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Abstract—Predictable scheduling and resource sharing primitives are fundamental aspects of real-time systems. To prevent race

conditions, access to shared resources must ensure mutual exclusion, e.g., using semaphores. Further, real-time locking protocols

are required to avoid un-controlled priority inversions. For uniprocessor systems, the Priority Ceiling Protocol (PCP) has been widely

accepted and supported in real-time operating systems. However, it remains arguable as to whether there exists a preferable

approach for resource sharing in multiprocessor systems. In this paper, we show that the proposed Resource-Oriented Partitioned

(ROP) scheduling with a distributed resource sharing policy, originating from the concept of the Distributed Priority Ceiling Protocol

(DPCP), can achieve a non-trivial speedup factor guarantee. Specifically, we prove that the proposed R-PCP-rm-rm algorithm

achieves a speedup factor of 11� 6=ðmþ 1Þ on a platform consisting of m processors, where each job of a task may request at most

one shared resource at most one time. Our empirical evaluations show that the proposed algorithm is highly effective in terms of task

sets deemed schedulable.

Index Terms—Multiprocessor real-time systems, partitioned scheduling, fixed-priority scheduling, locking protocols, shared resources,

worst-case response time, speedup factor

Ç

1 INTRODUCTION

REAL-TIME systems are designed for applications in
which the response time is critical. To guarantee real-

time performance while making the most effective use of
the available computing resources, co-optimized scheduling
and resource sharing policies are required. However, the
question of how to co-optimize scheduling and resource
sharing in real-time multiprocessor systems has not been
completely answered.

To schedule real-time tasks on multiprocessor platforms,
there have been four widely studied paradigms: parti-
tioned, global, clustered, and semi-partitioned scheduling.
The partitioned scheduling approach assigns the tasks
among the available processors, where each task is allowed
to execute only on the processor for which it is assigned.
The global scheduling approach allows a job to be migrated
from one processor to another. The clustered scheduling
approach assigns the tasks onto clusters of processors, and
the tasks on each cluster are scheduled by global schedul-
ing. The semi-partitioned scheduling approach decides
whether a task is divided into subtasks, and each task/

subtask is then assigned to a processor. A comprehensive
survey of real-time scheduling for multiprocessor systems
can be found in [23].

To prevent unpredictable priority inversions when tasks
require mutually exclusive access to shared resources, real-
time locking protocols have been widely studied in recent
years. The Priority Ceiling Protocol (PCP) [40] and the Stack
Resource Policy (SRP) [7] have been shown to perform rea-
sonably well in uniprocessor systems. However, challenges
among real-time system designs on multiprocessor platforms
include resource sharing between the real-time tasks as well
as task-to-processor mapping. If task synchronization is
unnecessary, partitioned and semi-partitioned scheduling,
with their relatively low run-time overheads, are usually pref-
erable [9], [17]. However, when synchronization is required,
fundamental concerns arise: (i) is partitioned scheduling still a
good option? If so, (ii) how does one derive good partitions?

Regarding question (i), real-time locking protocols, such
as the Multiprocessor Priority Ceiling Protocol (MPCP) [38],
the Multiprocessor Resource Stack Policy (MSRP) [25], and
the Flexible Multiprocessor Locking Protocol (FMLP) [11],
have been proposed to handle resource sharing for parti-
tioned scheduling. However, it has been shown in [16] that
the number of priority-inversion blockings (pi-blockings) is
lower bounded by the number of processors of the multi-
processor system in the worst case. Specifically, the elegance
of partitioned scheduling for running a task all the time on
one processor suffers from issues related to the synchroni-
zation between the tasks if the tasks are not partitioned well.

To address question (ii), several task partitioning heuris-
tics, such as in [29], [33], [37], [43], have been explored. How-
ever, there has been no algorithmic analysis provided in the
literature to necessitate these approaches from the perspective
of resource augmentation. Resource augmentation is also
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referred to as speedup factor [32], which is a well-studied the-
oretical metric for measuring the sub-optimality of a schedul-
ing algorithm, as we will discuss in Section 3.4. Moreover,
there is no clear evidence on whether the above synchroniza-
tion strategies and task partitioning approaches should be
strictly designed to follow the traditional partitioned schedul-
ing paradigm.

In the past decades, the literature on real-time scheduling
has been very biased toward scheduling computational tasks.
When resource sharing becomes the bottleneck, it is sensible
to change perspectives to explore collaborative optimization
methods for resource sharing. To this end, a new scheduling
policy, Resource-Oriented Partitioned (ROP) scheduling, is pro-
posed. This scheduling policy follows the following principles:

� Each shared resource is bound to a processor, and all
the critical sections guarded by this shared resource
are executed only on the processor.

� The non-critical sections of a task are executed on the
processor where the task is assigned (which can be
different from the processors executing the critical
sections of the task).

� Once a task requests a shared resource, the effective
priority of the corresponding critical sections is ele-
vated to be higher than any non-critical section of
any task on the same processor.

The spirit of ROP scheduling is to restrict resource con-
tentions on designated processors and serve resource
requests in priority. In addition, it follows the principle of
partitioned scheduling and thus has good potential for
maintaining the low-overhead of partitioned scheduling. It
is noted that, this distributed synchronization framework
was originally proposed by Rajkumar et al. in the Distrib-
uted Priority Ceiling Protocols (DPCP) [39]. However, there
has been no further elaboration in the literature toward pro-
viding evidence on how to assign tasks and resources
among multiple processors. ROP scheduling provides rea-
sonable task and resource partitioning algorithms.

The fundamental validation of ROP scheduling is that
the ROP heuristic with the priority ceiling mechanism guar-
antees a speedup factor of 11� 6=ðmþ 1Þ, irrespective of the
number of shared resources, if each job of a task requests at
most one resource for once, where m � 2 is the number of
processors. The understanding of this constant speedup fac-
tor with a simple scheduling algorithm implies the potential
of ROP scheduling. The effectiveness of ROP scheduling is
further supported by the empirical results, even when each
job has more than one critical section.

The original version of our ROP scheduling was pre-
sented at the 2016 IEEE Real-Time Systems Symposium
(RTSS 2016) [30]. Significant extensions are made in the cur-
rent version, including

� Extensive analysis of the resource sharing methods.
The priority ceiling mechanism [40] and the non-
preemptive scheduling for shared resources are
analyzed and compared under ROP scheduling.

� Extensive blocking time analysis. The original ver-
sion focused on the cases in which each job of a task
accesses at most one shared resource at most one
time. In this paper, improved analysis for multiple
accesses to shared resources is presented.

� Further discussions and comparisons on task order-
ing and priority assignment under ROP scheduling
are given.

� More comprehensive comparisons and observations
based on large-scale schedulability experiments are
performed. Both tasks with at most one request per
job and tasks with multiple requests per job are con-
sidered in the experiments.

The remainder of the paper is organized as follows:
Related work is discussed in Section 2. The system model
and definitions are introduced in Section 3. The scheduling
framework and the resource sharing methods are discussed
in Section 4. The proposed ROP scheduling algorithm is
presented in Section 5. Schedulability analysis is derived in
Section 6. The speedup factor of the proposed algorithm is
derived in Section 3.4. Further discussions on task ordering
and priority assignment are given in Section 8. Empirical
results are analyzed in Section 9. Conclusions are drawn in
Section 10.

2 RELATED WORK

Several mutual exclusion locking protocols have been pro-
posed to handle the synchronization problem in multipro-
cessor real-time systems. Recent analysis and comparisons
of real-time locking protocols can be found in [13], [44]
for partitioned scheduling and in [46] for global scheduling.
In addition, several protocols for hybrid scheduling appr-
oaches, such as clustered [15] and semi-partitioned [1]
scheduling, reservation-based scheduling [24], and open
real-time systems [36], have been proposed in recent years.
To support nested critical sections, Ward and Anderson [41],
[42] have introduced the Real-time Nested Locking Protocol
(RNLP), which employs a token lock and a request satisfac-
tion mechanism to support fine-grained nested locking.

Multiprocessor real-time locking protocols can be classi-
fied into suspension-based (or semaphore) protocols [15],
[16], [38], [39] and spin-based protocols [18], [25], [44]. Intui-
tively, tasks self-suspend when blocked on shared resources
in semaphore protocols, while they perform a busy wait in
spin-based protocols. In general, busy waiting requires
fewer context switches; thus, it is more efficient, especially
when critical sections are short [12], [26]. However, the
resulting loss of processor service (due to spin) must be
accounted for. In contrast, self-suspension allows waiting
tasks to relinquish processors to other tasks and thus is pref-
erable especially when critical sections are long [12], [33].
However, self-suspension results in jitter effects, which
leads to additional schedulability losses that must be care-
fully quantified [20], [45]. Moreover, in some distributed-
configured scheduling systems, such as designated [39] and
dedicated [29] synchronization frameworks, jobs self-sus-
pend on host processors; waiting for resource services on
remote processors is thus a natural fit for the schedul-
ing strategy. However, in this work, the suspension-based
methodology is used for resource sharing.

Concerning partitioning, Lakshmanan et al. [33] presented
a synchronization-aware partitioned heuristic [38], which
organizes tasks sharing common resources into groups and
attempts to assign each group of tasks to the same processor.
Following the same principle, Nemati et al. [37] presented a
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blocking-aware partitioning method that uses an advanced
cost heuristic to split the task group when an entire group
fails to be assigned on one processor. In subsequent work,
Hsiu et al. [29] proposed a dedicated-core framework to sepa-
rate the execution of critical sections and normal sections, and
they employed a priority-based mechanism for resource
sharing such that each request can be blocked by at most one
lower priority request. More recently, Wieder and Branden-
burg [43] proposed a greedy slacker partitioning heuristic
with the MSRP. Han et al. [27], [28] addressed the problem of
utilization bounds for P-EDF with the MSRP and proposed
the synchronization-cognizant task mapping algorithms [28].
However, no algorithmic evidence was provided to necessi-
tate these approaches from the perspective of resource
augmentation.

