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Abstract—Design disjunction is developed to offer a broad coverage, high resolution, and low overhead approach to online diagnosis

and recovery of reconfigurable fabrics. Design disjunction leverages the condensed diagnosability of T logic resources to achieve self-

recovery using partial reconfiguration in O(log T ) steps. Reconfiguration is guided by the constructive property of f-disjunctness which

forms O(log T ) resource groups at design-time. Resolution of f simultaneous resource faults is shown to be guaranteed when the

resource groups are mutually f-disjunct. This extends run-time fault resilience to a large resource space with certainty for up to f faults

using a decision-free resolution process that also provides a high likelihood of identifying the fault’s location to a fine granularity.

Finally, design disjunction is parameterized to accommodate the low coverage issue of functional testing for which inarticulate tests can

otherwise impair fault isolation. Experimental results for MCNC and ISCAS benchmarks on a Xilinx 7-series field programmable gate

array (FPGA) demonstrate f-diagnosability at the individual slice level with a minimum average isolation accuracy of 96:4 percent

(94:4 percent) for f ¼ 1 (f ¼ 2). Results have also demonstrated millisecond order recovery with a minimum increase of 83:6 percent

in fault coverage compared toN-modular redundancy (NMR) schemes. Recovery is achieved while incurring an average critical path

delay impact of only 1:49 percent and energy cost roughly comparable to conventional two-MR approaches.

Index Terms—Reconfigurable logic devices, field programmable gate arrays, autonomous fault handling, fault-tolerant systems, run-time

fault diagnosis and recovery, online test, design space exploration
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1 INTRODUCTION

CONTINUED scaling of transistor feature size has exacer-
bated reliability concerns such as process variation,

aging degradations, latent faults, and temporary failures in
integrated circuits (ICs). Consequently, the need for IC
fault tolerance has received increasing interest over the last
decade.Moreover, the pervasive use of embedded computing
systems realized by field-programmable gate arrays (FPGAs)
has elevated the importance of FPGA availability require-
ments corresponding to the proportion of time that their oper-
ation can be sustained. A common requirement is to provide
high availability (HA) operation defined by 99:999 percent
(“five nines”) that correlates to five minutes of downtime per
year, or greater availability such as 99:999999 percent (“eight
nines”) that correlates to 316 milliseconds of downtime per
year [1]. High availability operation is crucial whenever
unavailability could result in potential harm or inconve-
nience, violation of a service-level agreement, or a loss of reve-
nue,mission, and/or safety.

Traditionally, availability requirements can be achieved
through spatial resource redundancy to mask or replace

faulty elements. Availability depends on rapid fault
recovery to incur minimal downtime via autonomous fault
resolution. As opposed to FPGAs, application-specific inte-
grated circuits (ASICs) use fixed redundancy configurations
which preclude fine-grained resource remapping. Whereas
FPGAs can enable dynamic fine-grained resiliency, a novel
online technique is developed using rapid self-organization
to attain HA objectives.

Reconfigurable hardware’s capacity to self-organize can
fulfill anticipated roles in designing future dependable hard-
ware systems [2]. At present, the most widely adopted rec-
onfigurable architectures are SRAM-based FPGAs whose
capacity can exceed a million logic cells which can be lever-
aged to enable resilience. SRAM-based FPGAs are ubiquitous
in application-specific embedded systems, high performance
computing centers as well as safety-impacting, mission-criti-
cal, and commerce-enabling systems. The FPGA devices
within these systems can significantly impact the overall sys-
tem reliability [3]. Fortunately, run-time partial reconfigura-
tion capabilities of contemporary FPGAs can be utilized to
maintain degraded-mode operation while enabling rapid
recovery from a variety of faults.

Over the last two decades, a significant body of research
has focused on realizing FPGA-based systems that are
robust to permanent and transient failures. Permanent fail-
ures constitute any irreversible damage to the physical
resources, whereas transient failures are short-duration
events induced by external sources such as charged par-
ticles [4]. Particle-induced transient faults, or soft errors,
cause single event upsets (SEUs) which can alter SRAM con-
figuration bits and lead to a functional failure. Conventional

� A. Alzahrani is with the Department of Computer Engineering, Umm Al-
Qura University, Makkah 21955, Saudi Arabia.
E-mail: azahrani@uqu.edu.sa.

� R.F. DeMara is with the Department of Electrical and Computer
Engineering, University of Central Florida, Orlando, FL 32816.
E-mail: ronald.demara@ucf.edu.

