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Abstract—Friedrichs et al. (TC 2018) showed that metastability can be contained when sorting inputs arising from time-to-digital

converters, i.e., measurement values can be correctly sorted without resolving metastability using synchronizers first. However, this

work left open whether this can be done by small circuits. We show that this is indeed possible, by providing a circuit that sorts Gray

code inputs (possibly containing a metastable bit) and has asymptotically optimal depth and size. Our solution utilizes the parallel prefix

computation (PPC) framework (JACM 1980). We improve this construction by bounding its fan-out by an arbitrary f � 3, without

affecting depth and increasing circuit size by a small constant factor only. Thus, we obtain the first PPC circuits with asymptotically

optimal size, constant fan-out, and optimal depth. To show that applying the PPC framework to the sorting task is feasible, we prove

that the latter can, despite potential metastability, be decomposed such that the core operation is associative. We obtain asymptotically

optimal metastability-containing sorting networks. We complement these results with simulations, independently verifying the

correctness as well as small size and delay of our circuits. Proofs are omitted in this version; the article with full proofs is provided online

at http://arxiv.org/abs/1911.00267.

Ç

1 INTRODUCTION

METASTABILITY is a fundamental obstacle when cross-
ing clock domains, potentially resulting in soft

errors with critical consequences [14]. As it has been
shown that metastability cannot be avoided deterministi-
cally [25], synchronizers [19] are employed to reduce the
error probability to tolerable levels. This approach trades
precious time for reliability: the more time is allocated
for metastability resolution, the smaller the probability
of metastability-induced faults.

Recently, a different approach has been proposed, coined
metastability-containing (MC) circuits [10]. It accepts a limited
amount of metastability in the input to a digital circuit and
ensures limited metastability of its output, so that the result
is still useful. In a series of works [3], [4], [24], we applied
this approach to a fundamental primitive: sorting. The circuit
given in [4] is asymptotically optimal in depth and size.

Our Contribution. In this article, we present the machin-
ery used to obtain the circuit from [4] in detail. We prove
that CMOS implementations of basic gates realize Kleene
logic (cf. [20, section 64]), justifying the computational
model introduced in [10] and used in this article.

The task of sorting an arbitrary number of inputs can be
reduced to sorting two inputs by using sorting networks [21].
The 0-1-principle (cf. Section 2) shows that plugging an MC

2-sortðBÞ circuit (for B-bit inputs) into a sorting network (for
n values) readily yields anMC circuit that is capable of sorting
n inputs. Hence, we need to design a 2-sortðBÞ circuit sorting
two inputs in anMCway.

As the choice of the encoding matters a lot for MC cir-
cuits, we characterize the set of input strings we want to
sort (“valid strings”). A valid string is either a (standard)
Gray code string or a string obtained from a Gray code
string by replacing the unique bit that would change on
the up-count to the “next” codeword by M for metastability
(the third logic value in Kleene logic). When using non-
redundant codes, the use of Gray codes is mandatory: when
converting an analog value to a digital one, continuously
changing the input can force any circuit (that uses the value
in a non-trivial way) into metastability [25]. Moreover, for
combinational circuits in the abstraction of Kleene logic, all
output bits that change when flipping a given input bit
must become unstable when the input bit is unstable,
cf. [10]. For instance, encoding a value unknown to be 11 or
12 in standard binary code would result in a string that,
once metastability has been resolved, may represent any
number in the interval from 8 to 15, cf. Section 3.

Valid strings arise naturally when stopping a Gray code
counter asynchronously [12] or, more generally, whenever
performing analog-to-digital conversion; respective circuits
may risk multiple metastable bits to achieve better average-
case precision, but for the best worst-case precision one can
stick to guaranteeing valid strings as output. Exploiting the
structure of Gray code and the restriction to valid strings, we
show how to reliably sort all inputs despite the uncertainty
about the represented value arising frommetastability.

We formally specify the 2-sortðBÞ circuit and then prove
that the task of comparing two valid strings can be decom-
posed into first performing a four-valued comparison on
each prefix pair of the two valid input strings, and then
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inferring the corresponding output bits. This reduces the
design of 2-sortðBÞ to a parallel prefix computation (PPC)
problem, which for our purposes can be phrased as follows.

Definition 1.1 (PPC�ðBÞ). For associative � : D�D ! D
and B 2 N, a PPC�ðBÞ circuit is specified as follows.
Input: d 2 DB,
Output: p 2 DB,
Functionality: pi ¼ �i

j¼1dj for all i 2 ½1; B�.
Fast PPC circuits that are simultaneously (asymptoti-

cally) optimal in depth and size are known due to a cele-
brated result by Ladner and Fischer [23]. Going beyond [4],
we present the full range of solutions that can be derived
using their framework, which allows for a trade-off between
depth and size of the 2-sort circuit. Most prominently, opti-
mizing for depth reduces the depth of the circuit by a factor
of 2 compared to [4] to optimal dlogBe, at the expense of
increasing the size by a factor of up to 2.

However, relying on the construction from [23] as-is
results in a very large fan-out. We present a modification
reducing fan-out to any number f � 3 without affecting
depth, increasing the size by a factor of only 1þOð1=fÞ
(plus at most 3B=2 buffers). In particular, our results imply
that the depth of an MC sorting circuit can match the delay
of a non-containing circuit, while maintaining constant fan-
out and a constant-factor size overhead. Due to the fact that
PPC circuits lie at the heart of fast adders [27], we consider
this result of independent interest.

We complement our theoretical findings by simulations
confirming the correctness and small size of the devised cir-
cuits. Post-layout area and delay of the designed circuits
compare favorably with a baseline provided by a straight-
forward non-containing implementation.

Organization of this Article. We discuss related work in
Section 2. Some preliminaries, the computational model
and its justification, as well as the problem specification
are given in Section 3. Next, in Section 4, we break the task
of designing a 2-sortðBÞ circuit down into comparing pre-
fixes and subsequently generating the output bits out of
the computed comparison values and the respective pair
of input bits. The comparison can be further decomposed
into sequential application of an associative operator,
which enables application of the PPC framework to com-
pute all prefixes efficiently in parallel with (asymptotically)
optimal depth. In order to keep this article self-contained,
we compactly review the PPC framework in Section 5. The
section then proceeds to showing how to modify the con-
struction for bounded fan-out and bounding the size of the
resulting circuits. In Section 6, we implement the base
operators by subcircuits and plug the pieces together to
obtain complete circuits. We then simulate them up to an
input width of B ¼ 16 to independently verify their cor-
rectness, and provide delay and area of the laid out cir-
cuits. We compare to a non-containing version as baseline,
demonstrating the controlled increase in size of the circuit.
We conclude the article in Section 7, where we also briefly dis-
cuss follow-up work that generalizes our results, demonstrat-
ing that higher-level concepts of this work like sorting
networks and parallel prefix computation are applicable to
furtherMC circuits.

2 RELATED WORK

Sorting Networks. Sorting networks (see, e.g., [21]) sort n
inputs from a totally ordered universe by feeding them into
n parallel wires that are connected by 2-sort elements, i.e.,
subcircuits sorting two inputs; these can act in parallel
whenever they do not depend on each other’s output. A cor-
rect sorting network sorts all possible inputs, i.e., the wires
are labeled 1 to n such that the ith wire outputs the ith ele-
ment of the sorted list of inputs. The size of a sorting net-
work is its number of 2-sort elements and its depth is the
maximum number of 2-sort elements an input may pass
through until reaching the output.

The 0-1-principle [21] states that a sorting network —
assuming the 2-sort circuits are correct — is correct if and
only if it sorts 0-1 inputs correctly. Thus, we obtain sorting
networks for inputs that may suffer from metastability by
constructing 2-sort circuits (w.r.t. a suitable order on such
inputs) and plugging them into existing sorting networks.

Sorting networks have been extensively studied. Tight
lower bounds of depth VðlognÞ (trivial) and size Vðn lognÞ
(see, e.g., [8]) are known and can be simultaneously asymp-
totically matched [1]. More practically, for small values of n
optimal depth and/or size networks are known [6], [7], [21].
Accordingly, our task boils down to finding optimal (or
close to optimal) metastability-containing 2-sort circuits. For
B-bit inputs, our 2-sort circuits have depth and size
OðlogBÞ and OðBÞ, respectively, which is (trivially) optimal
up to constants; as size and depth of our circuits are close to
non-containing 2-sort circuits (cf. Table 12), we conclude
that our approach yields MC sorting networks that are opti-
mal up to small constant factors in both depth and size.