From an algorithmic optimality point of view,
Brandenburg and Anderson [16] were the first to study
the multiprocessor real-time locking problem. It has been
shown that VðmÞ pi-blocking is unavoidable under suspen-
sion-oblivious schedulability analysis, and VðnÞ pi-blocking
is unavoidable under suspension-aware schedulability anal-
ysis [16]. To this end, some locking protocols that adopt
FIFO-waiting queues, such as the Generalized FIFO Multi-
processor Locking Protocol (FMLPþ) [15] and the Distrib-
uted FIFO Locking Protocol (DFLP) [14], have been proved
to be asymptotically optimal. Notably, the empirical results
in [46] showed that asymptotically optimal protocols do not
necessarily perform well in terms of schedulability. This
work shows that the proposed ROP scheduling with simple
locking rules improves the schedulability significantly.

Andersson and Easwaran [4] presented a Global Earliest
Deadline First (G-EDF) scheduling based on virtualiz-
ation scheduling, which guarantees a speedup factor of
12ð1þ 3r=ð4mÞÞ on a platform consisting of m identical pro-
cessors, where each job of a task issues at most one request
to one of the r shared resources. Later, Andersson and
Raravi [5] proposed another virtualization-based schedul-
ing with guaranteed speedup factor for heterogeneous sys-
tems. In contrast, the algorithm presented in this work
achieves a speedup factor of 11� 6

mþ1 without using any
virtualization.

3 SYSTEM MODEL AND DEFINITIONS

A set t ¼ ft1; t2; . . . ; tng of n sporadic real-time tasks are
considered to execute upon a multiprocessor platform con-
sisting of m � 2 identical processors } ¼ f}1; }2; . . . ; }mg
with nr shared resourcesRS ¼ f‘1; ‘2; . . . ; ‘nrg.

3.1 Task Model

Without loss of generality, we use tk as the task of interest.
Each sporadic task is characterized by a 4-tuple
tk ¼ ðCk;Ak; Tk;DkÞ. Ck is the worst-case execution time on
non-critical sections, Ak is worst-case execution time on criti-
cal sections, Tk is the minimum inter-arrival time, and Dk is
the relative deadline. In this paper, implicit-deadline tasks are
considered, i.e.,Dk ¼ Tk holds for each tk 2 t.

Each task generates a potentially infinite sequence of
jobs, and two successive jobs of a task are released at least
Tk time units apart. At any time, a job can be scheduled on
only one processor. Let Jk be an arbitrary job of tk. The

response time of Jk is given by the length between its arrival
time and finishing time. The worst-case response time of tk,
denoted by Rk, is an upper bound on the response time of
any job of tk. For simplicity, we assume discrete time.

3.2 Shared Resources

A shared resource can be in-memory data, such as a set of
variables, or external objects such as files, database
connections, and network connections. To prevent race
conditions, these shared resources must be accessed with
mutual exclusion: conflicting concurrent requests must be
serialized. In this paper, shared resources are logically
represented by pieces of codes (or critical sections) to be
executed on processors. Hence, no shared resource is con-
sidered processor specific. We further assume that resource
requests are non-nested. Systems with nested critical sec-
tions remain as an open and challenging problem that can-
not be handled by the strategies presented in this paper.

A job Jk could request resource ‘q on multiple occasions
during its execution. The maximum number of such
requests by Jk is denoted by Nk;q. The maximum (worst-
case) resource usage time among all requests for resource ‘q
by Jk is denoted by Lk;q. For each resource ‘q, an upper
bound on the total resource usage time by a job Jk is
denoted by Ak;q. Clearly, Ak;q=Nk;q � Lk;q. Further, for each
task tk, the set of all resources accessed by jobs of tk is
denoted by RSðtkÞ � RS, and the total resource usage time
is denoted as Ak ¼

P
Rq2RSðtkÞ Ak;q.

3.3 Utilization

The utilization of resource ‘q from task tk is defined as
U

‘q
k ¼ Ak;q=Tk. The total utilization of resource ‘q is denoted

by U‘q ¼ P
tk2t U

‘q
k , and the cumulative total utilization of

all shared resources is denoted by URS ¼ P
‘q2RS U

‘q .
Similarly, the utilization of task tk with non-critical sections
is defined as UC

k ¼ Ck=Tk, and the total utilization of non-
critical sections for all tasks is denoted by UC ¼ P

tk2t U
C
k .

Further, the overall utilization of task tk is defined as
Uk ¼ ðCk þAkÞ=Tk. It is assumed that the utilization of the
task set UP ¼ Pn

k¼1 Uk � m. Otherwise, the task set cannot

be feasibly scheduled.

3.4 Speedup Factors

Ideally, an exact schedulability test associated with an
optimal scheduling algorithm is preferred. However, it is
often the case that an optimal scheduling is unavailable
and/or the sufficient test associated with some schedul-
ing algorithm is computationally intractable. The speedup
factor is one metric that may be used to quantify the
quality of sufficient schedulability tests. It can be defined
as follows:

Definition 1. A schedulability test has a speedup factor x,
x � 1, if it is guaranteed that any task system that is feasible
upon a specified platform is deemed to be schedulable by the
test upon a platform in which each processor is at least x times
as fast.

Speedup factors are widely used to quantify the approxi-
mation of the scheduling algorithms or schedulability tests.
Potential pitfalls of speedup factors can be found in [21].
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3.5 Demand Bound Functions

The concept of a demand bound function has been widely
used in real-time schedulability analysis. The demand
bound function dbfkðtÞ bounds the maximum cumulative
execution requirement by jobs of a sporadic task tk that
both arrive in and have absolute deadlines within any inter-
val of length t [8]. The demand bound function of task tk
with an interval of length t is defined as follows.

dbfkðtÞ ¼ max 0;
t�Dk

Tk

� �
þ 1

� �
� ðAk þ CkÞ

� �
: (1)

In particular, the demand bound functions of task tk for
non-critical sections and for critical sections of resource ‘q,
with an interval of length t, are

dbfCk ðtÞ ¼ max 0;
t�Dk

Tk

� �
þ 1

� �
� Ck

� �
; (2)

and

dbf
‘q
k ðtÞ ¼ max 0;

t�Dk

Tk

� �
þ 1

� �
�Ak;q

� �
; (3)

respectively.

4 SCHEDULING AND RESOURCE SHARING

The ROP scheduling framework follows the principle of Parti-
tioned Fixed-Priority (P-FP) scheduling and uses a distributed
synchronization framework based on the DPCP [39]. In addi-
tion to the priority ceiling mechanism used in the DPCP, we
will also study a simplified variant using non-preemptive
scheduling of critical sections. The empirical results in Section
9.2 show that this simplified variant is in some cases compara-
ble with the priority ceilingmechanism in terms of the task sets
deemed schedulable. The detailed scheduling and resource
sharingmechanisms are discussed in the following sections.

4.1 Scheduling Framework

Tasks and resources are statically assigned among the avail-
able processors. Specifically, each task is allowed to execute
its non-critical sections only on the processor to which it is
assigned, and all requests from all tasks to a resource ‘q are
allowed to execute only on the processor where ‘q is assigned.

A processor is called an application processor if it executes
non-critical sections only and is called synchronization proces-
sor if it executes critical sections. Synchronization processors
may also execute non-critical sections, depending on the
task and resource allocations.

Priority Assignment. Each task tk is assigned a unique base
priority pk, and pk > pl if task tk has a base priority higher
than task tl. The RM policy [35] is used for base-priority
assignment (alternative priority assignment policies will be
discussed in Section 8). Specifically, for implicit-deadline
task systems, Tk < Tl implies pk > pl. In the following, the
base priority is also called priority for short.

A job of tk is assigned an effective priority equal to its base
priority pk when it is ready to execute non-critical sections.
Further, if a job of tk is holding a resource and ready to exe-
cute critical sections, it is assigned an effective priority equal

to pH þ pk, where pH is a priority level higher than any task
in the systems, i.e., pH > maxfpkjtk 2 tg. At any point in
time and on each processor, the job (or request) with the
highest effective priority is dispatched.

Under the priority ceiling mechanism, each resource ‘q is
associated with a ceiling priority Vq that is higher than the
base priority of any task in the system. The ceiling priority
of a resource ‘q is defined as follows:

Vq ¼ pH þmaxfpjj9q : ‘q 2 RSðtjÞg: (4)

Locking Rules. At runtime, when a job Jk issues a request to
resource ‘q that is assigned to a remote processor, it self-
suspends on the local processor until the request is com-
pleted. If ‘q is currently held by another task, the request is
inserted into a priority queue of ‘q. The priority used for
queue insertion is the base priority of task tk. If ‘q is not
held by any task, the following resource sharing mechanism
determines whether access to resource ‘q is granted.

Let <k;q denote a request issued by a job Jk to resource ‘q.
Suppose that job Jk issues a request <k;q that is bound to a
processor }s at time t1, and resource ‘q is not held by any
task at time t1.

� Under the priority ceiling mechanism, <k;q is granted
at time t1 if (i) there is no request holding a resource
on processor }s or (ii) the highest ceiling priority of
the resources that are currently locked is smaller
than pH þ pk on processor }s at time t1.

� Under the non-preemptive scheduling, <k;q is
granted at time t1 if (i) no request is holding a
resource on processor }s and if (ii) <k;q is the high-
est-priority request on processor }s at time t1.

As an example, Fig. 1 shows an ROP schedule on a 4-core
processor, where }1 is the synchronization processor and
the other processors are application processors. Task t2 is

Fig. 1. Example schedules under ROP scheduling.
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suspended on }3 after it requests ‘1 at time t ¼ 4, and it is
granted access to ‘1 on }1 until t ¼ 6 when t4 finishes its
execution on ‘1. Task t1 requests ‘2 at time t ¼ 8, and its
request <1;2 is allowed to preempt <2;1 under the priority
ceiling mechanism, as shown in Fig. 1a. That is because the
priority ceiling of the resource that has been used at time
t ¼ 8 is pH þ p2, while the request <1;2 has a higher effective
priority of pH þ p1. In contrast, <1;2 has to be delayed until
<2;1 finishes at time t ¼ 11 under non-preemptive schedul-
ing, as shown in Fig. 1b.

