi, A. Basu, M. D. Hill, and M. M. Swift, “BadgerTrap: A
tool to instrument x86-64 TLB misses,” SIGARCH Comput. Archit.
News, vol. 42, no. 2, pp. 20-23, Sep. 2014.

N. Agarwal and T. F. Wenisch, “Thermostat: Application-trans-
parent page management for two-tiered main memory,” in Proc.
22nd Int. Conf. Archit. Support Program. Lang. Operating Syst., 2017,
pp. 631-644.

B. Pham, J. Vesely, G. H. Loh, and A. Bhattacharjee, “Large pages
and lightweight memory management in virtualized environ-
ments: Can you have it both ways?” in Proc. 48th Int. Symp. Micro-
archit., 2015, pp. 1-12.

A. Hassan, H. Vandierendonck, and D. S. Nikolopoulos,
“Software-managed energy-efficient hybrid DRAM/NVM main
memory,” in Proc. 12th ACM Int. Conf. Comput. Frontiers, 2015,
pp- 23:1-23:8.

W. Wei, D. Jiang, S. A. McKee, J. Xiong, and M. Chen, “Exploiting
program semantics to place data in hybrid memory,” in Proc. Int.
Conf. Parallel Archit. Compilation, 2015, pp. 163-173.

M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable high perfor-
mance main memory system using phase-change memory tech-
nology,” in Proc. 36th Annu. Int. Symp. Comput. Archit., 2009, pp. 24-33.
H. Liu et al., “Hardware/software cooperative caching for hybrid
DRAM/NVM memory architectures,” in Proc. Int. Conf. Supercom-
puting, 2017, pp. 26:1-26:10.

LLVM, 2017. [Online]. Available: https://llvm.org/
SPECCPU2006, 2006. [Online]. Available: https://www.spec.org/
cpu2006

PBBS, 2014. [Online]. Available: http:/ /www.cs.cmu.edu/ pbbs/
J. Chang, W. H. Lee, and W. Srisa-an,”A study of the allocation
behavior of C++ programs,” J. Syst. Softw., vol. 57, no. 2, pp. 107-118,
2001.

J.-5. Kim and Y. Hsu, “Memory system behavior of Java pro-
grams: Methodology and analysis,” SIGMETRICS Perform. Eval.
Rev., vol. 28, no. 1, pp. 264-274, Jun. 2000.

N. Beckmann and D. Sanchez, “Modeling cache performance
beyond LRU,” in Proc. Int. Symp. High Perform. Comput. Archit.,
2016, pp. 481-493.

B. Li, L. Wang, and H. Leung, “Profiling selected paths with
loops,” Sci. China Inf. Sci., vol. 57, no. 7, pp. 1-15, Jul. 2014.

HME, 2017. [Online]. Available: https://github.com/CGCL-
codes/HME

Z.Duan, H. Liu, X. Liao, and H. Jin, “HME: A lightweight emula-
tor for hybrid memory,” in Proc. IEEE Conf. Des. Autom. Test
Europe, 2017, pp. 1375-1380.

PARSEC3.0, 2011. [Online]. Available: http:/ /parsec.cs.princeton.
edu/publications.htm

GRAPHS500, 2017. [Online]. Available: http://graph500.org/
STREAM, 2015. [Online]. Available: http:/ /www.cs.virginia.edu/
stream/

J. Izraelevitz et al., “Basic performance measurements of the Intel
optane DC persistent memory module,” CoRR, vol. abs/1903.05714,
2019. [Online]. Available: http:/ /arxiv.org/abs/1903.05714

Y. Park, S. K. Park, and K. H. Park, “Linux kernel support to exploit
phase change memory,” in Proc. Linux Symp., 2010, pp. 217-224.

S. Yu, N. Xiao, M. Deng, F. Liu, and W. Chen, “Redesign the mem-
ory allocator for non-volatile main memory,” ACM]. Emerg. Tech-
nol. Comput. Syst., vol. 13, no. 3, pp. 49:1-49:26, Apr. 2017.

T. Hwang, J. Jung, and Y. Won, “HEAPO: Heap-based persistent
object store,” ACM Trans. Storage, vol. 11, no. 1, pp. 3:1-3:21, Dec. 2014.
K. Bhandari, D. R. Chakrabarti, and H.-J. Boehm, “Makalu: Fast recov-
erable allocation of non-volatile memory,” in Proc. ACM SIGPLAN
Int. Conf. Object-Oriented Program. Syst. Lang. Appl., 2016, pp. 677—694.

https://llvm.org/
https://www.spec.org/cpu2006
https://www.spec.org/cpu2006
http://www.cs.cmu.edu/ pbbs/
https://github.com/CGCL-codes/HME
https://github.com/CGCL-codes/HME
http://parsec.cs.princeton.edu/publications.htm
http://parsec.cs.princeton.edu/publications.htm
http://graph500.org/
http://www.cs.virginia.edu/stream/
http://www.cs.virginia.edu/stream/
http://arxiv.org/abs/1903.05714

LIU ETAL.: OBJECT-LEVEL MEMORY ALLOCATION AND MIGRATION IN HYBRID MEMORY SYSTEMS 1413

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

S. R. Dulloor et al., “Data tiering in heterogeneous memory sys-
tems,” in Proc. 11th Eur. Conf. Comput. Syst., 2016, pp. 15:1-15:16.
K. Wu, J. Ren, and D. Li, “Runtime data management on non-
volatile memory-based heterogeneous memory for task-parallel
programs,” in Proc. Int. Conf. High Perform. Comput. Netw. Storage
Anal., 2018, pp. 31:1-31:13.