Manuscript received 2 Mar. 2015; revised 20 Nov. 2015; accepted 24 Nov.
2015. Date of publication 31 Dec. 2015; date of current version 14 Sept. 2016.
Recommended for acceptance by P. Eles.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TC.2015.2513762

IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 10, OCTOBER 2016 3055

0018-9340 � 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution
requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:
mailto:


resilience techniques for soft-errors and single permanent
faults are based on fault-masking via majority voting [5],
[6]. Voting methods such as N-modular redundancy (NMR)
incur N-fold power and area overheads to tolerate
temporary and permanent faults in up to ðN � 1Þ=2b c
modules. Techniques such as re-execution and reconfigura-
tion scrubbing [7], [8] can provide low overhead recovery
for temporary failures.

Alternatively, dynamic remapping of a single design imp-
lementation at the module or logic-tile level can be employed
to deallocate the use of damaged resources [9]. However, the
existing techniques for remapping of FPGA resources at run-
time can significantly increase the time complexity of recov-
ery, and thus the downtime. The recovery overhead includes
run-time remapping entailing on-board execution of FPGA
design processes, such as place and route (PAR), which are
time consuming. A single implementation of an FPGA-based
design can require minutes to hours using a high-end multi-
core processor [10]. Although execution time for remapping
can be substantially decreased using incremental PAR if loca-
tions of faulty elements are known, it is still a difficult compu-
tational workload for embedded processing cores [11]. Thus,
conventional dynamic remapping techniques typically requ-
ire faulty systems to be taken offline for an undesirable inter-
val of time.

In this paper, a new deterministic design space exp-
loration (DSE) [12], [13] method is used to realize FPGA
fault tolerance that achieves the availability and reliability
objectives shown in Fig. 1. The design space, and thus
the fault-resolution space, need only be explored at design-
time by creating a small library of alternative design
configurations (DCs) with f-disjunct resource usage. DCs are
created using the mosaic convergence algorithm developed
such that at least one DC in the library evades any occur-
rence up to d resource faults, where d is lower-bounded by
f . The f-disjunction of resources among alternative DCs
enables run-time fault localization by a non-adaptive group
testing (NGT) technique. This realizes a novel low overhead
fault localization/fault isolation capability along with rapid
fault recovery from temporary and permanent faults in
reconfigurable fabrics while incurring minimal area, power,
and perturbation to normal system throughput. We show
that the combinatorial properties of f-disjunctness, along

with FPGA dynamic partial reconfiguration, enable fault
resilience against extensive fault scenarios by reusing a sub-
set of the DCs to ensure continual execution with minimal
recovery time.

Overall, the contributions of this work include:

� the first approach to utilize design disjunction for
condensed diagnostic analysis of reconfigurable
hardware,

� an explicit fine-grained approach to determine the
optimal number of DCs at design-time using the prop-
erty of f-disjunctness for recovery frommultiple logic
and interconnect failures during the system lifetime,

� an extension of NGT to overcome the low coverage
of online functional testing, and

� improvement in crucial metrics including availabil-
ity, provability of recovery, fault coverage, fault iso-
lation accuracy, and area efficiency.

The remainder of this paper begins with a review of the
related work in Section 2. Section 3 provides an introduction
to group testing and the property of f-disjunctness along
with illustrations. Section 4 discusses design for resource
disjunction using the developed mosaic convergence algo-
rithm. Section 5 explains fault isolation and recovery
schemes for reconfigurable fabrics using design disjunction.
Evaluation results for several case studies are provided and
discussed in Section 6. A comparison between the proposed
work and modular redundancy schemes is presented in
Section 7. Finally, Section 8 presents a brief conclusion.

2 RELATED WORK

For contemporary reconfigurable devices, low-level hard-
ware support for testing can incur a significant area over-
head due to uncertainty in the logic and interconnect usage
of the target applications. In some cases, the goals of testing
have been limited to verifying the collective health of recon-
figurable fabrics, whereas in the case of diagnostic testing,
locations of faulty elements are also identified. Reconfigur-
ability has been leveraged in various ways to enable online
testing strategies which examine correctness throughout the
system lifetime.