The above scheduling framework together with the lock-
ing rules ensures (as we will prove with Lemma 1) that each
request can be blocked at most once. For clarity, a job Jk is
said to be blocked at time t if Jk has issued a request <k;q

that is bound to processor }s such that (i) <k;q is not sched-
uled at time t and (ii) another request issued by a lower-
priority task is scheduled on processor }s at time t.

Lemma 1. Under ROP scheduling with the priority ceiling
mechanism or non-preemptive scheduling, a request can be
blocked by at most one low-priority request.

Proof. If we suppose that this is not the case, then there is
a request <k;q that is blocked at least twice. Hence, at
least two lower priority requests are scheduled on the
same processor before <k;q completes. Suppose that the
second such request, denoted by <l;v (pl < pk), is
granted to lock resource Rv at time t1 and starts execut-
ing at time t2. Without loss of generality, we assume that
<k;q is bound to processor }s. According to the schedul-
ing framework, <l;v has an effective priority pH þ pl at
time t2. Since <k;q is not scheduled at time t2, it is either
(i) holding resource ‘q but not scheduled or (ii) waiting
to lock ‘q.

Suppose that (i) is true; then, <k;q has an effective pri-
ority pH þ pk at time t2. By hypothesis, pl < pk, and
thus, <l;v cannot be scheduled at time t2 if the higher
effective-priority request <k;q is not scheduled at time t2.
Thus, (i) is not true.

Suppose that (ii) is true; then, <k;q is not scheduled at
time t1. Two cases are considered: (a) ‘q is locked at time
t1, and (b) ‘q is not locked at time t1.

If (a) holds, then <l;v cannot be scheduled at time t1
under the non-preemptive scheduling. If (a) holds and
<l;v is scheduled under the priority ceiling mechanism,
then pH þ pl > Vq � pH þ pk. However, this contradicts
the assumption that pl < pk. If (b) holds and <l;v is
scheduled under the non-preemptive scheduling, then
<l;v is the highest-priority request at time t1, which con-
tradicts the assumption that pl < pk. If (b) holds and <l;v

is scheduled under the priority ceiling mechanism, then
pH þ pl must be greater than the ceiling priority of any
resource that is locked on processor }s at time t1. By
hypothesis, if <k;q is not scheduled and ‘q is not held by
any task at time t1, then there is a resource with ceiling
priority greater than pH þ pk that is locked at time t1.
This implies that pH þ pl > pH þ pk, which contradicts
the assumption that pl < pk.

Thus, (ii) is not true under either the priority ceiling
mechanism or the non-preemptive scheduling.

Therefore, neither (i) nor (ii) holds, which implies that
no request can be blocked more than once. tu

4.2 Tradeoff

In ROP scheduling, the critical sections of a task may be
pushed to execute on different processors. This inevitably
incurs some migration-related overhead. However, this
resource sharing framework has the potential to break
down the multiprocessor synchronization problem into uni-
processor sub-problems, which in turn improves the sched-
ulability. There is also a tradeoff between performance and
overhead for the considered resource-sharing mechanisms.

Scheduling. ROP scheduling is similar to semi-partitioned
scheduling, where the execution of a task might be split
among more than one processor. Therefore, this scheduling
approach has additional overhead compared to traditional
partitioned scheduling.

Nonetheless, from the implementation’s point of view,
ROP scheduling could benefit from the pre-planned nature
of push-migrations: the jobs to be scheduled on the next pro-
cessor are statically determined (more details can be found
in [9]). Correspondingly, migrations are less pessimistic, as
Cache-related Preemption and Migration Delay (CPMD)
accounting is task specific. Further, since push-migrations
can be implemented with mostly local states, migrations in
ROP scheduling entail less overhead and are easier to
implement.

Essentially, ROP scheduling breaks down the problem
of scheduling tasks with shared resources on multiple
processors into uniprocessor sub-problems, on which stan-
dard and consolidated techniques can still be applied. In
particular, each request of a task can be blocked only by
the requests that are bound to the same processor. Thus,
higher schedulability is expected, as empirically confirmed
in Section 9.

Resource Sharing. To ensure mutual exclusion, accesses to
shared resources must be serialized. As a result, a request
may be blocked, directly or indirectly, due to another
request issued by a lower-priority job.

Let bk;q denote the maximum blocking time that a job of
tk may experience each time it requests resource ‘q. Under
the priority ceiling mechanism, a request can be blocked
only if another job is holding a resource with a higher or
equal ceiling priority. Thus, bk;q is upper bounded by

bk;q ¼ maxl;vfLl;vjpl < pk;Vv � Vqg: (5)

Under the non-preemptive scheduling of shared resour-
ces, resource-holding requests cannot be preempted. Thus,
a request can be block by any lower priority job that is hold-
ing a resource. Hence, bk;q is upper bounded by

bk;q ¼ maxl;vfLl;vjpl < pkg: (6)

Clearly, bk;q in Eq. (5) might be smaller than in Eq. (6).
Thus, the priority ceiling mechanism is in general preferable
in terms of schedulability. Further, the priority ceiling mech-
anism together with the proposed ROP scheduling achieves
a bounded speedup factor,1 as shown in Section 5.

On the other hand, the implementation of non-preemptive
scheduling is simpler: the scheduler is inactive, and context

1. It has been shown in [30] that the priority ceiling protocol [40]
associated with the RM scheduling [35] achieves a constant speedup
factor of 2 in uniprocessor scenarios.
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switches can be avoided during the execution of critical sec-
tions. Conversely, the runtime system needs to maintain a list
of priority ceiling orders under the priority ceiling mecha-
nism, and several context switches might be incurred. More-
over, non-preemptive scheduling is in some cases empirically
shown to have comparable performancewith the priority ceil-
ingmechanism, as discussed in Section 9.

To better understand this seemingly promising schedul-
ing approach, the remainder of this paper will explore (i)
how to partition tasks and shared resources in Section 5,
(ii) how to perform schedulability analysis in Section 6,
and (iii) how to justify ROP scheduling in Section 7 and
Section 9 in terms of the speedup factor and empirical
analysis, respectively.

5 RESOURCE AND TASK ALLOCATIONS

Since requests for shared resources are bound to desig-
nated processors, the blocking time of a request can be
determined once the shared resources are partitioned.
Further, since requests have higher priority than normal
executions, the interference from any requests on a task
can also be determined after shared resources are parti-
tioned. In addition, the interference from non-critical sec-
tions can be determined once all higher priority tasks are
partitioned. As a result, by partitioning shared resources
in the first place and then assigning tasks in order of
decreasing priority, any task being assigned will not jeop-
ardize the schedulability of the tasks that have been
successfully assigned. Following this principle, the algo-
rithms that initially determine a set of synchronization
processors and that allocate both shared resources and
tasks are proposed.

Algorithm 1. Linear Search

Input: A set of n tasks t,m processors }, and nr resourcesRS
Output: the feasibility of the system
1: formR ¼ 1; . . . ;minðm;nrÞ do
2: ifWFD (RS;mR) then
3: if FFRM (t,mR,m) then
4: return feasible allocation
5: end if
6: end if
7: end for
8: return infeasible allocation

A configuration for initializing a set of processors as
synchronization processors is determined iteratively, as
shown in Algorithm 1. From a schedulability point of
view, the reduction in the number of synchronization pro-
cessors is a tradeoff between (i) an increase in the time
spent on the execution of critical sections on the synchroni-
zation processors and (ii) a reduction in the time spent on
the execution of non-critical sections on the application
processors.

Since each resource is bound to one processor, there
are at most minðnr;mÞ synchronization processors in the
system. In each configuration, resources and tasks are
respectively allocated according to the Worst-Fit Decreasing
(WFD) algorithm and the First-Fit Rate-Monotonic (FFRM)
algorithm.

Algorithm 2.Worst-Fit-Decreasing (WFD)

Input: A set of nr resourcesRS andmR synchronization
processors

Output: resource allocations
1: sort the resources in a non-decreasing order of utilization
2: for q ¼ 1; . . . ; nr do
3: Assign-Min(‘q,m

R) //assign ‘q to the processor with min-
imum utilization among themR synchronization processors

4: if U‘q þP
Rv2RSð}sÞ U

‘v > 1 then
5: return infeasible allocation
6: else
7: assign ‘q to processor }s

8: end if
9: end for
10: return feasible allocation

In Algorithm 2, the resources are ordered in non-
increasing order of utilization. The algorithm attempts
to assign each resource to the synchronization processor
with the smallest load. Notably, this is a well-known strat-
egy for the bin-packing problem. The intuition underlying
WFD is that by distributing resources evenly, it is sensible
to reduce the time that tasks spend waiting for shared
resources.

In Algorithm 3, tasks are sorted and prioritized in order
of non-decreasing relative deadlines, i.e., D1 � D2 � � � �
� Dn. Then, the algorithm assigns (the non-critical sections
of) the tasks to processors from the highest base priority to
the lowest base priority. Each task is assigned to the first
processor, starting from the application processors, that can
accommodate the task according to the schedulability tests.
Specifically, the algorithm attempts to assign each task to an
application processor first, and if no such processor can
accommodate this task, then the algorithm will attempt to
assign the task to a synchronization processor.

In Algorithm 3, tasks are essentially sorted and priori-
tized by the RM policy [35]. In addition to the RM policy,
other policies for task ordering and priority assignment can
also be used under the proposed ROP scheduling frame-
work, which we will further discuss in Sections 8 and 9.

