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Abstract—A novel hierarchical fault-tolerance methodology for reconfigurable devices is presented. A bespoke multi-reconfigurable

FPGA architecture, the programmable analogue and digital array (PAnDA), is introduced allowing fine-grained reconfiguration beyond

any other FPGA architecture currently in existence. Fault blind circuit repair strategies, which require no specific information of the

nature or location of faults, are developed, exploiting architectural features of PAnDA. Two fault recovery techniques, stochastic and

deterministic strategies, are proposed and results of each, as well as a comparison of the two, are presented. Both approaches are

based on creating algorithms performing fine-grained hierarchical partial reconfiguration on faulty circuits in order to repair them. While

the stochastic approach provides insights into feasibility of the method, the deterministic approach aims to generate optimal repair

strategies for generic faults induced into a specific circuit. It is shown that both techniques successfully repair the benchmark circuits

used after random faults are induced in random circuit locations, and the deterministic strategies are shown to operate efficiently and

effectively after optimisation for a specific use case. The methods are shown to be generally applicable to any circuit on PAnDA, and to

be straightforwardly customisable for any FPGA fabric providing some regularity and symmetry in its structure.

Index Terms—Reconfigurable Hardware, FPGA, Reconfigurable Computing Architectures, Fault tolerance, Performance of Systems,

Special-Purpose and Application-Based Systems
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1 INTRODUCTION

THE continuous scaling of transistors, now reaching
14 nm and below, has significantly increased the func-

tion density of modern digital systems and this has resulted
not only in a significant reduction in the cost per logic func-
tion in an integrated circuit, but has also enabled unparal-
leled performance boosts with regards to computing power
per Watt. Over the past 50 years, clock speeds of digital sys-
tems have increased from a few hundred kilohertz to the
gigahertz regime and the number of transistors per die has
increased from about a thousand to up to 6 billion. The fact
that silicon die sizes have only doubled (or tripled at best)
in the same time period, indicates a more than 1,000-fold
increase in device density.

While these numbers are staggeringly impressive, a con-
sequence of fabricating transistors that small are structural
irregularities at the atomic scale, even with advanced pro-
cesses. For example, the presence or absence of single dop-
ing atoms affect device characteristics in random manner.
While scaling transistors can reduce the propagation delay,
power consumption and area of a device, this comes at the
cost of increased intrinsic variability [1], [2] and heat dissi-
pation. At the same time the significantly increased

complexity of multi-billion-transistor devices makes design-
ing a high speed, high yield digital system with low supply
voltages and low power dissipation in ultra-deep sub-
micron CMOS technology a major challenge. Successful
design is only still feasible thanks to the existence of
advanced electronic design automation (EDA) tools.

While noise and device mismatch have always been pres-
ent and have been posing major design challenges in elec-
tronic systems, three new challenges are coming together in
modern electronic devices and systems making the require-
ment for cross-layer fault tolerance more paramount than
ever [3]: (a) the stochastic nature of the variations at the
nanoscale increasing reliability margins, (b) the drastic
increase in the number of individual devices on a chip
necessitating ever smaller per-device failure probabilities,
and (c) ageing and wear-out becoming more rapid. As a
result, faults and failure rates increase significantly and the
impact of these low-level effects propagates from device
level all the way up to the system level.

The greatest workload and responsibility remains to date
with chip manufacturers, who continuously improve fabri-
cation facilities and feed-back relevant design rules for cre-
ating the physical layout to the designers in order to ensure
high yield figures. There are also certain post-fabrication
measures that can improve the performance of a device or
at least make it usable with reduced performance, for
instance, altering power-supply voltages, slowing down
clock-speed or disabling (redundant) parts.

However, when devices fail in fixed-function integrated
circuits there is usually nothing that can be done to recover
the functionality of a device. Even though themajority of com-
ponents may be fault-free, the failure of a single transistor or
connection will render at least part of a circuit permanently
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unusable. In contrast, reconfigurable devices, such as FPGAs,
appear to open up more possibilities when dealing with
faults. Theoretically, if a fault occurs on one part of an FPGA,
it should be possible to perform a reconfiguration avoiding
the faulty components. The challenge, however, is determin-
ing the appropriate reconfiguration tomake as resynthesizing
a design from scratch is computationally expensive, i.e., takes
an infeasibly long timewhenmultiple runs are required.

Many novel methodologies targeting fault tolerance using
reconfigurable devices have been proposed in the literature.
For example, [4] and [5] describe how partial bit strings could
bemade relocatable within a Xilinx FPGA, enabling amodule
to be moved to another place on the fabric in the event of a
fault. Xilinx have looked into providing—on chip—a number
of bit strings implementing the same functionality but are
structurally different, so that an alternative could be loaded
once a fault occurs. Closely related to this work, it was found
in [6] that the tolerable failure rate of partially faulty LUTs in
FPGAs could be significantly increased through the use of
techniques such as permuting the inputs and changing their
polarity to try to match faulty stuck-at outputs with the
desired output. The techniques presented in [7] describe how
partially faulty logic blocks allowed their system to even toler-
ate a greater number of faults, and a fine-grained approach
using transistor-level reconfiguration for variability tolerance
and yield improvement is discussed in [8], [9]. Another
approach to increasing reliability and variability tolerance of
programmable fabrics is presented in [10], where low-over-
head circuitry is embedded assisting in on-line adaptation.

In addition to these pragmatic engineering approaches
there have been methodologies developed in the field of bio-
inspired hardware, which is where the work described in this
paper is focussed. For instance, a successful concept devel-
oped is that of embryonics, which is inspired from organisms
healing as a result of cellular mechanisms. The approaches
developed in [11], [12], [13], [14] aremodelling this kind of cel-
lular healing mechanisms and relying on the presence of
spare (hardware) cells that can be swapped into the running
circuit in the event of a fault. Building upon the latter works,
the Sabre platform has been developed [15], which is another
cell-based system purpose-built for fault-tolerance. The fabric
is made up of Functional Units (FUs) built from Unitronics
cells [16]. An evolutionary optimsation approach to filter
design can be found in [17]. Another evolutionary approach
to increasing error resiliency of circuits, which is rooted on
the field of approximate computing, is reported in [18].

In this work, we combine a bespoke bio-inspired multi-
reconfigurable FPGA architecture [19], [20], [21]—the pro-
grammable analogue and digital array (PAnDA)—with
novel “fault blind” circuit repair strategies taking inspira-
tion from dynamic partial reconfiguration and configuration
bit string permutation. In this case, “fault blind” refers to
the proposed method’s ability to repair faults without
requiring information of the exact nature or location of a
fault. This offers the advantage to fully concentrate on fault
recovery and assume that fault detection in the granularity
required here is readily available, and appropriate methods
are proposed in [22], [23], [24].

This paper introduces two fault recovery techniques, Sto-
chastic Strategies in Section 6 and Deterministic Strategies in
Section 7. Both approaches are based on creating algorithms

performing fine-grained hierarchical partial reconfiguration
operations on a faulty circuit, on PAnDA, providing effec-
tive and fast fault recovery. While the stochastic approach
provides insights into feasibility of the method, the deter-
ministic approach aims to generate optimal repair algo-
rithms (strategies) for generic random faults induced into a
specific circuit. For optimisation of the strategies multi-
objective optimisation is used [25], as multiple performance
metrics are considered. The experiments conclude with a
comparison of the two methods in Section 8.