Prior Work on MC Circuits. Recent work [10] shows that
for any Boolean function a combinational MC circuit imple-
menting its metastable closure (see Definition 3.8) exists. The
metastable closure can be seen as a best effort to contain
metastability: when for an input with (some) metastable bits
the stable input bits already determine a given output bit of
the original Boolean function, the closure attains the respec-
tive value on this output bit; otherwise it is metastable.

Unfortunately, the proof from [10], which uses a con-
struction dating back to Huffman [16], yields circuits of
exponential size in the number of input bits B. The same is
true for speculative computing [28]. Unconditional lower
bounds on MC circuits [17] show that this cannot be
avoided in general, even if the implemented function
admits a small non-containing circuit. The same work pro-
vides, assuming that at most k input bits can be metastable,
a construction with multiplicative BOðkÞ and additive
Oðk logBÞ overheads in size and depth, respectively. For
the 2-sort element, k ¼ 2 (each Gray code string may contain
one metastable bit), but the resulting circuits are still far
from optimal.

In [10], an alternative construction relying on non-
combinational logic is given, achieving (up to minor-order
terms) factor 2kþ 1 increase in size and additive Qðlog kÞ
increase in depth of the resulting circuit; for a 2-sort circuit,
k ¼ 2, so these overheads are constant. Rule-of-thumb calcula-
tions suggest that optimized versions of the circuits presented
here and derived by thismethodwould have comparable per-
formance. A fair and detailed comparison would require
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fully-fledged designs of both approaches, which is beyond the
scope of this article. Note, however, that our design has the
advantage of being purely combinational.

Parallel Prefix Computation. Ladner and Fischer [23] stud-
ied the parallel application of an associative operator to all
prefixes of an input string of length ‘ (over an arbitrary
alphabet). They give parallel prefix computation circuits of
depth Oðlog ‘Þ and size Oð‘Þ (where the circuit implement-
ing the operator is assumed to have size and depth 1).
However, when requiring optimal depth of dlog ‘e, their
corresponding solution suffers from fan-out larger than
‘=2. An earlier construction by Kogge and Stone [22] simul-
taneously achieves optimal depth and fan-out of 2. This
yields the fastest adder circuits to date (cf. [27]), but at the
expense of a large size of ‘ðdlog ‘e � 1Þ þ 1. A number of
additional constructions have been developed for adders,
including special cases ([2], [26]) of the one by Ladner and
Fischer, cf. [31]. However, no other construction achieves
asymptotically optimal depth and size.

3 MODEL AND PROBLEM

In this section, we discuss how to model metastability in a
worst-case fashion and formally specify the input/output
behavior of our circuits. Our model is a simplified version
of the one from [10] for combinational circuits (cf. [9,
Chap. 7]). This means to represent metastable “bits” by M

and extend truth tables as in Kleene’s 3-valued logic [20,
Section 64].

Basic Notation. We set ½N � :¼ f0; . . . ; N � 1g for N 2 N

and ½i; j� ¼ fi; iþ 1; . . . ; jg for i; j 2 N, i � j. We denote
B :¼ f0; 1g and BM :¼ f0; 1; Mg. For a B-bit string g 2 BB

M and
i 2 ½1; B�, denote by gi its ith bit, i.e., g ¼ g1g2 . . . gB. We use
the shorthand gi;j :¼ gi . . . gj, where i; j 2 ½1; B� and i � j.
Let parðgÞ denote the parity of g 2 BB, i.e, parðgÞ ¼PB

i¼1 gi mod2. For a function f and a set A we abbreviate
fðAÞ :¼ ffðyÞ j y 2 Ag.

3.1 Binary Reflected Gray Code

A standard binary representation of inputs is unsuitable:
uncertainty of the input values may be arbitrarily amplified
by the encoding. E.g., representing a value unknown to be
11 or 12, which are encoded as 1011 resp. 1100, would result
in the bit string 1MMM, i.e., a string that is metastable in every
position that differs for both strings. However, 1MMM may
represent any number in the interval from 8 to 15, amplify-
ing the initial uncertainty of being in the interval from 11 to
12. An encoding that does not lose precision for consecutive
values is Gray code.

We use B-bit binary reflected Gray code, rgB : ½N � ! BB,
which is defined recursively. For simplicity (and without
loss of generality) we set N :¼ 2B. A 1-bit code is given by

rg1ð0Þ ¼ 0 and rg1ð1Þ ¼ 1. For B > 1, we start with the first
bit fixed to 0 and counting with rgB�1ð	Þ (for the first 2B�1

codewords), then toggle the first bit to 1, and finally “count
down” rgB�1ð	Þ while fixing the first bit again, cf. Table 1.
Formally, this yields for x 2 ½N �

rgBðxÞ :¼ 0 rgB�1ðxÞ if x 2 ½2B�1�
1 rgB�1ð2B � 1� xÞ if x 2 ½2B� n ½2B�1�:

�

As each B-bit string is a codeword, the code is a bijection
and the encoding function also defines the decoding func-
tion. Denote by h	i : BB ! ½N� the decoding function of a
Gray code string, i.e., for x 2 ½N �, hrgBðxÞi ¼ x.

For two binary reflected Gray code strings g; h 2 BB, we
define their maximum and minimum as

maxrgfg; hg;minrgfg; hgð Þ :¼ ðg; hÞ if hgi � hhi
ðh; gÞ if hgi < hhi:

�

For example:

� maxrgf0011; 0100g ¼ maxrgfrgBð2Þ; rgBð7Þg ¼ 0100,
� minrgf0111; 0101g ¼ minrgfrgBð9Þ; rgBð10Þg ¼ 0111.

3.2 Valid Strings

The inputs to the sorting circuit may have some metastable
bits, which means that the respective signals behave out-of-
spec from the perspective of Boolean logic. Such inputs,
referred to as valid strings, are introduced with the help of
the following operator.

Definition 3.1 (
 Operator). For B 2 N, define the operator

 : BB

M � BB
M ! BB

M by

8i 2 f1; . . . ; Bg : ðx 
 yÞi :¼
xi if xi ¼ yi
M else.

�

Observation 3.2. The operator 
 is associative and commuta-
tive. Hence, for a set S ¼ fxð1Þ; . . . ; xðkÞg of B-bit strings, we
can use the shorthand 
S :¼ 
x2Sx :¼ xð1Þ 
 xð2Þ 
 . . . 
 xðkÞ:
We call 
S the superposition of the strings in S.

Valid strings have at most one metastable bit. If this bit
resolves to either 0 or 1, the resulting string encodes either x
or xþ 1 for some x, cf. Table 2.

Definition 3.3 (Valid Strings). Let B 2 N and N ¼ 2B.
Then, the set of valid strings of length B is

SB
rg :¼ rgBð½N �Þ [

[
x2½N�1�

frgBðxÞ 
 rgBðxþ 1Þg:

TABLE 1
4-bit Binary Reflected Gray Code

# g1; g2;4 # g1; g2;4 # g1; g2;4 # g1; g2;4

0 0 000 4 0 110 8 1 100 12 1 010
1 0 001 5 0 111 9 1 101 13 1 011
2 0 011 6 0 101 10 1 111 14 1 001
3 0 010 7 0 100 11 1 110 15 1 000

TABLE 2
4-bit Valid Inputs

g hgi g hgi g hgi g hgi
0000 0 0110 4 1100 8 1010 12
000M � 011M � 110M � 101M �
0001 1 0111 5 1101 9 1011 13
00M1 � 01M1 � 11M1 � 10M1 �
0011 2 0101 6 1111 10 1001 14
001M � 010M � 111M � 100M �
0010 3 0100 7 1110 11 1000 15
0M10 � M100 � 1M10 � � �
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3.3 Resolution and Closure

To extend the specification ofmaxrg andminrg to valid strings,
we make use of the metastable closure [10]. The metastable clo-
sure is defined over the possible resolutions ofmetastable bits.

Definition 3.4 (Resolution [10]). For x 2 BB
M , define the reso-

lution resðxÞ : BB
M ! P BB

� �
as follows:

resðxÞ :¼ fy 2 BB j 8i 2 f1; . . . ; Bg : xi 6¼ M ) yi ¼ xig:

Thus, resðxÞ is the set of all strings obtained by replacing
all Ms in x by either 0 or 1: M acts as a “wild card.” For any x
and y, we have that resðxyÞ ¼ resðxÞresðyÞ.

We note two observations for later use.

Observation 3.5. For any x 2 BB
M , 
resðxÞ ¼ x.