For brevity, the algorithm is denoted by R-PCP-rm-rm
when the priority ceiling mechanism and the RM policy are
used (both for task ordering and priority assignment) and
by R-NP-rm-rm when the non-preemptive scheduling and
the RM policy are adopted.

Runtime Complexity. Algorithm 1 needs at most m rounds
to find a feasible configuration if one exists. Further, the
total sorting time of Algorithms 2 and 3 in all rounds can be
amortized to Oðnrlognr þ nlognÞ. In each round of Algo-
rithm 1, Algorithm 2 runs with time complexity OðnrlogmÞ
by maintaining the processor utilization with a heap data
structure, and Algorithm 3 requires OðmnÞ for assigning
tasks. Overall, the algorithm runs in Oðnrlognr þ nlogn þ
mðnrlogmþmnÞÞ, which is in pseudo-polynomial time
complexity.

It is noted that in each round of Algorithm 1, a schedul-
ability test is required in FFRM (in line 6 of Algorithm 3). In
general, schedulability analysis is a tradeoff between com-
plexity and accuracy. For the efficient analysis, a sufficient
schedulability test is presented in the following.
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Algorithm 3. First-Fit Rate-Monotonic (FFRM)

Input: A set of n tasks t,mR synchronization processors, andm
processors

Output: task allocations
1: sort the tasks in non-decreasing order of relative deadlines
2: for k ¼ 1; . . . ; n do
3: for c ¼ mR; . . . ;mR þm� 1 do
4: //suppose processors are indexed from 0
5: y ¼ c mod m // starts from application processors
6: if tk is schedulable on processor }y then
7: assign tk on processor }y

8: Break
9: end if
10: end for
11: if tk has not yet been assigned then
12: return infeasible allocation
13: end if
14: end for
15: return feasible allocation

6 SCHEDULABILITY ANALYSIS

To determine the speedup factor for R-PCP-rm-rm in
Section 3.4, the standard fixed-priority response-time analysis
is used to derive a schedulability analysis. Unlike the stan-
dard analysis framework for partitioned scheduling, we
perform schedulability tests on synchronization processors
and application processors respectively. Further, the analysis
applies to both R-PCP- and R-NP- scheduling algorithms.

It is assumed in this section that each job of a task issues
at most one request. To the best of our knowledge, even
under this restrictive assumption, the problem of schedul-
ing tasks with resource sharing under partitioned schedul-
ing remains an open question—no preferable scheme is
known in terms of speedup factors. The analysis for multi-
ple resource accesses is given in the Appendix.

To analyze whether task tk is schedulable, the total delay
that any job of tk suffers should be upper bounded. There-
fore, the following definitions are introduced.

Definition 2. Let IkðtÞ be the upper bound on the time whereby a
job of tk is ready to execute its non-critical sections but is not
scheduled in a time interval of length t.

Definition 3. Let SkðtÞ be the upper bound on the time whereby
a job of tk is (i) suspended or (ii) ready to execute its critical sec-
tions but is not scheduled in a time interval of length t.

Based on Definitions 2 and 3, the worst-case response
time of a task tk is derived.

Lemma 2. The smallest t satisfying

Ck þAk þ IkðtÞ þ SkðtÞ � t: (7)

is a safe upper bound on the response time of task tk.

Proof. Proof by contradiction. Suppose that there is a t � Dk

such that Ck þAk þ IkðtÞ þ SkðtÞ � t, and a job Jk does
not finish by t. At any point in time while Jk is released
but not finished, Jk is either (i) executing non-critical
sections, (ii) executing critical sections, (ii) ready to

execute non-critical sections but is not scheduled to do so,
(iv) suspended or ready to execute critical section(s) but
is not scheduled to do so.

According to Definitions 2 and 3, the cumulative delays
due to (iii) and (iv) are upper bounded by IkðtÞ and SkðtÞ,
respectively. If Jk does not finish by t, it must be the
case that Jk requires an execution time of greater than
t� IkðtÞ � SkðtÞ. By definition, any job of tk executes non-
critical sections and critical sections for a time of at most
Ck and Ak, respectively. Thus, Ck þAk > t� IkðtÞ�
SkðtÞ. This contradicts the assumption that Ck þAkþ
IkðtÞ þ SkðtÞ � t. tu
Further, a schedulability condition is obtained in the fol-

lowing theorem.

Theorem 1. A set of tasks t is schedulable if for each task tk 2 t

such that

9t 2 ½0; Dk	 : Ck þAk þ IkðtÞ þ SkðtÞ � t: (8)

Proof. The proof is essentially analogous to that of Lemma 2.
The execution demand of a job Jk is upper bounded by
Ck þAk, and the total cumulative delay in a time interval
of length t is upper bounded by IkðtÞ þ SkðtÞ. Thus, if
there is a t 2 ½0; Dk	 such that Ck þAk þ IkðtÞ þ SkðtÞ � t,
then the job will finish byDk. The proof follows. tu
To bound IkðtÞ and SkðtÞ, the interfering workloads of

other tasks are required. Under ROP scheduling, each time
that a job requests a resource on a remote processor, it is sus-
pended on the local processor until the request is complete.
With the suspension-based scheduling, no critical instant the-
ory that concretely captures the worst-case behavior in ana-
lyzing a task has been established. To cover the worst-case
behavior, an accounting of the carry-in jobs is commonly
used in schedulability analysis [10], [19], [31], [34]. Corre-
spondingly, the workload can be bounded as below.

Lemma 3. (From [10], [19]) For a sporadic self-suspending task
system, the workload of a task tss in a time interval of length t
is upper bounded by

wssðtÞ ¼ tþRss � css
Tss

� �
css: (9)

where css is the worst-case execution time of tss.

This workload function is adopted in the remainder of
the paper. In particular, we use the workload function for
non-critical sections and critical sections. First, a task exe-
cutes the non-critical sections on its local processor and self-
suspends when it requests a resource on a remote processor.
The non-critical sections of a task can be modeled as a self-
suspending task on its local processor. According to
Lemma 3, the workload of non-critical sections of any task
tj in a time interval of length t is upper bounded by

WjðtÞ ¼ tþRj � Cj

Tj

� �
Cj: (10)

Further, all requests of task tj to a resource ‘q are bound
to a designated synchronization processor. From the per-
spective of critical sections, the requests of task tj arrive
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sporadically with jitter (such jitter is due to the executions of
non-critical sections on local processors). Thus, the execu-
tion time of the critical sections of tj for resource ‘q in a time
interval of length t is upper bounded by

Ej;qðtÞ ¼ tþRj �Aj;q

Tj

� �
Aj;q: (11)

With the workload bounds in place, the upper bounds on
IkðtÞ and SkðtÞ are derived in the following.

6.1 Bounding IkðtÞ
In ROP scheduling, task tk could be assigned to an applica-
tion processor or a synchronization processor. If tk is
assigned to an application processor, it can only be pre-
empted by the non-critical sections of other tasks assigned
to the same processor. Otherwise, if it is assigned to a syn-
chronization processor, it could suffer additional interfer-
ence from executions of critical sections on the processor.
Therefore, the maximum interference on the executions of
non-critical sections of task tk , i.e., IkðtÞ, differs from the
processor to which tk is assigned.

In preparation, let tð}cÞ andRSð}cÞ denote the tasks and
resources assigned to processor }c, respectively.

Lemma 4. If task tk is assigned to an application processor }a,
then IkðtÞ is upper bounded by

IkðtÞ ¼
X

th2tð}aÞ;ph >pk

WhðtÞ: (12)

Proof. Since non-critical sections are scheduled based on
base priorities, at any point in time while a job Jk is ready
but not scheduled in an application processor }a, there
must be a higher priority task, e.g., th, executing non-criti-
cal sections on processor }a. According to the workload
bound (as shown in Eq. (10)), task th executes its non-
critical sections for at most WhðtÞ in a time interval of
length t. Thus, job Jk can be delayed by all higher priority
tasks for a total of at most

P
th2tð}aÞ;ph >pk

WhðtÞ. tu
Lemma 5. If task tk is assigned to a synchronization processor

}s, then IkðtÞ is upper bounded by

IkðtÞ ¼
X

th2tð}sÞ;ph >pk

WhðtÞ þ
X

tj 6¼tk;‘q2RSð}sÞ
Ej;qðtÞ: (13)

Proof. In ROP scheduling, requests have higher effective
priority compared to non-critical sections. Thus, at any
point in time while a job Jk is ready to execute its non-
critical sections but is not scheduled on processor }s,
there is either (i) a higher priority task executing non-
critical sections on processor }s or (ii) a task other than tk
executing critical sections on processor }s.

It has been proven in Lemma 4 that the cumulative
delay incurred by (i) can be upper bounded byP

th2tð}sÞ;ph >pk
WhðtÞ. For (ii), only the requests to the

resources assigned on processor }s can interfere with tk.
Since the execution time of a task tj (j 6¼ k) on a reso-
urce ‘q in a time interval of length t is at most Ej;qðtÞ,
job Jk could be delayed due to the executions of
other tasks’ critical sections for a total of at most

P
tj 6¼tk;‘q2RSð}sÞ Ej;qðtÞ. Summing up the delays from (i)

and (ii), the proof follows. tu

6.2 Bounding SkðtÞ
Since each shared resource is statically assigned to a proces-
sor, only the requests bound to the same processor can
interfere with each other. Meanwhile, requests are assigned
higher effective priority compared to non-critical sections;
thus, a request can only be delayed by other requests.

First, a request <k;q can be delayed by all higher priority
requests and blocked by a lower priority request bound to
the same processor.

Lemma 6. Suppose that a job Jk requests a resource ‘q on a syn-
chronization processor }s and

P
‘v2RS Nk;v ¼ Nk;q ¼ 1; then,

SkðtÞ is upper bounded by

SkðtÞ ¼
X

ph >pk;‘v2RSð}sÞ
Eh;vðtÞ þ bk;q: (14)

Proof. Since requests have higher effective priority than
non-critical sections, at any point in time while a request
of tk is not scheduled, there must be another request
scheduled. Since resource ‘q is bound to processor }s, the
request of tk can only be delayed by the requests bound
to processor }s.