2 PANDA ARCHITECTURE

The programmable analogue and digital array (PAnDA)
architecture is a multi-reconfigurable fabric that consists of an
array of configurable circuit blocks interconnected using a
programmable routing structure. The term “multi-
reconfigurable” refers to PAnDA’s novel and unique feature
to access its reconfiguration facilities on multiple design
abstraction levels, each effectively representing a different
granularity of the architecture. The highest configuration level
makes PAnDA compatible to commercial FPGAs in the sense
that logic functions can be mapped to configurable logic
blocks (CLBs) that offer equivalent functionality and granu-
larity: PAnDA F€unf slices (each CLB comprises two slices)
can be configured as any 4-bit logic function, MUX or flip-
flop, which is equivalent to the Xilinx Virtex-4 generation. In
addition to that—and beyond the capabilities of any FPGA
currently available—PAnDA can be configured on additional
lower levels offering increasingly finer-grained configuration
options all the way down to re-sizing individual transistors,
which represent the lowest level of design. The routing archi-
tecture of PAnDA is currently following a standard approach
comprised of switch matrices and a cross-bar architecture.
Additional input/output (IO) blocks surround the CLB array
and allow buffering of external signals.

PAnDA’s multi-reconfigurability enables a wide range of
capabilities and applications that are unique to this architec-
ture. Consider the following examples: (i) A logic design
mapped to PAnDA at the highest level can be optimised for
better power/delay performance trade-off at runtime using
transistor sizing. This effectively allows designers to modify
aspects of the analogue circuitry underlying the digital
function level. (ii) The operating point(s) of a design can be
altered by increasing or decreasing underlying transistor
sizes effectively shifting its performance characteristics as
required. In addition, performance variations (probability
distribution) caused by mismatch and intrinsic device vari-
ability, found in technologies below 100 nm, can be
decreased by selecting an optimal set of devices from the
alternatives available. (iii) Multi-granularity allows faults to
be addressed and mitigated with the best cost/benefit
trade-off, and exploiting symmetries of the architecture
offers “fault-blind” repair capability by considering func-
tionally equivalent but structurally different alternative
mappings. We have previously shown that PAnDA can be
used to provide increased circuit performance while simul-
taneously reducing the effects of variability using SPICE-
level architecture simulation [19], [20]. Hierarchical strate-
gies for fault tolerance in reconfigurable architectures, using
PAnDA as a suitable candidate, is the subject of this work.
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The PAnDA architecture has been developed in a num-
ber of iterations involving fabrication of prototypes in
65 nm silicon technology. The latest version is PAnDA-
F€UNF, which features 400 CLBs and is a scaled-up version
of its predecessor PAnDA-VIER. This sections provides
details of the PAnDA-F€UNF architecture and its configura-
tion options from the top down. The time required to com-
pile a new bit-string and program a PAnDA-F€UNF chip is
currently about 0:5 . . . 1:0 seconds.

2.1 Toplevel and Routing Block

The highest design level of PAnDA is the full chip (tople-
vel), shown in Fig. 1. It consists of an array of configurable
logic blocks (CLBs) comprising programmable logic resour-
ces (slices) and programmable routing, described in Section
2.2, surrounded by IO blocks. IO blocks are equivalent to
the routing blocks contained within the CLBs, but take on
the special role of routing signals to the pads (outside pins)
of the device, rather than the neighbouring CLB.

2.2 Configurable Logic Block

The CLB (Fig. 2) is a hierarchical structure consisting of two
slices and a routing switch block. Each slice contains four con-
figurable analogue blocks (CABs), input multiplexers and an
output merger. Depending on the usage of a slice, i.e., how
many CABs need to be connected via the output merger to
create the desired logic function, the number of unique output
signals varies from 1 to 4. The routing switch block provides
external connectivity to the CLB array and allows up to six
buses to be simultaneously routed north, east, west and south
in both directions. In addition, any of the 24 incoming signals
can be routed to both slices and the eight outputs (4+4) of both
slices can be routed to any of the 24 outgoing signals. Direct
connections can be made within the routing block bypassing
the slice logic. The six incoming signals on one side can be
directly connected to the six outgoing signals on one of the
three other sides in the order of the signals on the busses. At
this level the CLB block is fully tileable making it in principle
relatively easy to create larger array sizes.

2.3 Mini Configurable Analogue Block (MiniCAB)

Each CAB (Fig. 3) is constructed using 8 NMOS and 8 PMOS
configurable transistors (CTs) arranged in two symmetrical
branches. This branch structure closely matches the circuit
topology seen in CMOS logic design and an arrangement of
4 CABs combined with an output merger allows any 4 input
logic function to be implemented. Note that in the latest ver-
sion of PAnDA CABs are also referred to as MiniCABs,
however, this has only design-historical relevance and
henceforth simply the name CAB is used here for simplicity.

2.4 Configurable Transistors (CTs): The Lowest
Level of Configuration

Fig. 4 shows a schematic of a configurable transistor. Each
CT consists of six transistors, arranged in a parallel configu-
ration, with gate widths either ranging from 135 nm to
230 nm, or all the same with the minimum-size gate width of
135 nm. The two resulting types of CTs are intended to serve
different purposes: CTs with a variety of widths can achieve
a greater number of combinations and maximum width (all
turned on), which allows the manipulation of the operating
point of a circuit. In contrast, CTs with devices of the same
minimum width can achieve greater variability tolerance

Fig. 1. The toplevel PAnDA architecture is shown. The array of 4� 4
CLBs, surrounded by IO blocks, corresponds to PAnDA-VIER, which is

a smaller version of PAnDA-F€UNF comprising 20� 20 CLBs. Arrows sig-
nify programmable routing resources. A North-East-South-West
(NEWS) routing block is part of every CLB and IO block.

Fig. 2. A PAnDA configurable logic block (CLB) is shown. Each CLB
comprises two slices and a routing block, and each slice consists of four
configurable analogue blocks (CABs).

Fig. 3. The structure of the PAnDA configurable analogue block (CAB) is
shown. Each CAB comprises 8 NMOS and 8 PMOS configurable tran-
sistors (CTs) arranged in two symmetrical branches.
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through offering more equivalently sized alternatives, i.e.,
allow tomanipulate the shape of the performance distribution.

Configuration circuitry allows the input to the gates of
each of these transistors to be enabled, disabled or clamped
to a logic level. This allows any parallel arrangement of the
six input transistors to be programmed resulting in an effec-
tive single transistor equivalent device with 64 possible gate
width combinations ranging from 135 nm to 1,045 nm (or
from 135 nm to 810 nm).

3 MAPPING LOGIC FUNCTIONS

APAnDASlice (see Fig. 2) is designed in away that allows the
implementation of any 4-bit logic function by following the
implementationmethodology of complementaryMOSdesign
where PMOS and NMOS transistors form a push-pull net-
work driving an output. The PMOSbranches are connected to
VDD and will be driving the output ‘high’ for a logic ‘1’, if all
transistors in a branch are conducting. Vice versa, the NMOS
branches are connected to GND and will drive the output
‘low’ for a logic ‘0’, if all transistors are conducting. Notice
that functions must be designed so that either (at least one)
PMOS branch or NMOS branch is conducting. A PMOS and
NMOS branch conducting at the same time causes a short cir-
cuit and neither a PMOS or NMOS branch conducting leaves
the output undefined (floating).

Given a 4-bit input (ABCD), eight PMOS/NMOS
branches are required to construct all possible logic combina-
tions of ABCD and ABCD, hence, a PAnDA slice provides
eight branches. Note that the inverse signals are required,
because PMOS and NMOS behave in the opposite (comple-
mentary) way where a logic ‘0’ at the gate makes a PMOS
conducting and an NMOS insulating, while a logic ‘1’ makes
a PMOS insulating and an NMOS conducting. While this

design methodology allows the mapping of all possible 216

boolean 4-input functions on a PAnDA slice, it will always
consume all available resources. From a fault tolerance point
of view this is undesirable, since this will leave no redundant
CT’s or branches that could be utilised in the event of a fault.
However, the mapping of most logic functions can be opti-
mised in a way as described in Appendix B which can be
found on the Computer Society Digital Library at http://

doi.ieeecomputersociety.org/10.1109/TC.2016.2632722 that
frees resources and thereby provides scope for the fault-
mitigation strategies presented in this work.