For example: 
resð0M10Þ ¼ 
f0010; 0110g ¼ 0M10 :

Observation 3.6. For ; 6¼ S � BB, we have S � resð
SÞ.
We observe that in general the reverse direction does not

hold, i.e., resð
SÞ~S. For example, consider S ¼ f01; 10g
and thus 
S ¼ MM such that resð
SÞ ¼ f00; 01; 10; 11g ¼ B2.
Hence, S � resð
SÞ but not resð
SÞ � S. In contrast, for
jresð
SÞj � 2, we can see that the reverse direction holds.

Observation 3.7. For any subset of strings S � BB, if
jresð
SÞj � 2, then resð
SÞ ¼ S.

The metastable closure of an operator on binary inputs
extends it to inputs that may contain metastable bits. This is
done by considering all resolutions of the inputs, applying
the operator, and taking the superposition of the results.

Definition 3.8 (The M Closure [10]). Given an operator
f : Bn ! Bm, its metastable closure fM : B

n
M ! Bm

M is defined
by fMðxÞ :¼ 
ffðx0Þjx0 2 resðxÞg. Recalling the basic notation
we abbreviate this by fMðxÞ ¼ 
fðresðxÞÞ.
The closure is the best one can achieve w.r.t. containing

metastability with clocked logic using standard registers [10],
i.e., when fMðxÞi ¼ M, no such implementation can guarantee
that the ith output bit stabilizes in a timely fashion.

3.4 Output Specification

We want to construct a circuit computing the maximum and
minimum of two valid strings, enabling us to build sorting
networks for valid strings. First, however, we need to answer
the question what it means to ask for the maximum or mini-
mum of valid strings. To this end, suppose a valid string is
rgBðxÞ 
 rgBðxþ 1Þ for some x 2 ½N � 1�, i.e., the string con-
tains a metastable bit that makes it uncertain whether the rep-
resented value is x or xþ 1. If we wait for metastability to
resolve, the string will stabilize to either rgBðxÞ or rgBðxþ 1Þ.
Accordingly, it makes sense to consider rgBðxÞ 
 rgBðxþ 1Þ
“in between” rgBðxÞ and rgBðxþ 1Þ, resulting in the following
total order on valid strings (cf. Table 2).

Definition 3.9 (�).We define a total order � on valid strings as
follows. For g; h 2 BB, g � h , hgi < hhi. For each x 2
½N � 1�, we define rgBðxÞ � rgBðxÞ 
 rgBðxþ 1Þ � rgB
ðxþ 1Þ. We extend the resulting relation on SB

rg � SB
rg to a total

order by taking the transitive closure. Note that this also defines

, via g 
 h , ðg ¼ h _ g � hÞ.

We intend to sort with respect to this order. It turns out
that implementing a 2-sort circuit w.r.t. this order amounts
to implementing the metastable closure ofmaxrg andminrg.

Lemma 3.10. Let g; h 2 SB
rg. Then

g 
 h , ðmaxrgM fg; hg;minrgM fg; hgÞ ¼ ðh; gÞ:

In other words, maxrgM and minrgM are the max and min
operators w.r.t. the total order on valid strings shown in
Table 2, e.g.,

� maxrgM f1001; 1000g ¼ rg4ð15Þ ¼ 1000,
� maxrgM f0M10; 0010g ¼ rg4ð3Þ 
 rg4ð4Þ ¼ 0M10, and
� maxrgM f0M10; 0110g ¼ rg4ð4Þ ¼ 0110.
Hence, our task is to implementmaxrgM andminrgM .

Definition 3.11 (2-sortðBÞ). For B 2 N, a 2-sortðBÞ circuit is
specified as follows.

Input: g; h 2 SB
rg,

Output: g0; h0 2 SB
rg,

Functionality: g0 ¼ maxrgM fg; hg, h0 ¼ minrgM fg; hg.

3.5 Computational Model and CMOS Logic

We seek to use standard components and combinational
logic only. We use the model of [10], which specifies the
behavior of basic gates on metastable inputs via the metasta-
ble closure of their behavior on binary inputs, cf. Table 3.
We use the standard notational convention that aþ b ¼
ORMða; bÞ and ab ¼ ANDMða; bÞ.

Note that in this logic, most familiar identities hold: AND
and OR are associative, commutative, and distributive, and
DeMorgan’s laws hold. However, naturally the law of the
excluded middle becomes void. For instance, in general,
ORðx; �xÞ 6¼ 1, as ORðM; MÞ ¼ M.

We now argue that basic CMOS gates behave according
to this logic, justifying the model. For the sake of an intuitive
notation, we apply some slightly unusual conventions. In
the following, let R1 be a wildcard that can refer to any
resistance that is “low”, i.e., close to being negligible, as e.g.,
that of a transistor in its stable conducting state (i.e., any
PMOS transistor subjected to a low gate voltage or any
NMOS transistor subjected to a high gate voltage). Similar,
denote by R0 any resistance that is “high”, i.e., large com-
pared to R1, such as the resistance of a transistor in its stable
non-conducting state. Thus, with a stable input b 2 B

(where we identify 0 with low and 1 with high voltage), an
NMOS transistor attains resistance Rb, while a PMOS tran-
sistor attains resistance R�b. We can extend this to unstable
inputs M by making the conservative assumption that RM is
an arbitrary (possibly time-dependent) resistance.

TABLE 3
Extensions to Metastable Inputs of AND (Left), OR (Center),

and an Inverter (Right) According to Kleene Logic
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With this notation, we can see that parallel and serial
composition of transistors implements AND and OR in
Kleene logic, respectively.

Lemma 3.12. For k 2 N sufficiently small so that kR1 � R0, let
a1; . . . ; ak 2 BM be input signals fed to k NMOS transistors
interconnected (i) in parallel or (ii) sequentially. Set s :¼Pk

i¼1 ai and p :¼Qk
i¼1 ai, i.e., the OR resp. AND over all

inputs. Then the resistance between input and output of the
resulting subcircuit is (roughly) (i) Rs resp. (ii) Rp.

The same arguments apply to PMOS transistors.

Corollary 3.13. For k 2 N sufficiently small so that kR1 � R0,
let a1; . . . ; ak 2 BM be input signals fed to k PMOS transistors
interconnected (i) in parallel or (ii) sequentially. Set s :¼Pk

i¼1 �ai and p :¼Qk
i¼1 �ai, i.e., the OR resp. AND over all

inputs. Then the resistance between input and output of the
resulting subcircuit is (roughly) (i) Rs resp. (ii) Rp.

We remark that the factor of k reduction in the gap
between R1 and R0 may imply that a gate’s output signal
needs to be regenerated using a buffer. However, this is the
same behavior as for logic that assumes stable signals only,
so standard CMOS design techniques account for this.

From the above observations, we can readily infer that
standard CMOS gate implementations behave according to
Kleene logic in face of potentially metastable signals, justify-
ing the model from [10].

Theorem 3.14. The CMOS gates depicted in Fig. 1 implement
the truth tables given in Table 3.

Similar reasoning applies to many gates, e.g., NAND and
NOR gates. We stress, however, that the property of imple-
menting the closure of the function computed by the gate
on stable values is not universal for CMOS logic. For
instance, standard transistor-level multiplexer implementa-
tions do not handle metastability well, cf. [11].

4 DECOMPOSITION OF THE TASK

In this section, we show that computing maxrgM fg; hg and

minrgM fg; hg for valid strings g; h 2 SB
rg can be broken down

into composing simple operators in B2
M � B2

M ! B2
M.

4.1 Comparing Stable Gray Codes via an FSM

Fig. 2 depicts a finite state machine performing a four-val-
ued comparison of two Gray code strings. In each step of
processing inputs g; h 2 BB, it is fed the pair of ith input bits
gihi. In the following, we denote by sðiÞðg; hÞ the state of the
machine after i steps, where sð0Þðg; hÞ :¼ 00 is the starting
state. For ease of notation, we will omit the arguments g and
h of sðiÞ whenever they are clear from context. Table 4 shows
an example of a run of the finite state machine.

Because the parity keeps track of whether the remaining
bits are to be compared w.r.t. the standard or “reflected”
order, the state machine performs the comparison correctly
w.r.t. the meaning of the states indicated in Fig. 2.

Lemma 4.1. Let g; h 2 BB and i 2 ½Bþ 1�. Then
� sðiÞ ¼ 00 is equivalent to g1;i ¼ h1;i and g � h if and

only if giþ1;B � hiþ1;B,
� sðiÞ ¼ 11 is equivalent to g1;i ¼ h1;i and g � h if and

only if giþ1;B � hiþ1;B,
� sðiÞ ¼ 01 is equivalent to g � h, and
� sðiÞ ¼ 10 is equivalent to g � h.