In a time interval of length t, each higher priority task
th (ph > pk) requires an execution on resource ‘v for at
most Eh;vðtÞ; thus, each request of tk incurs a delay due to
higher priority tasks for at most

P
ph >pk;Rv2RSð}sÞ Eh;vðtÞ.

By Lemma 1, each request of task tk can be blocked by at
most one request from lower priority tasks. Thus, by defi-
nition, each request of tk to resource ‘q can be blocked for
a duration of at most bk;q. Summing up

P
ph >pk;Rv2RSð}sÞ

Eh;vðtÞ and bk;q, the proof follows. tu
Further, if task tk and the resource it requests are

assigned to the same processor }s, then the cumulative
delay IkðtÞ þ SkðtÞ is upper bounded by all higher priority
workloads on processor }s. Specifically, the maximum
workload of the non-critical sections of the higher
priority tasks on processor }s, as well as the maximum
workload of all requests, from other tasks, that are bound to
processor }s.

Lemma 7. Suppose that task tk and the resource ‘q that it requests
are assigned to the same processor }s, and

P
Rv2RS Nk;v ¼

Nk;q ¼ 1; then, IkðtÞ þ SkðtÞ is upper bounded by

IkðtÞ þ SkðtÞ ¼
X

th2tð}sÞ;ph >pk

WhðtÞ

þ
X

tj 6¼tk;Rv2RSð}sÞ
Ej;vðtÞ:

(15)

Proof. The proof is similar to that of Lemma 6. At any point
in time while a job Jk is not scheduled before it finishes,
there is either (i) a higher priority task executing non-criti-
cal sections or (ii) some other task executing critical
sections on processor }s. As already proved in Lemma 6,
(i) can be upper bounded by

P
th2tð}sÞ;ph >pk

WhðtÞ, and
(ii) can be upper bounded by

P
tj 6¼tk;Rv2RSð}sÞ Ej;vðtÞ. tu
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According to the workload bound in Eq. (11), the value of
Ej;qðtÞ depends on the worst-case response time Rj. Since
the tasks are assigned in order of base priority under FFRM,
when analyzing task tk, the worst-case response times of
higher priority tasks are known. However, the worst-case
response times of lower priority tasks are unknown. To
derive a safe upper bound on

P
tj 6¼tk;‘q2RSð}sÞ Ej;qðtÞ in

Eqs. (13) and (15), Rj is temporarily set to Dj for each lower
priority task tj (pj < pk). This is because for any given t, a
larger Rj implies a larger Ej;qðtÞ. The actual value of Rj is
derived when analyzing task tj.

7 SPEEDUP FACTOR

In this section, we prove that any implicit-deadline task set
that is feasible upon a platform consisting of m unispeed
processors is deemed to be schedulable by R-PCP-rm-rm if
the platform is at least x times as fast. To reiterate, each job
of a task is assumed to issue at most one request.

In the following lemma, the necessary conditions for any
feasible scheduling is derived, being based on the concept
of demand bound functions as defined in Section 3.4.

Lemma 8. Any implicit-deadline task system t that is feasible
upon a platform consisting ofm unispeed processors must satisfy

8tk 2 t; Uk � 1; (16)

8‘q 2 RS; U
‘qP � 1; (17)

UP � m; (18)

and 8tk 2 t, 8‘q 2 RSðtkÞ:

maxfLl;qjDl > Dkg þ
X

Dh�Dk

dbf
‘q
h ðDkÞ � Dk: (19)

Proof. By definition, each job of task tk requires an execu-
tion time of at most Ck þAk. Thus, it is necessary for
meeting all deadlines of task tk that Ck þAk � Dk. Since
Dk ¼ Tk and Uk ¼ ðCk þAkÞ=Tk, Uk � 1. Since accesses to
shared resources are serialized, U‘q � 1 for each resource
‘q in the system. Moreover, an implicit-deadline task set
is feasible on a platform of m unispeed processors only if
the cumulative utilization of the tasks is bounded by m,
i.e., UP ¼ P

tk2t Uk � m.

Due to mutual exclusion, contested requests are serial-
ized. Suppose an arbitrary task tk that issues a request
<k;q at time t1. Consider that task tl, with the longest
critical section to resource ‘q among all tasks with relative
deadlines larger than Dk, issues the longest request <l;q

right before t1, and all tasks with relative deadlines
smaller than Dk issue requests to resource ‘q at
time t1 and generate jobs that only request ‘q as soon as
possible. In a time interval ½t1; t1 þ t	, the cumulative
request demand is at most Ll;q þ

P
Dh�Dk

dbf‘
q

h ðtÞ. There-
fore, if all requests are feasibly schedulable, for each task
tk and each resource ‘q, maxfLl;qjDl > Dkg þ

P
Dh�Dk

dbf‘
q

h ðDkÞ � Dk. The proof follows. tu

In multiprocessor systems with shared resources, the
optimal scheduling algorithm is in general unknown. For
algorithmic analysis, the necessary schedulability conditi-
ons are used as baselines. To obtain a speedup factor,
the schedulability conditions for R-PCP-rm-rm are com-
pared with the necessary conditions in Lemma 8. To
begin with, the mathematical relations between the wor-
kload bound functions and the demand bound functions
are established.

Lemma 9. For any constrained-deadline task tj, if Rj � Dj, then
for any t � Dj

3dbfC
j ðtÞ � WjðtÞ; (20)

and

3dbf
‘q
j ðtÞ � Ej;qðtÞ: (21)

Proof. Since Rj � Dj

tþRj � Cj

Tj

� �
� tþDj

Tj

� �
� t

Tj

� �
þ 1:

Further, sinceDj � Tj

t�Dj

Tj

� �
� t

Tj

� �
� 1:

Thus,

tþRj � Cj

Tj

� �
� t�Dj

Tj

� �
� t

Tj

� �
� t

Tj

� �
þ 2 � 3:

The last inequality holds because for any b > 0,
dbe � bbc � 1. Hence

tþRj � Cj

Tj

� �
Cj � t�Dj

Tj

� �
þ 1

� �
Cj þ 2Cj:

According to the definitions of WjðtÞ (in Eq. (10))
and dbfCj ðtÞ (in Eq. (2)) and by the assumption that
t � Dj, WjðtÞ � dbfCj ðtÞ þ 2Cj. Further, dbfCj ðtÞ � Cj

when t � Dj according to Eq. (2). Thus,WjðtÞ � 3dbfCj ðtÞ.
This proves inequality (20). Inequality (21) is proved
analogously. tu
Next, an upper bound on the cumulative utilization of

the shared resources of each synchronization processor is
derived. Let U‘ð}sÞ be the total utilization of the shared
resources assigned to synchronization processor }s, i.e.,
U‘ð}sÞ ¼

P
‘q2RSð}sÞ U

‘q . Since shared resources are assigned

according to the WFD algorithm, bounding U‘ð}sÞ is analo-
gous to the classic makespan problem.

Lemma 10. Given a feasible task system t withmR synchroniza-
tion processors, for any }s 2 }, U‘ð}sÞ is upper bounded under
the WFD algorithm by

U‘ð}sÞ � 1þ URS � 1

mR
: (22)
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Proof. Two cases are considered: (i) nr > mR and (ii)
nr � mR.

For (i), let ‘u be the last resource assigned on }s. Since
the WFD algorithm assigns each resource to the proces-
sor with the least load, it follows that

U‘ð}sÞ � U‘u � URS � U‘u

mR

) U‘ð}sÞ � U‘u þ URS � U‘u

mR
:

For (ii), there is at most one resource on each processor
under the WFD algorithm. Let ‘v be the resource with the
largest utilization in the system. Then,

U‘ð}sÞ � U‘v � U‘v þ URS � U‘v

mR
:

Since the task system is by hypothesis feasible,
according to the second condition in Lemma 8, U‘q � 1
for 8‘q. Hence,

8‘q; U‘q þ URS � U‘q

mR
� 1þ URS � 1

mR
:

Therefore, inequality (22) holds for both cases. tu
The following theorem shows that the speedup factor of

R-PCP-rm-rm is 11� 6=ðmþ 1Þ when each job of each task
issues at most one request irrespective of how many shared
resources are present.

Theorem 2. Suppose that m � 2 and that each job of each task
issues at most one request; then, the proposed algorithm
R-PCP-rm-rm guarantees a speedup factor of 11� 6

mþ1.

Proof. If a feasible task set t is not schedulable under
R-PCP-rm-rm, then there is a task tk that is not schedu-
lable on any processor under R-PCP-rm-rm. Under ROP
scheduling, all the tasks assigned before tk have been
ensured schedulable, i.e., Rh � Dh for h ¼ 1; 2; . . . ; k� 1.
From Theorem 1, it must be the case that for every appli-
cation processor,

Ck þAk þ IkðDkÞ þ SkðDkÞ > Dk: (23)

Without loss of generality, suppose that task tk
requests a resource ‘q that is bound to processor }s.
Then, summing over all mC ¼ m�mR application pro-
cessors and after reformulation, we obtain

Ck þAk

Dk
þ bk;q

Dk
þ
P

ph >pk
WhðDkÞ

mCDk

þ
P

ph >pk;‘v2RSð}sÞ Eh;vðDkÞ
Dk

> 1:

(24)

Since task set t is by hypothesis feasible, it must be the
case that Uk � 1 according to Lemma 8. That is

Ck þAk

Tk
¼ Ck þAk

Dk
� 1: (25)

Let <l;v be the longest request from a task with
Dl � Dk that blocks task tk, i.e., bk;q ¼ Ll;v. By
hypothesis, task set t is feasible. Two cases are
considered:

� tk requests ‘v, i.e., ‘q ¼ ‘v. From Lemma 8,
maxfLl;vjDl > Dkg þ

P
Dh�Dk

dbf
‘q
h ðDkÞ � Dk.