This also ensures that all possible 4-bit boolean functions
can be synthesised on PAnDA, as the mapping is different
from traditional look-up-table (LUT) based FPGAs where a
LUT is simply a memory and the inputs to the LUT are
essentially the address bus “looking up” a corresponding
output value. Hence, by storing a set of appropriate values
in a LUT, it is possible to emulate any n-bit logic function,
where n corresponds to the size of the address bus. PAnDA
works differently in the sense that logic gates are imple-
mented by configuring structures of transistors, as
described above, which is more similar to how circuits are
built in VLSI design.

4 HIERARCHICAL RECONFIGURATION FOR FAULT
MITIGATION

The PAnDA fabric offers a high degree of symmetry and
homogeneity throughout its entire design hierarchy. It is
hypothesised that the fabric’s homogeneity can be utilised
for the purpose of fault tolerance as every circuit can in
principle be implemented in a number structurally differ-
ent—but functionally equivalent—ways. Furthermore, it is
suggested that symmetry can be exploited to apply certain
non-disruptive circuit transformations which transform one
possible implementation of a circuit into another, without
any knowledge of its particular original mapping or struc-
ture required. When considering circuits that do not require
all resources of a given area, i.e., there are spare CTs,
branches, slices, CLBs etc. available, it follows that a circuit
suffering from a fault within resources used might be trans-
formed so that its new structure utilises intact, previously
spare, resources, and the faulty components become the
new, although possibly no longer useful, spares.

In fact, in all but two of the 216 logic functions imple-
mentable on a PAnDA slice, there exists redundancy that
can be exploited by way of an alternative implementation in
order to recover from at least one type of fault in the recon-
figurable fabric. The only two circuits that do not have this
possibility are the most complex 4-input logic functions,
odd and even 4-parity generators, when they are built as
single logic gates. This is because these gates require all of
the resources in a slice, leaving none spare for redundancy.
Multiple implementations of these circuits are possible
however and it seems likely that transistor reconfigurations
at lower levels (inside a CT) could work around certain
problems, although these will not be considered here as this
work focuses on CT and branch level.

If a circuit implementation and the location of a fault
occurring is known, and there are sufficient spares available,
the circuit could certainly be fixed manually following the
aforementioned methodology. However, when mapping a
complex function and faults occurring at random locations
at runtime, neither fault location nor positions of spares are
known. Moreover, it is desirable to recover from a fault at
runtime, without the need to perform a full reconfiguration
of the device or taking the entire system off-line. In order to
address these issues and automate fault-mitigation a novel
method, which requires no knowledge of the nature or the

Fig. 4. The heart of PAnDA, a configurable transistor (CT), is shown.
Each CT consists of six transistors, arranged in a parallel configuration,
with gate widths ranging from 135 nm to 230 nm.
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exact location of a fault, is introduced. It is based on algo-
rithms that execute fault-blind repair strategies comprising
of non-destructive circuit transformations. In this work we
initially consider two reconfiguration hierarchy levels, input
and branch swapping, however, the proposed approach is
generic and can easily be extended across all hierarchies of
PAnDA and it should be portable to any FPGA fabric offer-
ing a degree of symmetry and homogeneity, which they gen-
erally do. Moving up on the hierarchy, i.e., swapping entire
CLBs, areas or even chips, requires a larger proportion of
configuration bits to bemoved around and potentially comes
at a higher cost as larger areas become unusable spares, how-
ever, higher-level transformations will provide a higher
probability to fix a fault. Therefore, finding strategies operat-
ing at the appropriate trade-off between fault-fixing perfor-
mance and preserving resources becomes a multi-objective
design problem.

4.1 Input Swapping

Within a CAB, the four inputs are each chosen froma set of 32.
This allows a number of permutations for any given subset of
inputs and the choice of permutation is functionally irrele-
vant, so long as the associated CTs are configured tomatch.

It can be seen therefore that the permutation of any
Branch’s input set can be changed to another, copying the
CT configurations appropriately to match, and no knowl-
edge of the current configuration is required as the resulting
circuit will be functionally identical. This will be known as
an Input Swap, and forms the lowest level transformation
that this work considers.

Under certain conditions, Input Swapping allows fault
recovery (see Fig. 5). When a CT Branch has 1-3 CTs
enabled, there are necessarily one or more CTs in the Dis-
abled-Conducting state. Should any of these disabled CTs
suffer a conducting fault, there will be no effect on the
behaviour of the circuit, as they were already conducting. If
a conducting fault occurs in an enabled CT, this clearly
affects the behaviour of the circuit as the branch will con-
duct when it is not designed to. In this case, it is possible to
take advantage of the previously mentioned case and swap
the inputs and CTs around so that the disabled-conducting
state configured for that CT is modelled by the fault and
correct functionality is restored.

4.2 Branch Swapping

The Branch Swap transformation swaps Branches within a
Slice. This is achieved by exchanging the configurations of
all the CTs in a Branch with another. Branches can be
swapped between CABs as well as within them while main-
taining a functionally equivalent circuit. If branches are
swapped between CABs, it is possible that the input multi-
plexers route the inputs in different orders. In this case, it is
necessary to reorder the CT configurations as part of the
swap. An example of a Branch swap is illustrated in Fig. 5.

If there is only one function currently occupying the
Slice, all eight Branches of each type can by freely
exchanged. If more than one function exists in a Slice how-
ever, the branches can only be swapped between CABs that
form part of the same function. Although not explored here,
the CABs could be swapped around so that each function
utilises a different set of them, allowing the Branches to be
swapped more freely when more than one function exists in
a Slice, but this is not explored here.

5 EXPERIMENT SETUP

This section describes the part of the experimental setup
which is common to all experiments presented in this paper.
This includes a description and discussion of the choice of
benchmark circuits, of the fault model used and of the fault-
injection process that has been followed when carrying out
experiments in order to break circuit functionality.

5.1 Test Circuits

Four different circuits are used for testing which were cho-
sen to represent a spread of different utilisations of branches
or slices. They are referred to as Z0 to Z3 for simplicity and
consistency with other publications [26], [27], and their
properties are listed in Table 1.

As pointed out in Section 4, four-bit even and odd parity
circuits will not benefit from this methodology since they
utilise all the CTs, leaving no spares. While this leaves no
room for fault recovery within a single Slice, the functional-
ity could be constructed by cascading two or three-bit parity

Fig. 5. An illustration of the application of two circuit transformations. The
rightmost NMOS branch in the first CAB from the left suffers an insulat-
ing fault which is recovered from by being swapped with a spare in the
fourth CAB. The rightmost NMOS branch in the second CAB from
the left suffers a conducting fault, and is recovered from by swapping the
mappings of inputs C and D.
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circuits which do not utilise all the CTs. The 2-bit parity cir-
cuit fits inside a single CAB, and the three-bit inside two
CABs. A four-bit parity circuit could be built with either a
three-bit and a two-bit, or three two-bit circuits, either way
taking up three CABs and leaving spare resources. If these
were split up between different Slices then the fault toler-
ance methodology presented could be applied directly.

5.2 Fault Model

Based on the most common fault sources discussed in
Appendix A available in the online supplemental material,
two types of faults are considered in this work: conducting
and insulating transistor faults. These represent the two
extreme cases of device failure and are commonly used in
the literature as a basic fault model.