M. R. Meswani, S. Blagodurov, D. Roberts, J. Slice, M. Ignatowski,
and G. H. Loh, “Heterogeneous memory architectures: A HW/
SW approach for mixing die-stacked and off-package memories,”
in Proc. IEEE 21st Int. Symp. High Perform. Comput. Archit., 2015,
pp- 126-136.

H. Seok, Y. Park, K.-W. Park, and K. H. Park, “Efficient page caching
algorithm with prediction and migration for a hybrid main memo-
ry,” ACM SIGAPP Appl. Comput. Rev., vol. 11, no. 4, pp. 38-48,
Dec. 2011.

H. Yoon, “Row buffer locality aware caching policies for hybrid
memories,” in Proc. IEEE 30th Int. Conf. Comput. Des., 2012,
pp. 337-344.

C. Lameter, “Local and remote memory: Memory in a Linux/
NUMA system,” in Proc. Linux Symp., 2006, pp. 1-25.

W. Zhang and T. Li, “Exploring phase change memory and 3D
die-stacking for power/thermal friendly, fast and durable mem-
ory architectures,” in Proc. 18th Int. Conf. Parallel Archit.s Compila-
tion Techn., 2009, pp. 101-112.

L. Liu, H. Yang, Y. Li, M. Xie, L. Li, and C. Wu, “Memos: A full
hierarchy hybrid memory management framework,” in Proc.
IEEE 34th Int. Conf. Comput. Des., 2016, pp. 368-371.

F. X. Lin and X. Liu, “Memif: Towards programming heteroge-
neous memory asynchronously,” in Proc. 21st Int. Conf. Archit.
Support Program. Lang. Operating Syst., 2016, pp. 369-383.

S. Kannan, A. Gavrilovska, V. Gupta, and K. Schwan, “HeteroOS:
OS design for heterogeneous memory management in data-
center,” in Proc. 44th Annu. Int. Symp. Comput. Archit., 2017,
pp. 521-534.

Haikun Liu (Member, IEEE) received the PhD
degree from the Huazhong University of Science
and Technology (HUST), China. He was the recipi-
ent of Outstanding Doctoral Dissertation Award in
Hubei province, China. He is currently an associate
professor with the School of Computer Science and
Technology, HUST. His current research interests
include in-memory computing, virtualization tech-
nologies, cloud computing, and distributed systems.

Renshan Liu received the master’s degree in com-
puter science from the Huazhong University of
Science and Technology (HUST). His research
interest includes hybrid memory systems.

Xiaofei Liao (Member, IEEE) received the PhD
degree in computer science and engineering from
the Huazhong University of Science and Technol-
ogy (HUST), China, in 2005. He is currently a
professor with the School of Computer Science
and Engineering, HUST. His research interests
include the areas of system virtualization, system
software, and cloud computing.

Hai Jin (Fellow, IEEE) received the PhD degree in
computer engineering from the Huazhong Univer-
sity of Science and Technology, China, in 1994.
He is a Cheung Kung Scholars chair professor
of computer science and engineering at the
Huazhong University of Science and Technology
(HUST), China. In 1996, he was awarded a
German Academic Exchange Service fellowship
to visit the Technical University of Chemnitz,
Germany. He worked at The University of Hong
Kong, Hong Kong between 1998 and 2000, and
as a visiting scholar with the University of Southern California, Los
Angeles, California between 1999 and 2000. He was awarded Excellent
Youth Award from the National Science Foundation of China in 2001. He
is the chief scientist of ChinaGrid, and the chief scientists of National 973
Basic Research Program Project of Virtualization Technology of Comput-
ing System, and Cloud Security. He is a fellow of CCF, and a member of
the ACM. He has co-authored 22 books and published more than 800
research papers. His research interests include computer architecture,
cloud computing, big data processing, and network security.

Bingsheng He (Member, IEEE) received the
bachelor's degree in computer science from
Shanghai Jiao Tong University, Shanghai, China,
and the PhD degree in computer science from the
Hong Kong University of Science and Technology,
Hong Kong. He is currently an associate professor
with the School of Computer, National University
of Singapore, Singapore. His research interests
include high performance computing, cloud com-
puting, and database systems. He has been
awarded with the IBM PhD fellowship (2007—2008)
and with NVIDIA Academic Partnership (2010-
2011).

Yu Zhang (Member, IEEE) received the PhD
degree in computer science from the Huazhong
University of Science and Technology (HUST),
Wouhan, China, in 2016. He is currently a postdoctor
with the School of Computer Science, HUST. His
research interests include big data processing, run-
time system, computer architecture, and software.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