Thus, bk;q ¼ Ll;v ¼ maxfLl;vjDl > Dkg � Dk.
� tk does not request ‘v, i.e., ‘q 6¼ ‘v. Since the

priority ceiling mechanism is used, there must be
a higher priority task, th (ph > pk), that requests
‘v. According to Eq. (5), bh;v ¼ Ll;v. From
Lemma 8, maxfLl;vjDl > Dhg þ

P
Dy�Dh

dbf
‘q
y ðDhÞ

� Dh. Hence, bk;q ¼ bh;v ¼ maxfLl;vjDl > Dhg �
Dh. Further, since base priorities are assigned
according to the RM algorithm, it follows that
Dh < Dk. Therefore, bk;q < Dk.

In either case, bk;q � Dk. Specifically

bk;q
Dk

� 1: (26)

By Lemma 8, task set t is feasible only if U � m. By def-

inition, UP ¼ UC þ URS; thus, UC � m� URS. Therefore,

P
ph >pk

WhðDkÞ
mCDk

�
Eq. (20)

3
P

tx2t dbf
C
x ðDkÞ

Dk

mC

� 3UC

mC
� 3ðm� URSÞ

m�mR
:

(27)

Further

P
ph >pk;‘v2RSð}sÞ Eh;vðDkÞ

Dk

�
Eq. (21) 3

P
ph >pk;‘v2RSð}sÞ dbf

‘v
h ðDkÞ

Dk
� 3U‘ð}sÞ

�
Eq. (22)

3 1þ URS � 1

mR

� �
:

(28)

Suppose that task set t is schedulable under R-PCP-
rm-rm when each processor is at least x times as fast.
Then, summing over the corresponding terms in
inequalities (25), (26), (27), and (28) and to contradict to
inequality (24)

1

x
þ 1

x
þ 3ðm� URSÞ

xðm�mRÞ þ 3

x
þ 3ðURS � 1Þ

x �mR
� 1

) x � 5þ 3ðURS � 1Þ
mR

þ 3ðm� URSÞ
m�mR

:

Let fðmRÞ ¼ 5þ 3ðURS�1Þ
mR þ 3ðm�URSÞ

m�mR . Two cases are
considered.

� m is even. SetmR ¼ m=2, then

fðmRÞ ¼ 5þ 6ðm� 1Þ
m

¼ 11� 6=m:
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� m is odd, i.e, m � 3, due to the assumption that
m � 2. Then, ðm� 1Þ=2 � 1. Two subcases are
further considered:

If URS � mþ1
2 , then set mR ¼ mþ1

2 . Thus

fðmRÞ ¼ 5þ 6
ðm2 � 1Þ þ 2� 2URS

m2 � 1

� �

� 11� 6

mþ 1
:

If URS < mþ1
2 , then setmR ¼ m�1

2 . Thus

fðmRÞ ¼ 5þ 6
ðm2 � 1Þ � 2mþ 2URS

m2 � 1

� �

� 11� 6

mþ 1
:

In either case, fðmRÞ is upper bounded by 11� 6
mþ1.

This prove that if a task set t is feasible (on a platform
of m unispeed processors), then t is schedulable under
R-PCP-rm-rm when the processors are 11� 6

mþ1 times
as fast by setting mR to m

2 ,
mþ1
2 , or m�1

2 , depending on the

values ofm and URS .
It is noted thatmR is greedily set in the analysis; thus, it

is possible that mR > nr, i.e., the number of synchroniza-
tion processorsmight be greater than the number of shared
resources. However, this does not jeopardize the proof of
the speedup factor. In this case, inequality (22) still holds
even though no shared resource is bound to the remain-
ing mR � nr “synchronization” processors, as proved in
Lemma 10. Therefore, inequality (28) and the upper
bounds of fðmRÞ still hold. By Definition 1, the R-PCP-
rm-rm algorithmhas a speedup factor of 11� 6

mþ1. tu

8 TASK ORDERING AND PRIORITY ASSIGNMENT

The proposed ROP scheduling framework does not place
any restriction on task ordering, priority assignment, or any
specific task or resource partitioning. In this work, we
restrict ourselves to using the WFD algorithm for resource
assignment (as in Algorithm 2) and the First-Fit (FF) algo-
rithm for task assignment (as in Algorithm 3). Sophisticated
task and resource partitioning are future work.

In the previous sections, the tasks were sorted and priori-
tized according to the RM policy. In this section, alternative
approaches for task ordering and priority assignment are
further discussed.

8.1 Slack Monotonic (SM) Scheme

SM is a priority assignment scheme that assigns higher pri-
orities to tasks with less slack, where the slack of a task ti
was originally defined as Ti � Ci. It has been shown in [2],
[3] that SM performs reasonably well in multiprocessor
static-priority scheduling in principle (i.e., guarantees a uti-
lization bound lower than that of RM).

Intuitively, a larger slack infers a greater tolerance of
deadline misses. Therefore, higher priorities are assigned to
the tasks with less slack. In addition to the local executions,
tasks may self-suspend while waiting for the response of
the requested resources. Thus, the slack of a task tk is

defined as uk ¼ Tk � Ck � s0k, where s0k is an upper bound on
the total self-suspensions of a job Jk. Suppose that the time
Jk spends to finish its requests on processor }c is upper
bounded by mc

kðDkÞ (as we will prove in the Appendix).
Thus, s0k can be safely upper bounded by summing over the
respective terms, i.e., s0k �

P
}c2} m

c
kðDkÞ. Accordingly, the

slack of a task tk is calculated by

uk ¼ Tk � Ck �
X
}c2}

mc
kðDkÞ: (29)

Tasks are then sorted and prioritized in non-increasing
order of slack and with ties broken arbitrarily. Thus, for any
two tasks ti and tj, the following holds.

ui � uj , i < j , pi > pj: (30)

The algorithm is denoted by R-PCP-sm-sm when the pri-
ority ceiling mechanism is used and by R-NP-sm-sm if the
non-preemptive scheduling is used.

8.2 Modified Optimal Priority Assignment

The optimal priority assignment (OPA) algorithm [6] was
originally derived to find an optimal priority ordering for
uniprocessor fixed-priority scheduling in polynomial time.
It assigns each priority level, starting from the lowest one to
the highest one, to tasks iteratively. In the schedulability
test in each round, the tasks that have not been assigned pri-
orities are considered as higher priority tasks. The priority
assignment process terminates as soon as no task can be
assigned at some priority level or all priority levels are suc-
cessfully assigned.

Davis and Burns [22] further studied the optimal priority
assignment for multiprocessor systems. It is shown that the
OPA approach is applicable for globally scheduled multipro-
cessor systems if the schedulability test meets the following
conditions [22]. First, the schedulability of a task ti may
depend on any independent properties of higher priority
tasks but not on any properties related to their relative priority
ordering. Second, the schedulability of a task ti may depend
on any independent properties of lower priority tasks but not
on any properties related to their relative priority ordering.
Third, when the priority levels of two tasks of adjacent prior-
ity are swapped, the task with higher priority cannot become
unschedulable if it was schedulable at the lower priority level.

In this work, the request delays as well as the workloads
(Eqs. (10) and (11)) used in the response-time analysis
depend on the response time of the higher priority tasks,
which is in turn related to the relative priority ordering of
these tasks. Thus, the first condition does not hold in the
tests. As a result, the schedulability test is incompatible
with the OPA algorithm. However, the OPA scheme under
ROP scheduling remains worth studying since the OPA
scheme may empirically perform well under OPA-incom-
patible analysis, as evidenced by the modified OPA in [43].

In ROP scheduling, the schedulability test must be per-
formed each time a task is partitioned, and the worst-case
response time of each higher priority task is required in the
response-time analysis. Therefore, we apply a modified
OPA together with our analysis for the schedulability test in
each round. First, tasks are sorted in non-decreasing order
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of period or slack (according to Eq. (30)). Then, the tasks are
partitioned to processors according to the First-Fit algo-
rithm (e.g., Algorithm 3). Each time a task is partitioned, we
iteratively assign priorities, starting from the lowest one
(e.g., priority level n), to the tasks that have been partitioned
until each such task has been successfully assigned a prior-
ity or some priority level cannot been assigned to any such
task. In the response-time analysis, the worst-case response
time of a task that has been partitioned but not assigned a
priority is greedily set to its relative deadline, and the prior-
ity of such task is assumed to be the highest priority level.
For instance, for any such task tj, Rj ¼ Dj and pj ¼ p0. A
task set is schedulable if each task is successfully assigned a
priority and is unschedulable otherwise.

When the priority ceiling mechanism is used, the algo-
rithm is denoted by R-PCP-rm-opa if tasks are sorted
according to the RM policy and by R-PCP-sm-opa if tasks
are sorted by the SM scheme (according to Eq. (30)). Analo-
gously, when the non-preemptive scheduling is used, the
corresponding algorithm is denoted by R-NP-rm-opa if
tasks are sorted by the RM policy and by R-NP-sm-opa if
tasks are sorted by the SM scheme.

9 EMPIRICAL COMPARISON

In this section, ROP scheduling is compared with existing
methods using synthesized task sets. The presented analy-
ses are implemented in SET-MRTS,2 and the metric used to
compare the results is to measure the acceptance ratio, that is,
the number of task sets that are deemed schedulable
divided by the number of task sets tested.

9.1 Experimental Setup

Parameter Generation. The experimental setup resembles the
design of prior schedulability experiments for locking pro-
tocols [13], [15], [33], [46]. Two multiprocessor platforms
with m 2 f4; 8g unispeed processors are considered. Task
sets are generated according to the total utilization, i.e., U ,
from 0.05m tom in steps of 0.05m.