A conducting fault causes the faulty CT to permanently
conduct between its source and drain nodes. This is sugges-
tive of a short between the nodes, or perhaps the transistor

suffering from variability and consequently having a very
low or high threshold voltage, depending on whether it’s
NMOS or PMOS respectively. The functional effect of this is
that the transistor conductswhen not intended. In some situa-
tions, this will have no effect on the current configuration in
PAnDA as CTs are sometimes used as conductors anyway. If
this fault occurs in an active CT however, it will cause the CT
to conduct on input patterns for which it is not supposed to.
The effect of this is that for those input patterns, there may be
a short circuit, for which there are two consequences. The first
is that damage could be caused to the chip as a large current
flows directly from Vdd to Ground, potentially damaging
more transistors. The second is that, if the chip survives, the
logic output will likely be either wrong or undefined (� 0:5V )
due to the circuit essentially becoming a voltage divider. Since
a CT suffering from a conducting fault acts as a conductor,
performing the input swap transformation can recover from
the effects of this fault bymoving an input from a faulty CT to
aworking one, if the configuration allows.

Insulating faults prevent the transistor from conducting
between source and drain. In reality this could be due to a
break in the circuit due to electromigration or the threshold
voltage being exceptionally high or low (for NMOS or
PMOS transistors respectively). If this type of fault occurs
on an unused CT branch, there will be no functional effect.
If it occurs anywhere on an active branch, however, it will
cause one or more input patterns to produce an undefined
output, because the branch is physically cut off and cannot
be used for anything else. This situation necessitates a
branch swap transformation to move the configuration to
another branch without an insulating fault.

As mentioned previously, each type of fault represents
an extreme fault case and faults in reality may fall some-
where between the two, as well as manifesting in other
ways (such as a transistor conducting between the gate and
source or drain nodes). These other cases are not considered
directly in this work but the methodology is still applicable
since the precise nature of the fault is not considered during
reconfiguration.

5.3 Fault Injection

Faulty circuits were created using the following process in
the simulator:

1) The circuit was configured in a fault-free substrate.
2) The circuit was tested to ensure correct operation.
3) A fault of a random type (conducting or insulating)

was injected into a random CT in the Slice.
4) The circuit was tested to see if the output is affected.
5) If the circuit still works the process is repeated from

Step 3 and more faults are injected; if not, the process
is finished.

Using this process, one or more faults are injected to break
the functionality of the circuit. Faults which have no effect on
the output are retainedwhichmay later affect the fault recov-
ery. This was considered to be a realistic approach to model-
ling permanent faults—fault recovery would start after the
first fault affects functionality, and faults not affecting func-
tionality would accumulate unnoticed. It also makes the fault
recovery more challenging as the exact number of faults in
any one case is unknown.

TABLE 1
The Properties of the Four Benchmark Circuits Chosen

as Test Cases for the Proposed Approach

Test Circuit Description

Z0

This circuit represents the simplest possible
binary logic gate, an inverter. It utilises only one
CT of a single branch of each type (PMOS/
NMOS) in one CAB. Due to its simplicity, Z0
provides the highest possible amount of
redundancy. All methods tested are expected to
perform best on this circuit due to themaximum
amount of spare resources available.

Z1

This is a four input “one hot detector” circuit,
producing a high output if precisely one input is
high. This circuit has been chosen as it provides
amix of redundancy between PMOS and
NMOS branches. On the PMOS side, there are
four fully occupied brancheswhichmeans that
input swappingwill be ineffective, however,
there are four completely redundant branches
whichwill allow branch swapping to recover
from faults. On theNMOS side, there is only one
redundant branch, but all except one of the
utilised branches have two unusedCTswhich
will enable input swapping to recover from
some faults.

Z2

This circuit has been chosen to represent a
balanced mix of input and branch swapping
possibilities on both PMOS and NMOS side.
All except one of the branches has at least one
spare CT, enabling fault recovery via input
swapping, and there are four spare PMOS
branches and three spare NMOS branches,
allowing for fault recovery via branch
swapping. It is expected that the proposed
fault recovery methods will perform well
on this circuit.

Z3

This circuit has a high utilisation, with most
branches used having no redundant CTs, and
there is only one redundant PMOS and NMOS
branch respectively. This relatively small
amount of redundancy does still provide some
options for fault recovery, but it is expected to
perform worse than Z0-Z3 in terms of the
number of faults that it can tolerate and how
long repair will take.
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One observation of this approach is that a circuit with
low utilisation, such as Z0, should on average receive more
faults, and this may make fault recovery more difficult. This
is because there is a large possibility that faults will be
injected into CTs on unutilised branches, due to these form-
ing the majority of the Slice configuration. These faults will
accumulate until one of two things happens:

1) An insulating fault is injected into any of the CTs in
the utilised branches.

2) A conducting fault is injected into either of the two
active CTs.

The first situation will cut off the affected branch and
cause it to always insulate. When the input pattern is such
that the branch should conduct, the output of the circuit
will float and likely cause an undesirable value to be read
by whatever is connected to it.

The second situation will cause the affected branch to
conduct for all input patterns. In the case of the inverter,
this means that for half the input patterns the output will be
correct, and for the other half the output will be connected
to both VDD and GND and therefore be undefined.

Using a whole Slice to implement an inverter is quite
inefficient as the PAnDA architecture allows for the CABs
to be separated and used for separate functions, thus the
three unused ones could implement other functions, but

this design was chosen to measure the performance of the
fault recovery in the best possible circumstances.

Fig. 6 illustrates how many random faults need to be
injected into each circuit to break their functionality. The
numbers are expected and confirm that the choice of the
four benchmark circuits is appropriate. The number of ran-
dom faults that need to be injected into Z0 to break it is
higher than for the other circuits. This is due to the majority
of the slice being unused and so faults can accumulate in
those parts without affecting functionality. Statistically, Z1
takes the second least number of faults to break, because
there are four fully utilised branches (a quarter of the slice)
any of which will be broken by a single fault. A slightly
higher number of faults is required to break Z2, since most
of the branches have at least one CT in the disabled-conduct-
ing state, they are able to absorb some conducting faults
without functionality being affected. The least number of
faults are required to break Z3. This is expected as most of
the slice is utilised and so a random fault is likely to affect
an enabled (used) CT.

6 STOCHASTIC STRATEGIES

The two circuit transformations described in Section 4 were
used as the basis for fault mitigation strategies. A sequence
of one or more circuit transformations (reconfigurations)
that an algorithm may apply to recover from a fault is
referred to as a strategy. In the first set of experiments a set
of strategies is defined, which is based on random selection.
The stochastic approach serves two purposes: first, to dem-
onstrate that the proposed approach is feasible and capable
to repair circuits mapped onto PAnDA using a set of suit-
able reconfiguration operations. Second, the results from
randomly applied strategies will provide a baseline compar-
ison for the experiments and results in Section 7, where the
sequence of strategies is optimised for a specific circuit.
Another advantage of the stochastic strategies is that no
prior knowledge of a circuit configuration is required as
transformations are performed at random. In order to mea-
sure the effectiveness of these strategies in their ability to fix
faults, experiments are conducted where the devised strate-
gies are applied according to a random scheme to the
benchmark circuits from Section 5.1 with faults injected,
until correct operation is restored or a pre-determined
threshold is met.

There are 80 possible, distinct circuit transformations in
total. Assuming that at least 10 transformations are required
to fix a fault, which is a very conservative number given the
fault-blind strategy, the size of the search space becomes

8010. This is too large to enumerate and requires a search
algorithm such as, for instance, an evolutionary algorithm
as proposed here. Details on the combinatorial complexity
of all circuit transformations can be found in Section 7,
where it becomes more significant in the context of opti-
mised deterministic strategies.