This lemma gives rise to a sequential implementation of
2-sortðBÞ based on the given state machine, for input strings
in BB. Table 5 lists the ith output bit as function of sði�1Þ and
the pair gihi. Correctness of this computation follows imme-
diately from Lemma 4.1.

We can express the transition function of the state
machine as an (as easily verified) associative operator �

Fig. 1. Standard transistor-level implementations of inverter (left), NAND
(center), and NOR (right) gates in CMOS technology. The latter can be
turned into AND and OR, respectively, by appending an inverter.

Fig. 2. Finite state machine determining which of two Gray code inputs
g; h 2 BB is larger. In each step, it receives gihi as input. State encoding
is given in square brackets.

TABLE 4
Run of the FSM on Inputs g ¼ 1001 and h ¼ 1000

i 0 1 2 3 4

gihi 11 00 00 10
sðiÞ ¼ sði�1Þ � gihi 00 11 11 11 01
g0i ¼ outðsði�1Þ; gihiÞ1 1 0 0 0
h0
i ¼ outðsði�1Þ; gihiÞ2 1 0 0 1

TABLE 5
Computingmaxrgfg; hgi andminrgfg; hgi from
the Current State sði�1Þ and Inputs gi and hi

sði�1Þ maxrgfg; hgi minrgfg; hgi
00 maxfgi; hig minfgi; hig
10 gi hi

11 minfgi; hig maxfgi; hig
01 hi gi
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taking the current state and input gihi as argument and

returning the new state. Then sðiÞ ¼ sði�1Þ � gihi, where � is

given in Table 6 a and sð0Þ ¼ 00. The out operator is derived
from Table 5 by evaluating maxrgfg; hgi and minrgfg; hgi for
all possible values of gihi 2 B2. Noting that sð0Þ � x ¼ 00 �
x ¼ x for all x 2 B2, we arrive at the following corollary.

Corollary 4.2. For all i 2 ½1; B�, we have that

maxrgfg; hgiminrgfg; hgi ¼ out �i�1

j¼1

gjhj; gihi

 !
:

Our goal in this section is to extend this approach to
potentially metastable inputs.

4.2 Dealing with Metastable Inputs

Our strategy is to replace all involved operators by their
metastable closure: for i 2 ½1; B� (i) compute s

ðiÞ
M , (ii) deter-

mine maxrgM fg; hgi and minrgM fg; hgi according to Table 5, and
finally (iii) exploit associativity of the operator computing
the state s

ðiÞ
M for usage in the PPC framework ([23], see

Section 5). Thus, we only need to implement �M and the outM
(both of constant size), plug them into the framework, and
immediately obtain an efficient circuit.

The readermay askwhywe compute s
ðiÞ
M for all i 2 ½0;B� 1�

instead of computing only s
ðBÞ
M with a simple tree of �M elements,

whichwould yield a smaller circuit. Since s
ðBÞ
M is the result of the

comparison of the entire strings, it could be used to compute all

outputs, i.e., we could compute the output by outMðsðBÞM ; gihiÞ
instead of outMðsði�1Þ

M ; gihiÞ. However, in case of metastability,

this may lead to incorrect results. This can be seen in the exam-
ple run of the FSM given in Table 7. We thus compute every

intermediate state s
ðiÞ
M .

Unfortunately, even with this modification it is not obvi-
ous that our approach yields correct outputs. There are
three hurdles to overcome:

(P1) Show that �M is associative.
(P2) Show that repeated application of �M computes s

ðiÞ
M .

(P3) Show that applying outM to s
ði�1Þ
M and gihi results for

all valid strings inmaxrgM fg; hgiminrgM fg; hgi.
Regarding the first point, we note the statement that �M is

associative does not depend on B. In other words, it can be
verified by checking for all possible x; y; z 2 B2

M whether
ðx �M yÞ �M z ¼ x �M ðy �M zÞ. While it is tractable to manually
verify all 36 ¼ 729 cases (exploiting various symmetries and
other properties of the operator), it is tedious and prone to
errors. Instead, we verified that both evaluation orders
result in the same outcome by a short computer program.

Theorem 4.3. (P1) holds, i.e., �M is associative.
Apart from being essential for our construction, this the-

orem simplifies notation; in the following, we may write

�M

� �j
i¼1

gihi :¼ g1h1 �M g2h2 �M . . . �M gjhj ;

where the order of evaluation does not affect the result.
We stress that in general the closure of an associative

operator needs not be associative. A counter-example is
given by binary addition modulo 4:

ð0MþM 01Þ þM 01 ¼ MM 6¼ 1M ¼ 0MþM ð01þM 01Þ:

4.3 Determining s
ðiÞ
M

For convenience of the reader, Table 8 gives the truth table
of �M : B2

M � B2
M ! B2

M. We need to show that repeated appli-
cation of this operator to the input pairs gjhj, j 2 ½1; i�, actu-
ally results in s

ðiÞ
M . This is closely related to the key

observation that if in a valid string there is a metastable bit
at position m, then the remaining B�m following bits are
the maximum codeword of a ðB�mÞ-bit code.
Observation 4.4. For g 2 SB

rg, if there is an index 1 � m < B
such that gm ¼ M then gmþ1;B ¼ 10B�m�1.

Our reasoning will be based on distinguishing two main
cases: one is that s

ðiÞ
M contains at most one metastable bit, the

other that s
ðiÞ
M ¼ MM. For each we need a technical statement.

TABLE 6
Operators for Next State and Output

(a) The � operator
� 00 01 11 10
00 00 01 11 10
01 01 01 01 01
11 11 10 00 01
10 10 10 10 10

(b) The out operator

out 00 01 11 10
00 00 10 11 10
01 00 10 11 01
11 00 01 11 01
10 00 01 11 10

The first operand is the current state, the second is the next input.

TABLE 7
Run of the FSM on Inputs g ¼ 0M10 and h ¼ 0010, Showing

that Computing Only the Last State is Insufficient

i 0 1 2 3 4

gihi 00 M0 11 00

s
ðiÞ
M ¼ s

ði�1Þ
M �M gihi 00 00 M0 1M 1M

outMðsð4ÞM ; gihiÞ 00 MM 11 00

outMðsði�1Þ
M ; gihiÞ 00 M0 11 00

This yields outMð1M; M0Þ ¼ 
f00; 01; 10g ¼ MM as second output, but
outMð00; M0Þ ¼ 
f00; 10g ¼ M0 is correct.

TABLE 8
The �M Operator

�M 00 0M 01 M1 11 1M 10 M0 MM

00 00 0M 01 M1 11 1M 10 M0 MM

0M 0M 0M 01 M1 M1 MM MM MM MM

01 01 01 01 01 01 01 01 01 01
M1 M1 MM MM MM 0M 0M 01 M1 MM

11 11 1M 10 M0 00 0M 01 M1 MM

1M 1M 1M 10 M0 M0 MM MM MM MM

10 10 10 10 10 10 10 10 10 10
M0 M0 MM MM MM 1M 1M 10 M0 MM

MM MM MM MM MM MM MM MM MM MM

The first operand is the current state, the second are the next input bits.
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Observation 4.5. If jresðsðiÞM Þj � 2 for any i 2 ½Bþ 1�, then
resðsðiÞM Þ ¼ �i

j¼1
resðgjhjÞ.

Lemma 4.6. Suppose that for valid strings g; h 2 SB
rg, it holds

that s
ðiÞ
M ¼ MM for some i 2 ½1; B�. Then g ¼ h and s

ðjÞ
M ¼ MM for

all j 2 ½i; B�.
Equipped with these tools, we are ready to prove the sec-

ond statement.

Theorem 4.7. (P2) holds, i.e., for all g; h 2 SB
rg and i 2 ½1; B�,

s
ðiÞ
M ¼ �M

� �i
j¼1

gjhj.

4.4 Obtaining the Outputs from s
ðiÞ
M

Recall that out : B2 � B2 ! B2 is the operator given in Table 5
computing maxrgfg; hgiminrgfg; hgi out of sði�1Þ and gihi. For
convenience of the reader, we provide the truth table of
outM : B

2
M � B2

M ! B2
M in Table 9. We derive the third property.

Theorem 4.8. (P3) holds, i.e., given valid inputs g; h 2 SB
rg and

i 2 ½1; B�, outMðsði�1Þ
M ; gihiÞ ¼ maxrgM fg; hgiminrgM fg; hgi.