For a given UP, at least 1,000 task sets are tested. The

task set characteristics varied by per-task utilization Uk, per-
task period Tk, the maximum critical section length Lmax, the
number of shared resources nr, the probability pr that each
task requires each resource, and the maximum number of
times that each job uses each resource Nmax. In the experi-
ments, Uk is randomly chosen in ½0; 1	 using an exponential
distribution with a mean value of 0.1 (light) or 0.25 (medium),
and Ck þAk is set to TkUk. Tk is randomly chosen from log-
uniform distributions ranging over ½10 ms; 100 ms	 (homoge-
neous) or ½1 ms; 1000 ms	 (heterogeneous). Lmax is chosen uni-
formly from ½1 us; 50 us	 (short), ½50 us; 150 us	 (medium), or
½150 us; 300 us	 (long). nr is varied across f1; 2; 4; 8g, pr is var-
ied across f0:1; 0:25g, and Nmax is varied across f1; 3; 5g.
These parameter configurations cover a total of 576 combi-
nations, including both high- and low-contention scenarios.

In the experiments, Ak;q is set to Nk;qLk;q, and Ak is set toP
‘q
Nk;qLk;q. Further, by definition, Ck ¼ UkTk �Ak. In case

Ck < 0, Ck is mandatorily set to 1, and Tk is updated to be
ð1þP

‘q
Nk;qLk;qÞ=Uk.

Algorithms Compared. In each experimental scenario, the
schedulability of the proposed ROP scheduling is tested
together with the following scheduling algorithms.

LP-FMLP [46]: the linear-programming-based (LP-based)
analysis for the Global Fixed-Priority (GFP) scheduling with
the FMLP [46].

LP-DPCP [13]: the LP-based analysis for the DPCP, in
which the resources are partitioned evenly among m pro-
cessors and the tasks are assigned using the WFD algorithm
as in [13].

LP-R-DPCP: a combination of the ROP heuristic based on
Algorithm 1 and the LP-based blocking analysis as used for
DPCP in [13]. The LP-based analysis is performed each time
a task is assigned.

GS-MSRP [43]: the Greedy Slacker (GS) partitioning heu-
ristic with the MSRP, using the original blocking anaysis as
presented in [25]. It has been shown in [43] that GS-MSRP
outperforms previously developed synchronization-
aware [33] and blocking-aware [37] partitioning algorithms.

LP-EE-vpr [5]: a virtualization-based dynamic scheduling
algorithm with the assumption that each job requests at
most one shared resource. LP-EE-vpr guarantees a speedup
factor of 8 if nr � m, which is the best result in terms of
speedup factor under this restrictive assumption. Since
there is no sufficient schedulability analysis for LP-EE-vpr,
the necessary condition is compared instead.

There are also LP-based analyses [13], [46] for the other
multiprocessor real-time locking protocols such as the
MPCP [38], the DFLP [14], the refined FMLP [12], the Prior-
ity Inheritance Protocol (PIP) [40], and the FMLPþ [15], etc.
Empirical studies with the LP-based analyses [13] have
shown that the DPCP and the DFLP performed better than
the refined FMLP and the MPCP for partitioned scheduling,
and that the DPCP often performed better than the DFLP.
Therefore, only LP-DPCP is compared among the LP-based
analyses for partitioned scheduling, due to space limits.
Similarly, only LP-FMLP is compared among the LP-based
analyses for global scheduling.

To compare with LP-EE-vpr, we also generate task sets
such that each task has at most one critical section. This
results in 192 additional experiment combinations, totaling
768 experiment scenarios.

To further study the impact of priority assignment under
ROP scheduling, the algorithms discussed in Section 8, i.e.,
R-PCP-sm-sm, R-PCP-rm-opa, R-PCP-sm-opa, R-NP-sm-sm,
R-NP-rm-opa, and R-NP-sm-opa, are tested aswell.

9.2 Results

We report the major trends characterizing the experimental
results from the 768 configurations as follows.

Partitioned Scheduling Performs Well. Our results
clearly show that partitioned scheduling is highly effec-
tive for multiprocessor real-time scheduling with shared
resources.

First, partitioned scheduling outperforms global sche-
duling. In the LP-based analyses, higher schedulability
is obtained under partitioned scheduling, although global
scheduling may perform better when critical sections are
long, as shown in Fig. 3 (e.g., the acceptance ratio of

2. SET-MRTS is a schedulability experiment toolkit for multiproces-
sor real-time systems. The source codes are available online https://
github.com/ChenZewei/SET-MRTS.
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LP-FMLP is higher than that of LP-DPCP). However, LP-
DPCP outperforms3 LP-FMLP in 89 percent of tested scenar-
ios (i.e., 683 out of 786 experimental scenarios), and it domi-
nates4 LP-FMLP in 34 percent of tested scenarios. Moreover,
our R-PCP-rm-rm outperforms LP-FMLP in 99 percent of
scenarios, and it dominates LP-FMLP in 96 percent of
scenarios.

Further, the resource-aware partitioning algorithms (e.g.,
GS-MSRP and R-PCP-rm-rm) considerably improve the
resource-oblivious partitioning algorithms with LP-based
analysis (e.g., LP-DPCP). For example, R-PCP-rm-rm domi-
nates LP-DPCP in all tested scenarios. That is because
although the LP-based analysis can obtain more accurate
blocking bounds for a given partitioning, the resource-
aware partitioning has the potential to further remove
resource-induced delays through reasonable partitioning.

To the best of our knowledge, this is the first work to
compare the performances of state-of-the-art locking analy-
ses with resource-aware partitioning algorithms. The results
are clear: there is a large gap between good partitioning
algorithms and the sophisticated locking analyses when
ignoring task partitioning.

ROP Scheduling is Empirically Verified. Prior results in
[30] have shown that R-PCP-rm-rm is better than the syn-
chronization-aware partitioning algorithm [33]. We further
compare our ROP scheduling with GS-MSRP, which has
been shown in [43] to outperform the synchronization-
aware partitioning algorithm. Due to the impacts of spin-
based locks, the performance of GS-MSRP is highly depen-
dent on the critical section length. GS-MSRP tends to
perform better when the critical sections are short, as
shown in Fig. 2. Conversely, the performance of GS-MSRP
degrades when the critical sections are long, as evident in
Figs. 3 and 4. In our experiments, GS-MSRP outperforms
R-PCP-rm-rm more often when the critical section length
is short, while R-PCP-rm-rm dominates GS-MSRP more
often when the critical section length is long. Further, the

performance of GS-MSRP decreases earlier compared to
R-PCP-rm-rm. For instance, in Fig. 4, the acceptance ratio
of GS-MSRP drops at U ¼ 4, while that of R-PCP-rm-rm
drops until U ¼ 6.

The performance of ROP scheduling can be further
improved by using more sophisticated blocking analysis,
e.g., the LP-based analysis as used for the DPCP [13] (i.e.,
LP-R-DPCP), at the expense of increased time complexity.
In our experiments, the performance of LP-R-DPCP is often
marginally better than or identical to R-PCP-rm-rm, as
shown in Figs. 2, 3, 4, and 5. However, LP-R-DPCP does not
maintain pseudo-polynomial time complexity as R-PCP-
rm-rm. Similarly, the GS algorithm with the MSRP can
potentially perform better when using the recent LP-based
MSRP analysis [44]. However, due to the excessive time
complexity, the combination of the GS algorithm and the
LP-based MSRP analysis has not been considered in our
experiments.

The Modified OPA does not Improve. The seemingly promis-
ing priority assignment methods, i.e., the SM and the modi-
fied OPA scheme, discussed in Secttion 8 do not necessarily
improve the schedulability under ROP scheduling. In the
experiments, R-PCP-sm-sm is shown to be comparable with
R-PCP-rm-rm. R-PCP-sm-sm outperforms R-PCP-rm-rm in
53 percent of scenarios, and it dominates R-PCP-rm-rm in
19 percent of scenarios, while R-PCP-rm-rm outperforms
R-PCP-sm-sm in 49 percent of scenarios and dominates

Fig. 3. m ¼ 4, heterogeneous periods, light utilization, long critical
sections, nr ¼ 4, pr ¼ 0:25, andN ¼ 3.

Fig. 2. m ¼ 4, homogeneous periods, light utilization, short critical
sections, nr ¼ 4, pr ¼ 0:25, andN ¼ 3.

Fig. 4. m ¼ 8, homogeneous periods, light utilization, medium critical
sections, nr ¼ 4, pr ¼ 0:25, and each job has at most one request.

3. In this section, Algorithm A is said to outperform Algorithm B in
an experimental scenario if Algorithm A scheduled more task sets than
Algorithm B.

4. In this section, Algorithm A is said to dominate Algorithm B in
some experimental scenario if its acceptance ratio is higher than that of
Algorithm B at some tested points and never lower than that of
Algorithm B at any tested point.

894 IEEE TRANSACTIONS ON COMPUTERS, VOL. 68, NO. 6, JUNE 2019



R-PCP-sm-sm in 25 percent of scenarios. In contrast, our
results show that R-PCP-rm-opa and R-PCP-sm-opa never
outperform R-PCP-rm-rm in any scenario.

Given that the modified OPA performs well under GS-
MSRP [43], we expect the OPA scheme to perform better
under ROP scheduling. We attribute the relative weakness
of R-PCP-rm-opa and R-PCP-sm-opa to the OPA-incompati-
bility of the analysis. Unlike the spin-based MSRP in [43],
the priorities of all tasks, not simply the tasks on the same
processor, under R-PCP- are related since the priority ceil-
ing mechanism is used. Thus, when the priority of a task
changes, the priority ceilings of the resources that it requests
may also change. This may further impact the request
delays of the tasks on the other processors.