6.1 Fault Recovery Strategies

For these experiments four different strategies are devised,
each using one of the two basic circuit transformations
described in Section 4: Random Input Swapping, Input Shuf-
fling, Random Branch Swapping and Branch Shuffling. The

Fig. 6. Statistical illustration of how many random faults are required to
break each of the circuits using box plots. The results were obtained by
injecting faults into fault-free Slices configured with the functions until func-
tionality was lost. This was repeated 10,000 times for each function. (a)
The full results results showing the large difference between Z0 and the
other circuits. (b) The full results truncated to show more detail of Z1, Z2
and Z3. The extremely skewed distribution in the case of Z3 comes from
the fact that this circuit uses almost all resources available in a slice, which
means that inducing just one fault already breaks it inmost cases.
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strategies involving swapping are less disruptive than those
performing shuffling, but the latter are capable of transform-
ing large parts of a circuit more quickly.

6.1.1 Random Input Swapping

One of the CABs in a slice is randomly selected, and two of
the four inputs (ABCD) are then swapped at random. This
operation is relatively cheap and non-disruptive to the lay-
out of the circuit, requiring the configurations of only two
input multiplexers to be swapped and eight CTs (two on
each branch of the CAB) to be reconfigured.

6.1.2 Input Shuffling

All inputs of all CABs in a slice are shuffled using the
Fisher-Yates shuffling algorithm [28]. This, however, can be
quite an expensive operation as the shuffle may require that
all sixteen input multiplexers in a slice (inputs to all 16 CTs)
are being reconfigured.

6.1.3 Random Branch Swapping

A branch type is first selected at random (PMOS or NMOS)
and then two branches of that same type are then picked at
random from the same slice and swapped. Again, this is a
relatively cheap operation, requiring eight CT configura-
tions to be exchanged (four for each branch). However, it
can be disruptive to the layout of a circuit, causing a previ-
ously compact circuit to be spread out across a slice.

6.1.4 Branch Shuffling

All of the branches of both types are shuffled within a slice
using the Fisher-Yates shuffling algorithm [28]. This is the
most expensive transformation in terms of reconfiguration
operations, potentially requiring all 64 CTs to be reconfig-
ured. It is also the potentially most disruptive to the circuit
layout.

6.2 Fault Recovery Method

In order to recover from a fault, the repair algorithm applies
the strategies described in Section 6.1 to a circuit, once a
fault has been detected, repeatedly and at random until
either the circuit is fixed or a threshold of strategies applied
(fault-fixing steps performed) is reached. Four experiments
are conducted, testing each combination of one input swap-
ping/shuffling and one branch swapping/shuffling strat-
egy respectively:

� Random input swapping versus random branch
swapping

� Random input swapping versus branch shuffling
� Input shuffling versus random branch swapping
� Input shuffling versus branch shuffling

6.3 Experimental Method

For each experiment, 101 runs are carried out, each with a
different statistical bias, swept from 0 to 1 in 0.01 incre-
ments, making either input swapping/shuffling or branch
swapping/shuffling more likely on average. For a bias of 0,
only input-affecting strategies are used and for a bias of 1
only branch-affecting strategies are used. At a bias of 0.5,
both input or branch strategies are applied with an equal
probability.

It is assumed that the input-affecting strategies are gener-
ally preferable to the branch-affecting ones, as they cause
less disruption to the mapping of a circuit. For example, an
advantage of this is that small circuits, e.g., an inverter, does
not quickly spread across multiple CABS. Moreover, branch
swaps will be more complex due to the requirement to
check—and possibly swap—the order of the CTs, if the
input multiplexer configurations differ. Hence, when calcu-
lating the cost of an operation the power requirements are
assumed to be higher for branch operations, despite the
same number of CT reconfigurations are required. One of
the aims of the experiments will hereby be to identify an
optimum bias value, if it exists, which will represent good
fault recovery performance while using branch strategies as
little as possible.

For each of the 101 runs (representing 101 different bias
values) of all four experiment setups, 10,000 tests are per-
formed to achieve meaningful statistics. Preliminary testing
resulted in this number of samples to be required for suffi-
ciently stable results, whereas 1,000 produced noticeable
variance between repeats. The threshold for the maximum
number of steps is set to 10,000, which allows the algorithm
sufficient time to find a solution whilst not taking an infeasi-
bly long time. In practice, this threshold will of course be too
high for fault mitigation at runtime as it potentially involves
tens of thousands of reconfigurations.

Each test run for the measurement of a bias value was
conducted as follows:

1) Configuration of a function on a fault-free slice.
2) Fault-injection according to the procedure described

in Section 5.3.
3) Start of the fault recovery procedure applying the

strategies as described in Section 6.1.
4) Record the number of steps required to repair the

circuit.

6.4 Results

Results of two performance aspects of the stochastic strate-
gies applied to each of the four benchmark circuits Z0, Z1,
Z2 and Z3 from Section 5.1 are presented: first, the total
number of circuits repaired out of 10,000 instances. Second,
the number of steps (strategies applied) required to recover
from a fault in case repair has been successful. Results of an
additional investigation into the average number of faults
the benchmark circuits used can tolerate before they can no
longer be fixed using the same approach are provided in
Appendix D available in the online supplemental material.

6.4.1 Number of Circuits Repaired

As can be seen from Figs. 7a, 7b, 7c, and 7d, the number of
circuits repaired generally tends to increase as the bias
favours branch swapping/shuffling strategies. When the
bias reaches � 0:2, the number of circuits fixed becomes sta-
ble. In all four cases, the results for circuit Z2 are signifi-
cantly higher than for the other three, averaging
� 9990� 20 in the stable section of the graph compared to
� 9800� 50 out of 10,000. It appears that the structure of Z2
is particularly suited to this method of fault recovery. The
likely reason for this is that all but one of the active branches
contain a spare CT, which provides a high probability of
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recovery through input swapping/shuffling when a con-
ducting fault occurs in a CT. In addition, there are four
spare PMOS branches and three spare NMOS branches,
providing sufficient redundancy for branch swapping/
shuffling to take advantage of.

In the way circuit Z2 benefits from redundancy, it may
appear contradictory that circuit Z0, featuring the maximum
amount of redundancy, does not. In fact for the majority of
cases, fault recovery is much less successful on Z0 than any
of the other circuits. The reason for this is likely down to the
method of fault injection. Since faults are injected at random
without regard for where the active CTs are placed, the Z0
circuit is more likely to receive a higher number of faults
induced into unused CTs before finally breaking. Hence,
when fault recovery is triggered, there are fewer fully func-
tioning CTs left to work with. However, this reflects what
would happen in reality and would be balanced by an aver-
age longer lifetime of Z0 before suffering from a fault.

The general shape of the graphs is as expected, since
branch swapping/shuffling is principally able to recover
from either type of fault (conducting or insulating), whereas
input swapping/shuffling can only recover from conduct-
ing faults in branches which have a spare CT. However, as
discussed previously, there is value in trying to use the
input-affecting strategies as much as possible as the disrup-
tion to the layout of the circuit is significantly reduced.
Hence, the best trade-off performance indicated by the
results shown is around a bias of 0.2, where high success
rates for fault recovery can be achieved while—on aver-
age—mainly using input swapping/shuffling.

At the far right of the graphs, the bias of 1 means that only
use branch swapping/shuffling can be used. In this particu-
lar case the success rate drops dramatically, because there
are specific combinations of faults from which it is only pos-
sible to recover with the use of input swapping/shuffling.
For example, consider Z0 (see Table 1): if all the PMOS CTs
in the top row are injected with conducting faults, branch
swapping alonewill not reach aworking configuration again
but an input swapmoving the CT configuration down to one
of the lower rows will. Therefore, despite branch swapping/
shuffling strategies appear to be generally better than input
swapping/shuffling strategies, the best performance is only
achieved using a combination of both.