Table 1 summarizes features of related approaches along
with the proposed scheme. Previous online diagnostic test
schemes for reconfigurable fabrics [14], [20] provide fine
resolution, although they require that the system be halted
or become unprotected for extended periods before individ-
ual faulty elements can be identified. The ability to rapidly
obtain information about faulty resources is a critical factor
in realizing efficient self-repair. It facilitates fault evasion
whereby faulty resources are avoided, or partially damaged
resources are reassigned to other useful functionalities.
Online fault localization techniques often consider the struc-
tural heterogeneity of contemporary reconfigurable hard-
ware. Testing and fault isolation schemes for structures
such as programmable logic, interconnect, and RAM have
been developed through the years, based on the nature of
each structure. For example, RAM-based testing has been
extensively studied and the well-known MARCH algo-
rithms [21] have been proven effective for diagnosis of
RAM cells by applying a sequence of tests to each element
in succession. Previous online fault isolation and recovery

Fig. 1. Objectives of proposed design disjunction approach.
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approaches for FPGA logic using dynamic reconfiguration
have relied on built-in self-test (BIST) [14], [22]. However,
dedicated BIST structures including test pattern generators
(TPGs) and output response analyzers (ORAs) are typically
not available for FPGA platforms [22]. Modern FPGA archi-
tectures are also not entirely scan-ready. Thus, scan chains,
TGPs, and ORAs are frequently implemented directly in the
fabric using look-up tables (LUTs) and shift registers. As a
consequence, BIST-inspired methods can increase FPGA
resource requirements by up to 50 percent [23].

The BIST-based roving STARs test scheme in [14] parti-
tions the reconfigurable fabric into tiles, and continuous
online testing is carried out by roving a BISTer from one tile
to another while the resources not used by the BISTer struc-
ture are dynamically reconfigured to maintain availability.
Although failures are resolved at a fine resolution, data
throughput must be suspended to copy state values prior to
each tile movement. Resource recycling is also facilitated;
however, fault isolation and recovery depend on the latency
of BISTers to rove the device before encountering faulty ele-
ments. Another recent BIST-based fault-tolerant FPGA
approach is illustrated by the reliable reconfigurable real-
time operating system (R3TOS) [15] wherein a hardware
microkernel (HWuK) provides a task scheduler, an alloca-
tor to manage FPGA resources for tile placement, and a
configuration manager which converts commands issued
by the scheduler and allocator into FPGA reconfiguration
operations. To minimize single-point of failure exposures,
HWuK components are realized by an 8-bit PicoBlaze
processor occupying six block RAMs (BRAMs) and 500
configurable logic blocks (CLBs) protected with selective
triple modular redundancy (TMR) and error-correcting
code (ECC) bits whose resources also undergo periodic
testing. The impact of BIST latency is masked by the use
of hardware replication and voting.

To reduce the high complexity and cost of BIST, applica-
tion-dependent BIST testing [20] focuses on the subset of
resources used to maintain design functionality. Thus,
exhaustive test vectors generated by a TPG and response
analysis carried out by an ORA can be relaxed without con-
tinually engaging a dedicated reconfiguration controller to

carry out the test. Thework in [20] also demonstrates an effec-
tive application-dependent diagnosis for FPGA intercon-
nects. Distinct test configurations are applied to modulate
application LUT functionalities and study output patterns to
discern which nets are faulty. These application-dependent
approaches assume the resources undergoing diagnosis pro-
cedures are unavailable during diagnosis. Thus, methods
which eliminate these limitations on availability are sought.

Alternative approaches that eliminate BIST area and
power overheads, referred to as operational testing tech-
niques, conduct functional tests via input data that are
simultaneously used for normal throughput [19]. These
techniques attain availability by relying on run-time inputs,
computational redundancy, and output comparison to
assess the subset of resources currently used by an applica-
tion. Permanent and temporary fault monitoring for opera-
tional testing can be realized using concurrent error
detection (CED) techniques based on duplication with
comparison (DWC) or parity-based methods [24]. DWC that
compares the Hamming distance between the outputs of
two spatially redundant modules is compatible with recent
multi-objective DSE approaches [25] which utilize a cost
function that considers area requirements and resource
utilization against overhead of reconfiguration time. In [18],
another operational testing method based on adaptive
group testing (AGT) for diagnosis of reconfigurable fabrics
is described under a single-fault assumption. However,
since the creation of test designs are adaptive based on
outcomes of successive tests, the AGT method is unsuitable
for high availability applications. Similar to iterative logic
array (ILA) and array-based testing methods [26], most
functional testing techniques are mainly used for testing a
group of resources and provide no fault localization at a
fine resolution. In this work, benefits of operational testing
are explored with design disjunction to locate faulty resour-
ces while avoiding BIST overheads.