5 THE PPC FRAMEWORK

In order to derive a small circuit from the results of Section 4,
a straightforward approach would be to unroll the FSM. We
could design a circuit implementing the transition function
�M and apply it B times to the starting state sð0Þ and each
input gihi. However, computing the sequence of states step
by step yields a (non-optimal) linear depth of at least B.

Hence, we make use of the PPC framework by Ladner
and Fischer [23]. They describe a generic method that is
applicable to any finite state machine translating a sequence
of B input symbols to B output symbols, to obtain circuits
of size OðBÞ and depth OðlogBÞ. They observe that each
input symbol defines a restricted transition function. Com-
positions of these functions evaluated on the starting state
yield the state of the machine after receiving corresponding
inputs. The major advantage of the technique is that compo-
sitions of restricted transition functions can be computed in
parallel due to associativity, yielding a depth of OðlogBÞ.
This matches our needs, as we need to determine s

ðiÞ
M for

each i 2 ½B�. However, their generic construction involves
large constants. Fortunately, we have established that
�M : B2

M � B2
M ! B2

M is an associative operator, permitting us
to directly apply the circuit templates for associative

operators they provide for computing s
ðiÞ
M ¼ ð�M

Þij¼1gjhj for
all i 2 ½B�. Accordingly, we discuss these templates only.
During discussion of the basic construction we show a
minor improvement on their results.

Before proceeding, the reader may want to take a look at
the example given in Fig. 3, which shows how a 2-sortð9Þ
derived from our construction processes an input pair.

5.1 The Basic Construction

We revisit the templates for parallel computation of all
prefixes, i.e., the part of the framework relevant to our con-
struction. To this end, recall Definition 1.1. In our case,
� ¼ �M and D ¼ B2

M. [23] provides a family of recursive con-
structions of PPC� circuits. They are obtained by combining
two different recursive patterns. The first pattern, which
optimizes for size of the resulting circuits, is depicted in
Fig. 4a. We distinguish between even and odd number of
inputs. If B is even, we discard the rightmost gray wire and
set �B :¼ B; if B is odd, we set �B :¼ B� 1 and include the
rightmost wire. In the following, denote by jCj the size of a
circuit C and by dðCÞ its depth.
Lemma 5.1. Suppose that C and P are circuits implementing �

and PPC�ðdB=2eÞ for some B 2 N, respectively. Then apply-
ing the recursive pattern given at the left of Fig. 4 yields a
PPC�ðBÞ circuit. It has depth 2dðCÞ þ dðP Þ and size at most
ðB� 1ÞjCj þ jP j. Moreover, the last output is at depth at most
dðCÞ þ dðP Þ of the circuit.
The second recursive pattern, shown in Fig. 4c, avoids to

increase the depth of the circuit beyond the necessary dðCÞ
for each level of recursion. Assume for now that B is a
power of 2. We represent the recursion as a tree Tb, where
b :¼ logB, given in the center of Fig. 4. It has depth b with
all leaves (filled in white) in this depth, and there are two
types of non-leaf nodes: right nodes (filled in black) have

TABLE 9
The outM Operator

outM 00 0M 01 M1 11 1M 10 M0 MM

00 00 M0 10 1M 11 1M 10 M0 MM

0M 00 M0 10 1M 11 MM MM MM MM

01 00 M0 10 1M 11 M1 01 0M MM

M1 00 MM MM MM 11 M1 01 0M MM

11 00 0M 01 M1 11 M1 01 0M MM

1M 00 0M 01 M1 11 MM MM MM MM

10 00 0M 01 M1 11 1M 10 M0 MM

M0 00 MM MM MM 11 1M 10 0M MM

MM 00 MM MM MM 11 MM MM MM MM

The first operand is the current state, the second is the next input bits.

Fig. 3. An example for a computation of the 2-sortð9Þ circuit arising from
our construction for fan-out f ¼ 3. The inputs are g ¼ 101010110 and
h ¼ 101M10000; see Table 10 for s

ðiÞ
M ðg; hÞ and the output. We labeled

each �M by its output. Buffers and duplicated gates (here the one com-
puting 0M) reduce fan-out, but do not affect the computation. Grey
boxes indicate recursive steps of the PPC construction; see also Fig. 7
for a larger PPC circuit using the one here in its “right” top-level recur-
sion. For better readability, wires not taking part in a recursive step are
dashed or dotted.
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two children, a left and a right node, whereas left nodes
(filled in gray) have a single child, which is a right node. Tb

is essentially a Fibonacci tree in disguise.

Definition 5.2. T0 is a single leaf. T1 consists of the (right) root
and two attached leaves. For b � 2, Tb can be constructed from
Tb�1 and Tb�2 by taking a (right) root r, attaching the root of
Tb�1 as its right child, a new left node ‘ as the left child of r,
and then attaching the root of Tb�2 as (only) child of ‘.

The recursive construction is now defined as follows. A
right node applies the pattern given in Fig. 4 to the right.
R‘ is the circuit (recursively) defined by the subtree rooted
at the left child and Rr is the circuit (recursively) defined
by the subtree rooted at the right child. Furthermore,
�B ¼ 2b�d�1, where d 2 ½b� is the depth of the node. A left
child applies the pattern on the left. Rc is (recursively)
defined by the subtree rooted at its child and �B ¼ 2b�d,
where d 2 ½b� is the depth of the node.

The base case for a single input and output is simply a
wire connecting the input to the output, for both patterns.
As b ¼ logB and each recursive step cuts the number of
inputs and outputs in half, the base case applies if and only
if the node is a leaf. Note that the figure shows the recursive
patterns at the root and its left child, where �B ¼ 2b�1 is
always even (i.e., in this recursive pattern, the gray wire
with index �Bþ 1 is never present); when applying the pat-
terns to nodes further down the tree, �B and B are scaled
down by a factor of 2 for every step towards the leaves.

In the following, denote by PPCðC; TbÞ the circuit that
results from applying the recursive construction described
above to the base circuit C implementing �. Moreover, we
refer to the ith input and output of the subcircuit corre-
sponding to node v 2 Tb as d

v
i and pv

i , respectively.

Lemma 5.3. If C implements �, PPCðC; TbÞ is a PPC�ð2bÞ cir-
cuit, that has depth b 	 dðCÞ.
It remains to bound the size of the circuit. Denote by Fi,

i 2 N, the ith Fibonacci number, i.e., F1 ¼ F2 ¼ 1 and
Fiþ1 ¼ Fi þ Fi�1 for all 2 � i 2 N.

Lemma 5.4. PPCðC; TbÞ has size ð2bþ2 � Fbþ5 þ 1ÞjCj.
Asymptotically, the subtractive term ofFbþ5 is negligible, as

Fbþ5 2 ð1= ffiffiffi
5

p þ oð1ÞÞðð1þ ffiffiffi
5

p Þ=2Þbþ5 � Oð1:62bÞ; however,
unless B is large, the difference is substantial. We also get a

simple upper bound for arbitrary values of B. To this end, we
“split” in the recursion such that the left branch is “complete”
(i.e. the number of inputs is a power of 2), while applying the
same splitting strategy on the right. This is where our construc-
tion differs from and improves on [23]. They perform a bal-
anced split and obtain an upper bound of 4B on the circuit size.

Corollary 5.5. For B 2 N and circuit C implementing �, set
b :¼ dlogBe. Then a PPC�ðBÞ of depth dlogBedðCÞ and size
smaller than ð5B� 2b � Fbþ3ÞjCj � ð4B� Fbþ3Þ exists.
We remark that one can give more precise bounds by

making case distinctions regarding the right recursion,
which for the sake of brevity we omit here. Instead, we com-
puted the exact numbers for B � 70, see Fig. 5.

The construction derived from iterative application of
Lemma 5.1 can be combined with PPCðC; TbÞ, achieving the
following trade-off; note that if B ¼ 2b for b 2 N, then
FdlogBe�kþ3 can be replaced by Fb�kþ5.

Theorem 5.6 (improving on [23]). Suppose C implements �.
For all k 2 ½0; dlogBe� and B 2 N, there is a PPC�ðBÞ circuit
of depth ðdlogBe þ kÞdðCÞ and size at most

2þ 1

2k�1

� 	
B� FdlogBe�kþ3

� 	
jCj :

5.2 Constant Fan-Out at Optimal Depth

The optimal depth construction incurs an excessively large
fan-out of QðBÞ, as the last output of left recursive calls
needs to drive all the copies of C that combine it with each
of the corresponding right call’s outputs. This entails that,
despite its lower depth, it will not result in circuits of
smaller physical delay than simply recursively applying the
construction from Fig. 4a. Naturally, one can insert buffer
trees to ensure a constant fan-out (and thus constantly
bounded ratio between delay and depth), but this increases
the depth to Qðlog2 Bþ dðCÞlogBÞ.