R-PCP-rm-rm Outperforms LP-EE-vpr. LP-EE-vpr and
R-PCP-rm-rm are compared in the scenarios that each task
contains at most one critical section. In such scenarios,
LP-EE-vpr guarantees a speedup factor of 8 if nr � m,
whereas R-PCP-rm-rm has a speedup factor of at least 9
(i.e., 11� 6

2þ1) on m � 2 processors. While LP-EE-vpr seems
to be better in terms of speedup factor when nr � m, the
acceptance ratio of LP-EE-vpr drops at low system load even
under a necessary schedulability condition. As shown in
Fig. 4, the acceptance ratio of LP-EE-vpr drops from U = 2.8
and is zero by U = 4 in a 8-core system, whereas that of
R-PCP-rm-rm does not drop until U = 6.

In our experiments, R-PCP-rm-rm outperforms LP-EE-
vpr in all scenarios, and it dominates LP-EE-vpr in 73 percent

of scenarios. This is mainly because the stringent relative
deadlines and slower virtual processors enforced in LP-
EE-vpr result in signicant schedulability losses.

R-NP- is in Some Cases Comparable with R-PCP-. From the
perspective of schedulability analysis (Eqs. (5) and (6)),
the priority ceiling mechanism used in R-PCP-rm-rm has
the potential to reduce blocking time compared to the non-
preemptive scheduling as used in R-NP-rm-rm. However,
the empirical results from the considered experimental
setup show that R-NP-rm-rm and R-PCP-rm-rm achieve
almost the same performance, as evident in Figs. 6 and 7.

In all tested scenarios, the performance of R-NP-rm-rm is
identical to that of R-PCP-rm-rm in 52 percent of scenarios.
Similarly, the performance of R-PCP-sm-sm is identical to
that of R-NP-sm-sm in 67 percent of scenarios. The perfor-
mance of R-PCP-sm-opa is identical to that of R-NP-sm-opa
in 76 percent of scenarios, and the performance of R-PCP-
rm-opa is identical to that of R-NP-rm-opa in 90 percent of
scenarios. The performance of the priority ceiling mechanism
depends on the ceiling priorities of the resources, which is
in turn determined by the tasks-to-resources relationship.
While the priority ceiling mechanism achieves a lower bound
on the blocking time, the improvement may be insignicant,
especially in heavy-contention scenarios. For instance, R-
PCP-rm-rm and R-NP-rm-rm perform the same in the analy-
sis if the highest-priority tasks use all the resources.

While the experiments show that both R-NP- and
R-PCP- are competitive, such observation is only valid for
the considered workload and should not be understood as
an absolute ranking. Given that the non-preemptive sched-
uling incurs less runtime overhead than the priority ceiling
mechanism, our results also evidence the potential of the
non-preemptive scheduling of shared resources under
ROP scheduling.

10 CONCLUSIONS

For multiprocessor real-time systems with shared resources,
we address the problem of task partitioning and resource
sharing for fixed-priority scheduling. A novel ROP schedul-
ing and the associated schedulability analysis are proposed.
We prove that the ROP scheduling algorithm R-PCP-rm-rm
achieves a non-trivial speedup factor. Large-scale schedul-
ability experiments show that the proposed ROP scheduling
is highly effective in terms of task sets deemed schedulable.

Fig. 5. m ¼ 8, heterogeneous periods, medium utilization, long critical
sections, nr ¼ 8, pr ¼ 0:1, and each job has at most one request.

Fig. 6. m ¼ 4, homogeneous periods, light utilization, medium critical
sections, nr ¼ 8, pr ¼ 0:1, andN ¼ 5.

Fig. 7. m ¼ 8, homogeneous periods, light utilization, medium critical
sections, nr ¼ 8, pr ¼ 0:1, andN ¼ 5.
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It is also noted that while ROP scheduling achieves good
performance with regard to worst-case behavior, the intrin-
sic self-suspension and migration properties lead to addi-
tional overhead in average-case behavior, compared to the
MSRP and the MPCP, especially when there is minimal con-
tention. Further, the presented analysis does not support
nested critical sections. Therefore, intensive studies on
improving runtime behavior and supporting nested critical
sections remain as future work.

APPENDIX

For the sake of self-containment, we present the schedulabil-
ity analysis for multiple resource accesses (i.e., a job may
request more than one resource and may further request
each resource more than once), based on the existing fixed-
priority response-time analysis. The current state-of-the-art
analysis for partitioned semaphore protocols, including the
LP-based analysis for the DPCP, can be found in [13].

Lemma 11. Suppose that a request <k;q is bound to a synchroni-
zation processor }s, then <k;q takes at most Hk;q to finish, such
that

Hk;q ¼ Lk;q þ bk;q þ
X

ph >pk;‘v2RSð}sÞ
Eh;vðHk;qÞ: (31)

Proof. Without loss of generality, suppose <k;q releases at
time t1 and finishes at time t2. If <k;q is not scheduled at
time point t 2 ½t1; t2	, then <k;q is either (i) blocked by a
lower priority request, or (ii) delayed due to higher priority
requests at time t. By definition, (i) is upper bounded
by bk;q. Further, each higher priority task th (ph > pk)
requires a total of at most Eh;vðt2 � t1Þ to execute on
resource ‘v. Thus, (ii) is upper bounded by

P
ph >pk;‘v2RSð}sÞ

Eh;vðt2 � t1Þ. Since <k;q finishes at time t2, it is scheduled
for a duration of t2 � t1 � bk;q �

P
ph >pk;‘v2RSð}sÞ

Eh;vðt2 � t1Þ. By definition, <k;q executes at most Lk;q, thus

t2 � t1 � bk;q �
X

ph >pk;‘v2RSð}sÞ
Eh;vðt2 � t1Þ � Lk;q:

Maximizing t2 � t1 and by reformulation

Hk;q ¼ Lk;q þ bk;q þ
X

ph >pk;Rv2RSð}sÞ
Eh;vðHk;qÞ:

tu
Eq. (31) can be solved according to the classic iterative tech-

niques [6]. Next, we bound the cumulative requset delays.

Definition 4. LetQs
kðtÞ be the upper bound on the time that a job

of tk spends to finish all its requests on processor }s in a time
interval of length t.

According to Definition 4, Qs
kðtÞ ¼ 0 if task tk does not

request any resource on processor }s. Otherwise, Qs
kðtÞ

depends on the requests that are bound to processor }s.

Lemma 12. Qs
kðtÞ ¼ minð�s

k;m
s
kðtÞÞ, wherein

�s
k ¼

X
‘q2RSð}sÞ\RSðtkÞ

Nk;q �Hk;q; (32)

ms
kðtÞ ¼

X
‘q2RSð}sÞ

Ak;q þ
X

tj 6¼tk;‘v2RSð}sÞ
Ej;vðtÞ: (33)

Proof. By Lemma 11, it takes at most Hk;q to finish a request
of task tk for resource ‘q. By definition, a job Jk issues at
most Nk;q requests to resource ‘q. Thus, it takes a total of
at most �s

k (as shown in Eq. (32)) to finish all the requests
of tk to the resources bound to processor }s. According to
Definition 4, Qs

kðtÞ is then upper bounded by �s
k.

At any point in timewhile a request of tk is released but
not finished, either (i) the request of tk is executing, or (ii)
another request on the same processor is executing. For (i),
a job Jk executes on the resources bound to processor }s

for at most
P

‘q2RSð}sÞ Ak;q. For (ii), any other task tj may

execute on resource ‘v for a time of at most Ej;vðtÞ. Thus,
all requests from all other tasks can execute for a total of at

most
P

tj 6¼tk;‘v2RSð}sÞ Ej;vðtÞ on processor }s. Summing up

both terms,Qs
kðtÞ is then upper bounded by ms

kðtÞ.
Therefore, Qs

kðtÞ can be upper bounded by the mini-
mum of �s

k and ms
kðtÞ. tu

With the requests delays being upper bounded, the
worst-case response time analysis can be derived as follows.

Theorem 3. If task tk is assigned on an application processor }a,
then the smallest t satisfying

Ck þ
X

th2tð}aÞ;ph >pk

WhðtÞ þ
X
}c 6¼}a

Qc
kðtÞ � t: (34)

is a safe upper bound on the response time of task tk, given
that t � Tk.

Proof. Proof by contradiction. Suppose there is a t � Tk

such that inequality (34) holds but there is a job Jk that
does not finish within a time interval of length t.

Since tk is assigned to an application processor }a, at
any point in time while a job of tk is released but not fin-
ished, it is either (i) ready to execute non-critical sections
but not scheduled, (ii) waiting a request to finish on
another processor }c (c 6¼ a), or (iii) executing non-critical
sections on processor }a.

Since non-critical sections are scheduled according to base
priority, (i) takes place only if a higher-priority task is execut-
ing non-critical sections. Thus, by Lemma 4, the cumulative

delay of (i) is upper bounded by
P

th2tð}aÞ;ph >pk
WhðtÞ. By

Definition 4, the time that a job of Jk spends to finish its

requests onprocessor}c in a time interval of length t is upper

bounded by Qc
kðtÞ. Thus, the cumulative time of case (ii) is

upper bounded by
P

}c 6¼}a
Qc

kðtÞ.
By hypothesis, a job of tk does not finish within a

time interval of length t. It must be the case that, the j
ob executes its non-critical sections on application pro-
cessor }a for more than t�P

th2tð}aÞ;ph >pk
WhðtÞ�P

}c 6¼}a
Qc

kðtÞ. Thus

Ck > t�
X

th2tð}aÞ;ph >pk

WhðtÞ �
X
}c 6¼}a

Qc
kðtÞ:

Therefore, inequality (34) does not hold. Contradiction. tu
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Analogously, an upper bound on the response time of a
task assigned on a synchronization processor can be derived
according to the following theorem.

Theorem 4. If task tk is assigned on a synchronization processor
}s, then the smallest t satisfying

Ck þ
X

‘q2RSð}sÞ
Ak;q þ

X
th2tð}sÞ;ph >pk

WhðtÞ

þ
X

tj 6¼tk;‘v2RSð}sÞ
Ej;vðtÞ þ

X
}c 6¼}s

Qc
k � t:

(35)

is a safe upper bound on the response time of task tk, given that
t � Tk.
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