Figs. 7a and 7c display worse performance at low values
for the bias than Figs. 7b and 7d. The difference between
these two sets is the branch strategy used. The experiments
in Figs. 7b and 7d use branch shuffling, which appears to
have helped for bias values favouring input operations.
Since the shuffling strategies can perform one or more
swaps in one step, the total number of swaps performed in
a single step is increased bringing the performance closer to
that of the higher biases.

6.4.2 Number of Steps Taken

The mean number of steps required to fix a fault is shown in
Figs. 8a, 8b, 8c, and 8d. As can be seen from the graphs, this
number reduces as the bias increases towards using more
branch swapping/shuffling, which means quicker fault
recovery.

Comparing Figs. 8a and 8c with 8b and 8d, the mean num-
ber of steps towards the left hand side is lower in the latter
two, where each step involves shuffling all inputs of all CABs.
This enables the algorithm to fix any faults that are possible to
repair with input swapping in a single step. However, due to
the stochastic nature of how the strategies are applied, it is
also possible to put the circuit into a situation where faults
causemore problems than the previous state.

The results for Z2 are again noticeably better than for the
other three circuits, which all perform similarly. The balance
of redundancy and utilisation in this circuit resonate with this
methodology well for two reasons: first, by utilising slightly
more than half of the branches of a slice, faults are more likely
to occur in utilised branches, leaving redundant ones less
likely to be faulty and increasing the probability that spares
will be fault-free when required. Second, having slightly less
than half of the CAB branches not utilised leaves a lot of
redundancy for branches tomove into. Random swaps have a
high probability of putting active branches into previously
unused ones, speeding up fault recovery.

At the far right hand side of each of the graphs, perfor-
mance is reduced in that the average number of steps
required for repair increases. This indicates situations
where it is hard for the algorithm to find configurations that
work, and so more steps are required when trying to
recover from faults. Reducing the bias slightly to include
some input swapping clearly helps in these situations.

Fig. 7. The number of faulty circuits fixed is shown when running stochastic strategies sampling two different strategies with different statistical bias.
The performance of input versus branch swapping is shown in (a), input versus branch shuffling is shown in (b), and the mixed experiments input
shuffling versus branch swapping and input swapping vs branch shuffling are shown in (c) and (d). Generally, a trend towards better repair perfor-
mance can be observed when branch operations are more likely used. However, the cost of these operations is also higher.
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7 DETERMINISTIC STRATEGIES

The experiments in Section 6 utilised a random application
of repair strategies for fault tolerance and has been shown
to successfully repair faults with varying levels of perfor-
mance depending on the circuit it was applied to. It is there-
fore hypothesised here that an ordered application of
deterministic strategies optimised for a given circuit should
provide improved performance.

One drawback of the stochastic strategies approach is
that there are frequently unnecessary swaps being per-
formed that do not contribute to the repair process in a help-
ful way, which is expensive in terms of time and power due
to making more reconfigurations. To a certain extent this is
acceptable for a generic repair strategy capable of operating
without knowledge of fault locations, however, with a
completely non-deterministic approach the amount of
unnecessary swapping is likely to be excessive. This should
provide room for improvement when generating determin-
istic strategies tailored for specific use cases using an opti-
misation algorithm.

It is likely that, when the initial configuration of a circuit is
known, similar strategies may be able to do better given some
determinism. For instance, consider a circuit that is only using
one PMOS and one NMOS branch, as is the case in Z0, where
the majority of the branches are unused and therefore there is
no effect in performing repair strategies on them. If the fault
recovery method is deterministic and optimised for Z0, the
algorithm will avoid swapping between two unused inputs
or branches, resulting in faster runtime and less power con-
sumed by unnecessary reconfigurations.

Therefore, in order to verify this hypothesis, experiments
are conducted where deterministic strategies are optimised
using a multi-objective evolutionary algorithm and are
applied to the benchmark circuits from Section 5.1 with
faults injected, until correct operation is restored or a pre-
determined threshold is met.

7.1 Fault Recovery Strategies

The rationale when determining the set of basic transforma-
tions is to keep the two types of strategy, input swapping
and branch swapping, but to predetermine their application
in some way. Where the strategies are previously composed

of a random number of swaps, the new strategies are com-
posed of exactly one deterministic swap, giving very fine
grain control over what happens in the event of a fault. By
enumerating all possible swaps within a slice, these swaps
can be chained together to form a list of actions to perform,
and the resulting efficiency of this list may be optimised.

The two types of circuit transformation described in
Section 4 are again used to form strategies to repair faults.
This time however, each strategy consists of just a single
input or branch swap. It is calculated by enumerating all
possible unique permutations that there are a total of 80
possible swaps that can be performed on a single slice, 24
input swaps and 56 branch swaps. These 80 swaps repre-
sent the set of operations to choose from when composing
deterministic repair strategies. Due to the completeness of
this set of transformations, shuffling is not used in the deter-
ministic strategies.

7.1.1 Input Swapping

Each CAB has four inputs which results in there being six
distinct swaps that can be performed between them. This
can be calculated using the combination ð42Þ ¼ 6. Input A
can be swapped with B, C and D. Input B can be swapped
with C and D, since the A with B swap is already covered.
Input C can be swapped with D and that covers all possible
input swaps for one CAB. Since there are four CABs in a
slice each with six possible swaps, there are 24 possible
input swaps per slice.

Each swap is assigned an index in order to handle it con-
veniently in a repair algorithm. Input swaps are assigned
the numbers 0-23, where 0-5 refer to swaps in the first CAB,
6-11 in the second and so on. Within each CAB, the swaps
are arranged in the order used above, where the first is
swapping A with B. Fig. 9 illustrates the input swaps and
identifiers assigned to them for the left-most CAB.

7.1.2 Branch Swapping

Each slice features sixteen branches, eight of each type
(PMOS and NMOS). Only branches of the same type can be
swapped, otherwise the functionality of the circuit changes
after the swap. Consequently, the total number of possible
swaps is 2� ð82Þ ¼ 56.

Fig. 8. The number of steps required (strategies applied) in order to repair a broken circuit is shown. The performance of input versus branch swap-
ping is shown in (a), input versus branch shuffling is shown in (b), and the mixed experiments input shuffling versus branch swapping and input swap-
ping vs branch shuffling are shown in (c) and (d). Again, a trend towards better repair performance can be observed when branch operations are
more likely used. However, the cost of these operations is also higher.
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The branch swaps are assigned index numbers in the
same way as with the input swaps. PMOS branch swaps are
numbered 24-51 and NMOS branch swaps 52-79. The first
seven possible NMOS branch swaps are illustrated in Fig. 9.

7.1.3 Strategy Lists

Associating every possible swap with a unique index num-
ber ensures than they can be referred to in a convenient and
unambiguous manner. Arranging these numbers into a list
(as in Fig. 10) defines a deterministic set of actions that can
be performed on a circuit. Lists of this type are henceforth
referred to as strategy lists.

7.2 Fault Recovery Method

Given a particular strategy list, the methodology when
attempting to repair a fault works as follows:

1) Start with a faulty circuit with a known correct
output.

2) Read the first number from the list.
3) Apply the strategy referred to by the number to the

circuit.
4) Test the circuit to see if it now works.

a) If it does, end the process.
b) If it doesn’t, read the next number from the list

and continue from Step 3.
An example list, using numbers illustrated in Fig. 9,

could be [0, 3, 5, 52]. If the entire list is applied to the circuit
Z0 from Section 5.1, the following circuit transformations
will be performed:

1) Inputs A and B are swapped in the first CAB from
the left.