We now modify the recursive construction to ensure a
constant fan-out, at the expense of a limited increase in size
of the circuit. The result is the first construction that has size
OðBÞ, optimal depth, and constant fan-out.

In the following, we denote by f � 3 the maximum fan-
out we are trying to achieve, where we assume that gates or
memory cells providing the input to the circuit do not need

Fig. 4. The recursion tree T4 (center). Right nodes are depicted black, left nodes gray, and leaves white. The recursive patterns applied at left and
right nodes are shown on the left and right, respectively. At the root and its left child, we have that �B ¼ B=2; for other nodes, �B gets halved for each
step further down the tree (where the leaves simply wire their single input to their single output). The left pattern comes in different variants. The gray
wire with index �Bþ 1 is present only if B is odd; this never occurs in PPCðC; TbÞ, but becomes relevant when initially applying the left pattern exclu-
sively for k 2 N steps (see Theorem 5.6), reducing the size of the resulting circuit at the expense of increasing its depth by k.
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to drive any other components. For simplicity, we consider
C to be a single gate, i.e., a gate driving two C components
has exactly fan-out 2.

We proceed in two steps. First, we insert 2B buffers into
the circuit, ensuring that the fan-out is bounded by 2 every-
where except at the gate providing the last output of each
subcircuit corresponding to a left node. In the second step,
we will resolve this by duplicating these gates sufficiently
often, recursively propagating the changes down the tree.
Neither of these changes will affect the output (i.e. the cor-
rectness) of the circuit or its depth, so the main challenges
are to show our claim on the fan-out and bounding the size
of the final circuit.

5.2.1 Step 1: Almost Bounding Fan-Out by 2

Before proceeding to the construction in detail, we need
some structural insight on the circuit.

Definition 5.7. For node v 2 Tb, define its range Rv and left-
count av recursively as follows.

� If v is the root, then Rv ¼ ½1; 2b� and av ¼ 0.
� If v is the left child of p with Rp ¼ ½i; iþ j�, then

Rv ¼ ½i; iþ ðjþ 1Þ=2� and av ¼ ap.
� If v is the right child of right node p with Rp ¼

½i; iþ j�, then Rv ¼ ½iþ ðjþ 1Þ=2þ 1; iþ j� and
av ¼ ap.

� If v is the right child of left node p, then Rv ¼ Rp and
av ¼ ap þ 1.

Hence, the left-count av tells us for every node v 2 Tb the
number of left recursion steps preceding v, whereas Rv

gives us information about the range of inputs used at node
v. We observe that each recursion halves the number of
inputs and that the range is only cut in half if av does not
increase. Combining these observations with structural
insights on the recursion patterns in Fig. 4a and 4c, we state
the following four properties of PPCðC; TbÞ.
Lemma 5.8. Suppose the subcircuit of PPCðC;TbÞ represented by

node v 2 Tb in depth d 2 ½bþ 1� has range Rv ¼ ½i; iþ j�. Then
(i) it has 2b�d inputs,
(ii) j ¼ 2b�dþav � 1,
(iii) if v is a right node, all its inputs are outputs of its

childrens’ subcircuits, and

(iv) if v is a left node or leaf, only its even inputs are pro-
vided by its child (if it has one) and for odd
k 2 ½1; 2b�d�, we have that dvk ¼ �iþk2av�1

k0¼iþðk�1Þ2av dk0 .

Lemma 5.8 leads to an alternative representation of the cir-
cuit PPCðC; TbÞ, see Fig. 6, in which we separate gates in the
recursive pattern from Fig. 4a that occur before the subcircuit
Rc. Adding the buffers we need in our construction, this
results in themodified patterns given in Fig. 6b. The separated
gates appear at the bottom of Fig. 6a: for each leaf v of Tb, there
is a tree of depth av aggregating all of the circuit’s inputs from
its range. Each non-root node in an aggregation tree provides
its output to its parent. In addition, one of the two children of
an inner node in the tree must provide its output as an input
to one of the subcircuits corresponding to a node of Tb,
cf. Property (iv) of Lemma 5.8.

From this representation, we will derive that the follow-
ing modifications of PPCðC; TbÞ result in a PPC�ð2bÞ circuit
PPCðC; TbÞ0, for which a fan-out larger than 2 exclusively
occurs on the last outputs of subcircuits corresponding to
nodes of Tb.

1) Add a buffer on each wire connecting a non-root
node of any of the aggregation trees to its corre-
sponding subcircuit (see Fig. 6a).

2) For the subcircuit corresponding to left node ‘ with
range R‘ ¼ ½i; iþ j�, add for each even k � j (i.e.,
each even k but the maximum of jþ 1) a buffer
before output p‘

k (see bottom of Fig. 6b).
3) For each right node r with range ½i; iþ j�, add a

buffer before output pr
ðjþ1Þ=2 (see top of Fig. 6b).

Lemma 5.9. With the exception of gates providing the last out-
put of subcircuits corresponding to nodes of Tb (blue in
Fig. 6b), fan-out of PPCðC; TbÞ0 is 2. Buffers or gates driving
an output of the circuit drive nothing else.

It remains to count the inserted buffers. We do so by
computing a closed form expression from the linear recur-
rence that describes the number of nodes of a given type
(left, right, leaf) in a given depth as function of the previous
one. The following helper statement will be useful for this,
but also later on.

Lemma 5.10. Denote by Lb � Tb the set of leaves of Tb. Then
jLbj ¼ Fbþ2 and

P
v2Lb

2av ¼ 2b.

Lemma 5.11. Denote by s the size of a buffer. Then

jPPCðC; TbÞ0j ¼ jPPCðC; TbÞj þ 2b þ 2b�1 � Fbþ3

� �
s :

Similar arguments serve later as well. The main reason
why we will define the function aðvÞ in the next section
without rounding is to ensure that we again obtain linear
recurrences, which can be solved using standard techniques
from linear algebra. As a downside, this results in slightly
overestimating the size of circuits, as we may ask for more
copies of gates from children than are actually needed.

5.2.2 Step 2: Bounding Fan-Out by f

In the second step, we need to resolve the issue of high fan-
out of the last output of each recursively used subcircuit in
PPCðC; TbÞ0. Our approach is straightforward. Starting at
the root of Tb and progressing downwards, we label each

Fig. 5. Comparison of the balanced recursion from [23] and ours. The
curves for unbounded fan-out are the exact sizes obtained, whereas
“upper bound” refers to the bound from Corollary 5.5; the fan-out 3
curves show that the unbalanced strategy performs better also for the
construction from Theorem 5.16 (for f ¼ 3 and k ¼ 0) we derive next.
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node vwith a value aðvÞ that specifies a sufficient number of
additional copies of the last output of the subcircuit repre-
sented by v to avoid fan-out larger than f . At right nodes,
this is achieved by duplicating the gate computing this out-
put sufficiently often, marked blue in Fig. 6b (top). For left
nodes, we simply require the same number of duplicates to
be provided by the subcircuit represented by their child
(i.e., we duplicate the blue wire in the bottom recursive pat-
tern shown in Fig. 6b). Finally, for leaves, we will require a
sufficient number of duplicates of the root of their aggrega-
tion tree; this, in turn, may require to make duplicates of
their descendants in the aggregation tree.

We define aðvÞ and then utilize it to describe our fan-out
f circuit. Afterwards, we will analyze the increase in size of
the circuit compared to PPCðC; TbÞ0.
Definition 5.12 (aðvÞ). Fix b 2 N0. For v 2 Tb in depth

d 2 ½bþ 1�, define

aðvÞ :

¼

0 if v is the root
aðpÞþ2b�d

f if v is the left child of p
aðpÞ
f if v is the right child of right node p

aðpÞ if v is the ðonlyÞ child of left node p:

8>>><
>>>:

Lemma 5.13. Suppose that for each leaf v 2 Tb, there are
baðvÞc additional copies of the root of the aggregation tree,
and for each right node v 2 Tb, we add baðvÞc gates that
compute (copies of) the last output of their corresponding
subcircuit of PPCðC; TbÞ0. Then we can wire the circuit
such that all gates that are not in aggregation trees have
fan-out at most f , and each output of the circuit is driven
by a gate or buffer driving only this output.