Other previous design-time approaches for run-time
fault recovery have used genetic algorithms (GAs) [27] to
evolve a pool of best-fit designs that exhibit resilience to var-
ious failures. The evolved designs are used at run-time to
maintain system functionality. Although GAs can succeed

TABLE 1
Comparison of Design Disjunction with Related Approaches

Approach

Run-time

Fault

Isolation

Resource

Coverage:

Resolution

Provable

Multiple-fault

Coverage

Error-tolerant
Fault Isolation

Recovery
Latency

Intrinsic

Wear

Leveling

PAR at
Run-time Advantage

STARs [14] Yes Logic: LUT Yes No Exhaustive BIST
Overhead

No Required Resource
Recycling

R3TOS [15] Yes Logic: LUT Yes Yes Exhaustive BIST
Overhead

No Required Robust Control
Mechanism

Module Diversity [16] No Logic: CLB No No ms!ms Yes Unnecessary Effective Aging
Mitigation

Hahanov et al. [17] No Logic: CLB Yes No Routing Overhead No Required Provable
Coverage

AGT [18] No Logic: slice No No PAR Overhead No Required Intrinsic
Adaptation

Consensus-Based
Evaluation [19]

Yes Logic: slice No No PAR Overhead No Required Outlier
Identification

Design Disjunction
(approach herein)

Yes Logic: slice &
Interconnect: PIPs

Yes Yes ms! ms Yes Unnecessary Condensed
Diagnosis
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in finding resilient designs, the number of evolved designs
requiring functional evaluation is large, and also being a
probabilistic process does not explicitly guarantee conver-
gence. The work in [17] presents an algebraic method for
devising an optimal remapping strategy for logic blocks at
row and column levels to reduce recovery latency and mini-
mize number of spare rows and columns required to tolerate
a large combination of fault locations. Remapping by inter-
change of device columns and rows is still performed at run-
time, which relies on an independent fault diagnosis process
to locate faulty cells before identifying which resources to
interchange. The consensus-based evaluation(CBE) method
described in [19] generates, at design-time, a diverse pool of
FPGA designs with alternative device resources. These
designs are evaluated against each other using a duplex
arrangement. Statistical clustering is used to identify opera-
tionally correct designs without the assumption of a golden
element. The module diversity approach described in [16]
provides yet another method for generating diverse designs
at design-time for mitigating aging effects at run-time. The
diverse designs can be deployed according to a scheduling
policy that results in a steady stress distribution across
resources to achieve an extended lifetime. The set of diverse
designs also guarantees fault recovery under a single-fault
assumption for all possible single CLB faults.

Unfortunately, none of the existing approaches demon-
strate provable coverage for multiple faults nor do they
allow the use of diverse designs for diagnostic tests to locate
faulty resources. In this work, we describe an explicit
method for generating the optimal number of DCs that
guarantee recovery from multiple faults at fine granularity
while providing rapid fault isolation. Broader surveys of
recent techniques for fault tolerance, autonomous recovery,
and self-healing of FPGA-based systems are presented
in [28], [29], and [30], respectively.

3 GROUP TESTING FOR DIAGNOSIS OF

RECONFIGURABLE ARCHITECTURES

If a test is used to identify f defectives among T elements,
where f is unknown, then a straightforward, albeit subopti-
mal, procedure is to evaluate each element individually.
Assuming all tests are reliable, then the testing time com-
plexity becomes OðT Þ. This cost can be considerably
reduced by dividing the T elements into g subsets, or
groups. The collective results after testing each group can
be interpreted to identify the f defectives. The challenge is
to sample the minimum number of groups sufficient to find
the defectives. This is the basic idea behind group testing
first introduced by Dorfman [31] for screening a large num-
ber of blood samples by pooling them together to reduce
testing cost. Group testing has been adapted to diverse
applications such as testing for manufacturing defects,
DNA library screening, coding theory, software testing, and
BIST-based diagnosis in digital systems [32]. Based upon
how test groups are sampled, most group testing techniques
can be classified into adaptive or non-adaptive categories.

3.1 Adaptive Group Testing

When using adaptive group testing, complete knowledge of
how groups are sampled before testing begins is not

specified. The groups are constructed iteratively based on
each successive test outcome during the testing procedure.
As testing progresses, the iterative sampling of groups
narrows down the suspect set of faulty resources until
defectives are identified. The binary search (BS) method
described in [33] presents one of the simplest AGT algo-
rithms. At the initial stage of BS, the set of scan cells to be
tested, X, are considered suspect. The set X is partitioned
into two groups, each of which is collectively tested using
two scan chains. The BS technique is applied recursively to
any erroneous group until faulty cells are singled out. A
modified implementation of this algorithm was first pro-
posed for functional testing of FPGAs in [18] under a single-
fault assumption. Each test group is a set of resources which
implement a functionally equivalent design. Initially, all
resources in the reconfigurable container are deemed sus-
pect. The test starts by dividing suspect resources among
different functionally equivalent FPGA designs. The suspect
set is narrowed down to those that implement a fault-
affected design. The modified suspect set is iteratively
divided and utilized by a new generation of test designs.
The algorithm terminates when only a single cell remains in
the suspect set, thus identifying the defective resource. The
operational complexity of this algorithm depends on the
maximum number of test designs allowed in every test
generation. Thus, an overriding concern with AGT is the
downtime needed to generate new test designs by repeat-
edly invoking the design flow which is infeasible on
deployed real-time embedded systems.