2) Inputs B and C are swapped in the first CAB from
the left.

3) Inputs C and D are swapped in the first CAB from
the left.

4) The first and second NMOS branches from the left
are swapped.

Note that it is assumed here that Z0 is mapped into the
leftmost CAB of a PAnDA CLB. This is for illustration pur-
poses only and not generally the case with a strategy list.
The work presented here investigates whether it is possible
to automatically create lists which repair faults in a more
efficient—but still generic—way than the random method
presented in Section 6.

7.3 Experimental Method

The proposed deterministic strategies methodology performs
circuit transformations in a deterministic manner, specifically
single-swap strategies stored in an ordered list. While the sto-
chastic strategies apply a different sequence of circuit trans-
formations each time it is used, the deterministic method
applies the same sequence of transformations each time. The
experiments performed in this section are aimed to automati-
cally generate and optimise an appropriate sequence of strate-
gies, i.e., a strategies list, for repairing faults. In order to allow
a comparison with the stochastic method, the same set of
benchmark circuits Z0-Z3 is used here.

The length of the lists used in the experiments is 50, i.e., a
maximum of 50 strategies are applied when attempting to
recover from a fault. This value, which is significantly lower
than the 10,000 used in the stochasticmethod, has been chosen
based on the results from Section 6.4, where circuit Z2
requires approximately 50 steps on average to repair and the
others take significantlymore than that. Calibrated to this crit-
ical point, the results from this section should therefore show
clearly any advantage the deterministic approachmay have.

7.3.1 Multi-Objective Evolution of Strategy Lists

The process of creating a strategy list for a given function
should be automatic. However, the search space is infeasi-
bly large for manual exploration and its structure is unsuit-
able for hill-climbing. Hence, to achieve this automation, an
evolutionary algorithm (EA) is employed which optimises
lists iteratively. Moreover, multiple goals for the optimisa-
tion, e.g., fixing as many faults as possible whilst requiring
the least number of steps, necessitate the use of a multi-
objective evolutionary algorithm (MOEA), for which
NSGA-II is used. In this case, the generation, optimisation
and evaluation is performed using the commercial opti-
miser LS-OPT [29]. The algorithm used is LS-OPTs imple-
mentation of NSGA-II.

The genetic encoding simply consists of 50 variable pla-
ceholders representing a generic list of 50 integer numbers
forming a strategy list. Each number can take on a value
between 0 and 79, each representing a strategy from the
basic set of transformations described in Section 7.1.3. The
EA parameters used are:

� Population: 80
� Mutation rate: 0.1
� Generations: 400

Fig. 9. An illustration of how some of the strategies are mapped from
numbers to circuit transformations. For instance, strategy ‘0’ swaps the
input multiplexer configurations for inputs A and B, and also two CT con-
figurations in each branch associated with inputs A and B. Strategies 6-
11 perform the same actions on the second CAB from the left and so on.
Strategy ‘53’ swaps all four CT configurations in the leftmost NMOS CT
branch with the ones in the third NMOS CT branch from the left, com-
pensating for any differences in the order of the inputs between the two
CABs. Strategies 59-64 swap the second NMOS branch with each of
the others to the right and so on and strategies 24-51 enumerate all the
possible PMOS CT branch swaps.

Fig. 10. An abstract strategy list. S{1-n} represent the strategy numbers
which are applied in order.
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Population size and mutation rate are the defaults sug-
gested in LS-OPT. The experiments are stopped after a limit
of 400 generations has been reached, as preliminary experi-
ments showed that by then solutions have already seen sig-
nificant convergence and further improvement has slowed
down.

7.3.2 Objectives

The following objectives are identified to be minimised by
the MOEA:

1) Number of unfixed circuits (out of 1,000).
2) Average number of steps required for repair.
3) Cost/effort expended to fix circuits.
Each genome (strategy list) is evaluated on 1,000 instances

of the same circuit with different faults randomly injected.
The number of unfixed circuits value represents the number
of faulty circuits that are not fixed out of these 1,000.

In addition to the two measurements used Section 6, a
cost metric is introduced. The purpose of this is to encour-
age the optimisation algorithm to favour input swapping
over branch swapping. The rationale behind this is that if a
fault can be fixed with just input swapping, it will disrupt
the layout of the circuit significantly less than branch swap-
ping. A solution achieving this is clearly superior.

The input swapping strategies are assigned a low cost of
1, whereas the branch swapping strategies are assigned a
high cost of 100. The optimisation algorithm is instructed to
minimise the total cost expended when executing a certain

list. The specific cost values are arbitrarily chosen in a way
to significantly penalise the branch swapping and encour-
age input swapping.

7.3.3 Strategy List Evaluation

The process of evaluating a strategy list is repeated 1,000
times for each list. A more detailed explanation follows:

1) A fault-free PAnDA Slice model is prepared and pro-
grammed deterministically with a logic function.

2) The circuit is made faulty by the process described in
Section 5.3.

3) The algorithm looks to the first item in the strategy list.
4) The strategy stored at the current position of the

strategy list is applied to the circuit.
5) The circuit is checked for correct functionality.
6) If it is not fixed and there are items left in the list, the

algorithm looks to the next item in the strategy list
and goes back to Step 4. If it is fixed or every item in
the list has been used, this evaluation is over and the
number of steps taken are added to a running total.

As in the previous experiments in Section 6, each of the
1,000 evaluations of the list has to deal with a random num-
ber of randomly injected faults, in order to prevent over
training to any particular set of faults.

7.4 Results

Results for each of the four functions Z0-Z3 are shown in
Fig. 11. These solutions represent the Pareto-optimal set

Fig. 11. The results for circuit Z0 is shown in (a), Z1 is shown in (b), Z2 is shown in (c) and Z3 is shown in (d) after evolving their respective
strategy lists over 400 generations. The best solutions optimised for the number of unfixed circuits, mean number of steps and total cost are
circled in red.
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found after running the MOEA for 400 generations. As can
be seen from the figure, the general trend seen in all four
cases is that solutions leaving fewer circuits unfixed—i.e.,
achieve to repair more—do so, on average, in fewer steps.
However, this comes at the expense of cost, which can be
seen increasing as the other two objectives decrease. This
suggests that, for faults that are indeed repairable, the
evolved strategy lists are able to repair them quickly. At the
same time, these lists generally comprise a large amount of
branch swapping operations.

In order to illustrate a typical result of the evolutionary
algorithm, the first eight steps of an “unfixed”-optimised list
for Z0 is worked through and explained in more detail in
Appendix C available in the online supplemental material.

8 COMPARISON OF STOCHASTIC AND

DETERMINISTIC STRATEGIES

In order to provide a more direct and fair comparison
between the deterministic and stochastic approaches dis-
cussed in Sections 7 and 6, results presented here are
obtained from a slightly modified version of the experiment
using the stochastic strategies.

8.1 Modifications to the Setup

There were two different input swapping methods used in
the stochastic strategies: a single random input swap and a
shuffle of all the inputs in the slice. The first mechanism is
equivalent to the one used for the deterministic strategies,
apart from swaps being randomly selected in the first case
and running one of the strategies numbered 0-23 in the sec-
ond case. However, the equivalent of the shuffle mechanism
would involve running up to three of these on each of the
CABs, so up to 18 single swap strategies in total for one
input shuffle operation. To provide a more fair comparison,
this strategy was modified to make a single swap on a single
CAB by invoking a random deterministic strategy in the
range 0 to 23.

The experiments in Section 6 do not consider cost, as this
is not meaningful when sweeping the bias value. However,
this metric was added simply for comparison with the total
cost being accumulated over all (successful and unsuccess-
ful) runs.