It remains to modify the aggregation trees so that suffi-
ciently many copies of the roots’ output values are available.

Lemma 5.14. Consider an aggregation tree corresponding to leaf
v 2 Tb and fix f � 3. We can modify it such that the fan-out of
all its non-root nodes becomes at most f , there are baðvÞc addi-
tional gates computing the same output as the root, and at most
ðfaðvÞÞ=ðf � 2Þ þ ð2av�1Þ=ðf � 1Þ gates are added.

Finally, we need to count the total number of gates we
add when implementing these modifications to the circuit.

Lemma 5.15. For f � 3, define PPCðfÞðC; TbÞ by modifying
PPCðC; TbÞ0 according to Lemmas 5.13 and 5.14. Then, with
�1 :¼ ð1þ ffiffiffi

5
p Þ=4, jPPCðfÞðC; TbÞj is bounded by

jPPCðC; TbÞ0j þ 2b
1

2f � 2
þ 2

f � 2
þO �b

1

f2

� 	� 	
jCj :

As an example for the overall resulting construction, we
show PPCð3ÞðC; T4Þ in Fig. 7. We summarize our findings in
the following theorem.

Theorem 5.16. Suppose that C implements �, buffers have size
s and depth at most dðCÞ, and set �1 :¼ ð1þ ffiffiffi

5
p Þ=4. Then for

all k 2 ½bþ 1�, b 2 N0, and f � 3, there is a PPC�ð2bÞ circuit
of fan-out f , depth ðbþ kÞdðCÞ, and size at most

2bþ1 þ 2b�k 2þ 5f � 6

2f2 � 6f þ 4
þO �b

1

f2

� 	� 	� 	
jCj

þ 2b þ 2b�k�1
� �

s :

We refrain from analyzing the size of the construction for
values of B that are not powers of 2. However, in Fig. 8 we
plot the exact bounds (without buffers) for k ¼ 0 and
selected values of f against B.

6 SIMULATION

In addition to the formal statements from the previous sec-
tions, we verify the correctness of our circuits by VHDL
simulation. To this end, we first need to specify implemen-
tations of the subcircuits computing �M and outM.

6.1 Gate-Level Implementation of Operators

From Tables 6 a and 6 b, for s; b 2 B2 we can extract the
Boolean formulas

ðs � bÞ1 ¼ s1�s2 þ s1 �b1 þ �s2b1

ðs � bÞ2 ¼ �s1s2 þ �s1b2 þ s2 �b2

outðs; bÞ1 ¼ �s1b2 þ �s2b1 þ b1b2

outðs; bÞ2 ¼ s1b2 þ s2b1 þ b1b2 :

Fig. 6. Construction of PPCðC;T4Þ0. On the left, we see the recursion tree, with the aggregation trees separated and shown at the bottom. Inputs are
depicted as black triangles. On the right, the application of the recursive patterns at the children of the root is shown. Parts marked blue will be dupli-
cated in the second step of the construction that achieves constant fan-out; this will also necessitate to duplicate some gates in the aggregation trees.
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In general, realizing a Boolean formula f by replacing nega-
tion, multiplication, and addition by inverters, AND, and
OR gates, respectively, does not result in a circuit imple-
menting fM.

1 However, we can easily verify that the above
formulas are disjunctions of all prime implicants of their
respective functions. As shown in [10] (see also [16]),2 in
this special case the resulting circuits do implement the
closure—provided the gates behave as in Table 3, which the
implementations given in Fig. 1 do by Theorem 3.14. Using
distributive laws (recall that these also hold in Kleene logic),
the above formulas can be rewritten as

ðs � bÞ1 ¼ s1ð�s2 þ �b1Þ þ �s2b1

ðs � bÞ2 ¼ s2ð�s1 þ �b2Þ þ �s1b2

outðs; bÞ1 ¼ b1ðb2 þ �s2Þ þ b2�s1

outðs; bÞ2 ¼ b2ðb1 þ s1Þ þ b1s2 :

We see that, in fact, a single circuit with suitably wired (and
possibly negated) inputs can implement all four operations.
As for sel1 ¼ sel2 the circuit implements a multiplexer with
select bit sel1, we refer to it as extended multiplexer, or xmux
for short. Its functionality is specified by

XMUXðsel1; sel2; x; yÞ :¼ yðxþ sel2Þ þ xsel1 :

Fig. 9 shows the resulting circuit, and Table 11 lists how to
map inputs to compute �M and outM.

We note that this circuit is not a particularly efficient
XMUX implementation; a transistor-level implementation
would be much smaller. However, our goal here is to verify
correctness and give some initial indication of the size of the

resulting circuits—a fully optimized ASIC circuit is beyond
the scope of this article. In [4], the size of the implementa-
tion is slightly reduced by moving negations. Due to space
limitations, we refrain from detailing this modification here,
but note that Fig. 12 and Table 12 take it into account.

6.2 Putting it All Together

We now have all the pieces in place to assemble a containing
2-sortðBÞ circuit. By Theorem 4.3, �M is associative. Thus,
from a given implementation of �M (e.g., two copies of the
circuit from Fig. 9 with appropriate wiring and negation,
cf. Table 11) we can construct PPC�MðB� 1Þ circuits of small
depth and size, as shown in Section 5. We can combine such
a circuit with an outM implementation (again, two XMUX es
with appropriate wiring and negation will do) as shown in
Fig. 10 to obtain our 2-sortðBÞ circuit.

6.3 Simulation Setup

We implemented the design given in Fig. 10 on register-
transfer-level using the PPC�MðB� 1Þ circuit given by
Theorem 5.6 for k ¼ 0.3 Quartus by Altera is used for design
entry, which in our case mainly consists of checking correct
implementation. After design entry we use ModelSim by
Altera for behavioral simulation. Note that we must not sim-
ulate the preprocessed Quartus output, because processing
may compromise metastability-containing behavior. Instead,
we simulate pure VHDL. Metastable signals are simulated
using VHDL signal X, because its behavior matches the
worst-case behavior assumed for M.

The correctness of this construction follows from
Theorems 4.7 and 4.8, wherewe can plug in anyPPC�MðB� 1Þ
circuit, cf. Section 5. For the circuits derived by relying on the

Fig. 7. PPCð3ÞðC; T4Þ. Right recursion steps Rr are marked with dark gray, left recursion steps with light gray. The step at the root (above) and aggre-
gation trees (below) are not marked explicitly. Duplicated gates are depicted in a layered fashion. Dashed lines indicate that a wire is not participating
in a recursive step.

1. For instance, ðs � bÞ1 ¼ s1 �b1 þ �s2b1 as Boolean formula, but the two
expressions differ when evaluated on s1 ¼ �s2 ¼ 1 and b1 ¼ M. The cir-
cuits resulting from the different formulas are implementations of a
multiplexer (with select bit b1) and its closure, respectively.

2. Alternatively, one can manually verify that these formulas evalu-
ate to the truth tables given in Tables 8 and 9.

3. For k > 0, fan-out becomes an issue, requiring the more involved
constructions provided by Theorem 5.16. However, the resulting num-
bers would be inaccurate, and a detailed comparison based on opti-
mized ASIC implementations is beyond the scope of this work.
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XMUX circuit from Fig. 9, we independently confirmed this
via simulation.

6.4 Results

For the implementation of PPC�MðB� 1Þ we used the cir-
cuits from Theorem 5.6, i.e., we did not make use of the
extension to constant fan-out. Fig. 11 shows how a non-con-
taining implementation can fail. We exhaustively checked
the design from Fig. 10 for B up to 12 (and all feasible k).
Simulation shows that the design works correctly for sev-
eral levels of recursion, e.g., when regarding B ¼ 1 and
B ¼ 2 as simple base cases, B ¼ 12 implies 3 levels of recur-
sion for both patterns. We refrained from simulating the
constant fan-out construction, because it simply replicates
intermediate results without changing functionality.

6.5 Comparison to Baseline

After behavioral simulation, we continue with a comparison
of our design and a standard sorting approach Bin-compðBÞ.
As mentioned earlier, the 2-sortðBÞ implementation given in

Fig. 10 is slightly optimized by pulling out a negation from
the operators in every recursive step [4].

After design entry as described above, we use Encounter
RTL Compiler for synthesis and Encounter for place and
route. Both tools are part of the Cadence tool set and in both
steps we use NanGate 45 nm Open Cell Library as a stan-
dard cell library.

Since metastability-containing circuits may include addi-
tional gates that are not required in traditional Boolean
logic, Boolean optimization may compromise metastability-
containing properties [3]. Accordingly, we were forced to
disable optimization during synthesis of the circuits.

Binary Benchmark Bin-comp. In short, Bin-comp consists of
a simple VHDL statement comparing two binary encoded
inputs and outputting the maximum and the minimum,
accordingly. It follows the same design process as 2-sort,
but then undergoes optimization using a more powerful set
of basic gates. For example, the standard cell library pro-
vides prebuild multiplexers. These multiplexers are used by
Bin-comp, but not by 2-sort, as they are not metastability-
containing. We stress that these more powerful gates pro-
vide optimized implementations of multiple Boolean func-
tions, yet each of them is still counted as a single gate. Thus,
comparing our design to the binary design in terms of gate
count, area, and delay disfavors our solution. Moreover, we
noticed that the optimization routine switches to employing

Fig. 8. Dependence of the size of the modified construction on f. For
comparison, the upper bound from Corollary 5.5 on the circuit with
unbounded fan-out is shown as well.

Fig. 9. XMUX circuit, used to implement �M and outM.

TABLE 10
Example Run of the FSM in Fig. 2 on Inputs g ¼ 101010110 and

h ¼ 101M10000

i 0 1 2 3 4 5 6 7 8 9

gihi 11 00 11 0M 11 00 10 10 00

s
ðiÞ
M 00 11 11 00 0M M1 M1 01 01

g0ih
0
i 11 00 11 M0 11 00 01 01 00

We drop s
ð9Þ
M , as it is not needed to compute g09h

0
9.

TABLE 11
Wiring an XMUX to Compute the Various Operators

sel1 sel2 x y XMUXðsel1; sel2; a; bÞ
b1 �b1 �s2 s1 ðs �M bÞ1
b2 �b2 �s1 s2 ðs �M bÞ2
�s1 �s2 b2 b1 outMðs; bÞ1
s2 s1 b1 b2 outMðs; bÞ2

Fig. 10. Constructing 2-sortðBÞ from PPC�M ðB� 1Þ and outM.

Fig. 11. Excerpt from a simulation for 4-bit inputs, where X ¼ M. The
rows show (from top to bottom) the inputs g and h, both outputs of the
simple non-containing circuit, and both outputs of our design. As inputs g
and h we randomly generated valid strings. Columns 1 and 3 show that
the simpler design fails to implement a 2-sortð4Þ circuit.
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more powerful gates when going from B ¼ 8 to B ¼ 16 (cf.
Fig. 12), resulting in a decrease of the delay of the Bin-comp
implementation.

Nonetheless, our design performs comparably to the
non-containing binary design in terms of delay, cf. Fig. 12
and Table 12. This is quite notable, as further optimization
is possible by optimizing our design on the transistor level,
with significant expected gains. The same applies to gate
count and area, where a notable gap remains. Recall, how-
ever, that the Bin-comp design hides complexity by using
more advanced gates and does not contain metastability.

We emphasize that we refrained from optimizing the
design bymaking use of all available gates or devising transis-
tor-level implementations, as such an approach is tied to the
utilized library or requires design of standard cells.

7 CONCLUSIONS

In this work, we demonstrated that efficient metastability-
containing sorting circuits are possible. Our results indicate
that optimized implementations can achieve the same delay
as non-containing solutions, without a dramatic increase in
circuit size. This is of high interest to an intended application
motivating us to design MC sorting circuits: fault-tolerant
high-frequency clock synchronization. Sorting is a key step
in envisioned implementations (cf. [10], [15]) of the Lynch-
Welch algorithm [30] with improved precision of synchroni-
zation. The complete elimination of synchronizer delay is
possible due to the efficient MC sorting networks presented

in this article; enabling an increment of the rate at which
clock corrections are applied, significantly reducing the
negative impact of phase drift of local clock sources on the
precision of the algorithm (cf. [18]).

This goal will necessitate to devise optimized ASIC imple-
mentations of our circuits. The novel PPC circuits we devised
in Section 5 are an important contribution towards this end.
Note that it is crucial to take into account both depth and fan-
out for devising low-delay circuits. Hence, follow-up work
needs to compare the existing and our novel design based on
suitable metrics that take both into account to reliably predict
the achieved trade-offs between delay, area, and energy con-
sumption of circuits. Note that this is of relevance beyond the
specific application ofMC sorting: PPC circuits lie at the heart
of adder designs, implying that even a minor improvement
can have significant impact on the overall performance of
computing devices!

MC Control Loops. More generally speaking, MC circuits
like those presented here are of interest in mixed-signal con-
trol loops whose performance depends on very short
response times. When analog control is not desirable, tradi-
tional solutions incur synchronizer delay before being able
to react to any input change. Using MC logic saves the time
for synchronization, while metastability of the output corre-
sponds to the initial uncertainty of the measurement; thus,
the same quality of the computational result can be
achieved in shorter time. Note that our circuits are purely
combinational, so they can be used in both clocked and
asynchronous control logic.

Obvious examples of such control loops are clock synchro-
nization circuits, but MC has been shown to be useful for
adaptive voltage control [13] and fast routing with an accept-
able low probability of data corruption [29] as well. This type
of application suggests to explore whether efficient circuits
exist for a wider range of arithmetic operations, like e.g., addi-
tion or (possibly approximate)multiplication.

Redundant Encoding and Addition. On the theoretical side,
our results are to be contrasted with the exponential gap
between the size of non-containing and MC circuits shown
in [17]. This work raised the question for which classes of
functions small MC circuits exist. Given that Ladner and
Fischer proved that the PPC task can be solved efficiently
for any constant-sized state machine [23], it was natural to

Fig. 12. Comparison of our solution PPC Sort to a standard non-contain-
ing one. For the latter, the unexpected delay reduction at B ¼ 16 is the
result of automatic optimization with more powerful gates, which our
solution does not use.

TABLE 12
Simulation Results for Metastability-Containing Sorting Networks with n 2 f4; 7; 10g for B-bit Inputs

B Circuit 4-sort 7-sort 10-sort# 10-sortd

gates area delay gates area delay gates area delay gates area delay

2 our work 65 87.402 357 208 279.741 714 377 506.912 912 403 541.968 833
Bin-comp 40 77.91 478 128 249.326 953 232 451.815 1284 248 483 1145

4 our work 275 368.641 640 880 1179.528 1014 1595 2137.905 1235 1705 2285.514 1133
Bin-comp 95 172.935 906 304 553.28 1810 551 1002.848 2429 589 1072.099 2143

8 our work 845 1136.184 1396 2704 3636.08 1921 4901 6590.283 2179 5239 7044.541 2059
Bin-comp 205 368.641 1475 656 1179.528 2948 1189 2137.905 3945 1271 2285.514 3470

16 our work 2035 2739.961 2069 6512 8767.374 3396 11803 15891.12 4030 12617 16987.194 3844
Bin-comp 405 530.67 1298 1296 2425.99 2600 2349 4397.085 3474 2511 4700.304 3050

10-sort# optimizes gate count [7], 10-sortd optimizes depth [6]; for n 2 f4; 7g, the sorting networks are optimal w.r.t. both measures. Simulation results are: (i)
number of gates, (ii) postlayout area ½mm2� and (iii) prelayout delay ½ps�.
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ask whether this result can be extended to MC computa-
tions. In follow-up work, we show that indeed this holds
true for any constant-sized FSM [5]. However, when apply-
ing this result to addition, unlike for sorting (where the
underlying operations are max and min) uncertainty of
inputs adds up. This means that Gray code can support
meaningful computations only if the total uncertainty of all
addends is at most 1.

Accordingly, in [5] we also consider redundant encod-
ings, showing that using k (roughly) redundant bits, an
uncertainty of bðkþ 1Þ=2c can be tolerated without loss of
precision. Combined with the above result on transducers,
this yields a meaningful notion of MC addition that allows
for efficient circuits. As, essentially, the redundant bits are
used as a unary code, it should be straightforward to apply
the techniques from this article to obtain efficient sorting cir-
cuits with the encoding from [5]. We remark that the encod-
ing from [5] turns out to be identical to that of the output of
suitable time-to-digital converters [12], so relaxing their out-
put constraints to achieve better average-case performance
would provide valid input for sorting circuits that accept
inputs encoded in this manner.

We believe that these results suggest applicability of our
techniques to a wide range of mixed-signal control loops
and call for future work further exploring to which extend
basic arithmetics can be realized by efficient MC circuits.
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