The measurement of the mean number of steps to fix a
fault is modified to fit with the optimisation-based approach
of the deterministic strategies. Instead of recording the
number of steps taken in only the successful cases, the total
number of steps used over all runs is used in order to
remove statistical bias. Finally, The total number of steps is
divided by 1,000 to provide an average per run.

8.2 Results

For comparison, the results from the stochastic method from
Section 6 are re-run with modifications detailed in Section 8.1
on the same four benchmark circuits used before. The new
results are shown in Fig. 12.

The general trend that can be seen fromFigs. 12a and 12b is
that the average number of steps required to recover from a
fault and the number of circuits left unfixed decrease as the
bias tends towards the branch swapping strategy. Fig. 12c
shows the opposite trend in that the average cost decreases as

Fig. 12. Results of running the experiments from Section 6 with the
differences detailed in Section 8.1. Top: the average number of
steps required to fix random faults. Middle: the number of unfixed
circuits out of 1,000. Bottom: the total cost expended when using a
particular bias.
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the bias tends towards the input swapping strategy. This is
intuitively expected as the branch swapping strategy is signif-
icantly more expensive than the input swapping strategy but
it is also expected that there would be more of an ‘S’-shaped
curve as the introduction of branch swapping should overall
decrease the number of strategies that have to be applied. It is
possible, however, that this effect becomes visible with more
carefully selected cost factors.

The number of circuits repaired in the best cases of each
approach is significantly improved, as can be seen from
Table 2. The improvement varies between 57.03 and 71.54
percent in terms of the number of circuits repaired, and the
other objectives are improved as well. This confirms that for
the given number of 50 steps, the deterministic method is
indeed able to recover more circuits from faults.

The deterministic method has decreased the average
number of steps taken when fixing faults by between 35.04
and 52.2 percent (see Table 3). This suggests that, if a fault is
repairable, the deterministic method will find the fix
quicker, on average.

The new cost measurement shows less improvement
than the other optimised solutions (see Table 4). The deter-
ministic solution presented shows a small improvement in
cost, between 4.64 and 16.2 percent, and similarly sized
improvements across the other objectives.

9 CONCLUSION

Thiswork has demonstrated how symmetry-awaremapping
of logic functions onto FPGA architectures in combination
with evolutionary algorithms can be a powerful tool devis-
ing fault-blind repair strategies using existing reconfigura-
tion mechanisms. This paper has focussed on fault-
mitigation in the case of transistor failures. Some of the
PAnDA architecture features, symmetries and swapping of
inputs, have been proven to be useful for fault-blind fault
mitigation. The approach presented here can be generalised
to any existing FPGA architecture that exhibits regularities
and symmetries in its architecture. Future work will be con-
sidering the more unique features of PAnDA that go beyond
what currently available FPGAs can do, which is reconfigu-
ration at the transistor level, in order to extend hierarchical
fault-mitigation to this lower level and to expand the scope

of fault tolerance towards design optimisation. For example,
configurable transistors do not only allow fixing faults, but
also offer a range of possibilities to optimise a mapped
design for performance, variability or power consumption
by changing and optimising transistor sizes.

The results of the Stochastic Strategy experiments from
Section 6 have shown that even with random circuit transfor-
mations, it is possible to structurally manipulate circuits on
PAnDA-F€UNF in a way to work around faults. The method-
ology described has been demonstrated to work without
any information about the configured circuit’s implementa-
tion or the location or nature of any faults, simply the
knowledge that a circuit is faulty. By exploiting the addi-
tional configuration layers available on PAnDA, fault recov-
ery has been performed in a simple yet effective way. It has
also been shown that the efficiency and effectiveness of the
Stochastic Strategymethodology can be controlled by biasing
the random application of transformations between two dif-
ferent strategies. This effect can be used to optimise the
methodology for a particular situation. For example, if the
quickest possible recovery is required, biasing towards
branch swapping/shuffling will be optimal, whereas if the
disruption to the layout of a circuit should be kept minimal,

TABLE 2
A Comparison of Solutions from Both Methods Optimised

for the Least Unfixed Circuits Out of 1,000

Solutions Optimised for Least Unfixed

Circuit Stochastic Deterministic Improvement

Z0 Unfixed 113 43 61.95%
Steps 16.973 8.2 51.69%
Cost 1,629,485 317,575 80.51%

Z1 Unfixed 256 110 57.03%
Steps 24.571 16.487 32.90%
Cost 2,457,100 858,779 65.05%

Z2 Unfixed 150 55 63.33%
Steps 19.918 12.655 36.46%
Cost 1,850,032 1,106,210 40.21%

Z3 Unfixed 383 109 71.54%
Steps 31.991 18.374 42.57%
Cost 3,135,740 1,148,560 63.37%

TABLE 3
A Comparison of Solutions from Both Methods Optimised for the

Least Number of Steps Taken during 1,000 Circuit Repairs

Soolutions Optimised for Least Steps

Circuit Stochastic Deterministic Improvement

Z0 Unfixed 122 48 60.66%
Steps 16.44 7.859 52.20%
Cost 1,644,000 311,987 81.02%

Z1 Unfixed 256 124 51.56%
Steps 24.571 15.961 35.04%
Cost 2,457,100 720,742 70.67%

Z2 Unfixed 150 55 63.33%
Steps 19.918 12.655 36.46%
Cost 1,850,032 1,106,210 40.21%

Z3 Unfixed 395 131 66.84%
Steps 31.73 17.627 44.45%
Cost 3,173,000 992,381 68.72%

TABLE 4
A Comparison of Solutions from Both Methods Optimised
for the Least Cost Expended After 1,000 Circuit Repairs

Solutions Optimised for Least Cost

Circuit Stochastic Deterministic Improvement

Z0 Unfixed 793 760 4.16%
Steps 41.798 38.309 8.35%
Cost 41,798 38,309 8.35%

Z1 Unfixed 835 807 3.35%
Steps 43.778 41.745 4.64%
Cost 43,778 41,745 4.64%

Z2 Unfixed 688 619 10.03%
Steps 39.826 33.375 16.2%
Cost 39,826 33,375 16.2%

Z3 Unfixed 855 803 6.08%
Steps 45.398 41.863 7.79%
Cost 45,398 41,863 7.79%
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biasing towards the input swapping/shuffling side will be
more beneficial while yielding equally good results.

The experiments using Stochastic Strategies found that
both types of transformations, input and branch based ones,
are required to achieve the best results. If biased strongly
towards the input swapping strategy there is a drop in per-
formance that becomes severe at the extreme. When biased
towards the branch swapping strategy, the results remain
good until very high values of bias, at which point there is a
significant (but not nearly as severe) drop in performance.
Some circuits performed better than others in the same cir-
cumstances. This is due to differences in their layouts
changing the probability or difficulty of finding recovery
configurations.

The results of the Deterministic Strategy experiments have
shown that this method is able to perform better than the
stochastic approach in all test cases. The results suggest that
this would be the case for every possible function; also this
follows from the fact that the stochastic method is likely to
perform many unnecessary and unhelpful reconfigurations,
which will not be the case if the strategies are optimised
and more deterministic ensuring a more consistent reconfig-
uration path to a successful repair.

The Deterministic Strategy experiments have also shown
that applying an ordered list of strategies provides a better
performing fault tolerance methodology than a random
application, even when the source of the fault is unknown.
The results have also shown that it is possible to optimise
the time it takes to fix faults, or trade this off for lower struc-
tural disruption to the circuit configuration. A slight draw-
back here is the time required to evolve good strategy lists,
which makes it infeasible to produce them on the fly at run-
time. However, strategy lists can be computed in advance,
i.e., after circuit mapping and before deployment, and
stored in a memory so that an optimal strategy is available
in the event of any random occurring fault at runtime.
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