3.2 Non-Adaptive Group Testing

In the case of non-adaptive group testing, the sampling pro-
cedure for all groups is known apriori to the execution of
tests. An intuitive way to model and describe the problem
of fault isolation in FPGAs using this class of group testing
techniques is through matrix algebra. The following nota-
tions are used throughout the paper:

� Design matrix DDg�T is a binary matrix indicating the
subset of resources used by each of g DCs. Rows in
this matrix correspond to DCs whereas columns cor-
respond to resources. An entry ki;j of DDmatrix is one
if resource j is utilized by DCi, and zero otherwise.

� Health vector hhT�1 is a binary vector of length T rep-
resenting the health of the T resources, i.e., an entry
hj is one if resource j is defective and zero if resource
j is healthy.

� Outcome vector oog�1 is a binary vector of length g
containing the error detection outcomes of all g DCs,
i.e., an entry oi is one if an erroneous outcome is
detected while DCi is deployed and zero if DCi sus-
tains correct operation.

� Set cðvvÞ is the subset of elements in binary vector v
whose entries are one.

� vðvvÞ is the weight of binary vector v, i.e., number of
elements whose entries are one.

� GGn
r is the set of all r-combinations of n elements.

The Outcome Vector, oog�1, can be given as follows:

oog�1 ¼ DDg�T � hhT�1: (1)
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The objective is to recover the health vector hh given
that both the design matrix and the outcome vector are
known. The health vector can be efficiently recovered if
the design matrix obeys the f-disjunctness property and
no more than f resources are defective [34]. The f-dis-
junctness property constrains how alternative groups are
overlapped such that f-diagnosability still holds. It pro-
vides an efficient strategy to distribute each possible sub-
set of resources of size up to f among a unique subset of
DCs. Therefore, defective resources can be identified by
finding the common resources among faulty DCs. The

matrix DDg�T is considered f-disjunct if and only if for any
possible combination of columns, S, of size f , every col-
umn not in S has at least d row elements whose entries
are one and all entries of the columns S are zero [35].
This can be expressed as:

8S 2 GT
f ;
Xg
i¼1

Di;j ¼ 1 ^
[
k2S

Di;k ¼ 0

 !
5d; (2)

where 14j4T and j 62 S.
The parameter d represents the number of rows that

satisfy the left side of inequality in Eq. (2). We refer to
this parameter as the disjunction factor. The minimum
value of d necessary to ensure f-disjunctness is 1 in which
all possible combinations of up to f faulty resources can
be identified provided that all tests are reliable, i.e. each
faulty DC will generate a detectable erroneous outcome.
Fig. 2a shows a two-disjunct matrix and a one subset of
columns, S, of size 2 that meets the condition given by
Eq. (2) for d ¼ 1.

The decoding procedure to infer the sparse health vector
assuming reliable testing is illustrated through a binary
comparison between each column vector, cc, of the DD matrix
and the outcome vector oo. If the subset of elements of cck hav-
ing value equal to one is fully contained within the subset of
elements of the outcome vector oo having value equal to one,

then the resource k must be faulty. Thus, the health vector
can be obtained as follows:

hh ¼ fhk jhk ¼ 1 if cðcckÞ � cðooÞ
0 otherwise

�
; 1 � k � Tg: (3)

Fig. 2b illustrates how the same two-disjunct matrix is
used to single out the two defective resources, four and
nine, using the described decoding method. In this example,
the sparse health vector is given as:

hh ¼ ð 0 0 0 1 0 0 0 0 1 0 ÞT : (4)

Although the binary decoder is efficient, there are two
main challenges to properly exploit this technique for fault
isolation of reconfigurable hardware. The first challenge is
the well-known limitation of low coverage from functional
testing which can introduce a sampling noise to the binary
decoding method leading to misdiagnosis. Hence, a suspi-
ciousness ranking metric that classifies resources according
to their existence rate in failed DCs is developed instead of
binary decoding methods. Additionally, f-disjunctness for
d > 1 along with the proposed ranking metric are shown to
be effective for surmounting the low coverage issue of func-
tional testing as explained in Section 5.2. Since all DCs imple-
ment the same application functionality while utilizing a
disjunct set of T resources, each DC requires the same
resource count. The second challenge is to construct a con-
strained f-disjunct design matrix for any given T and with
rows of equal weight dictated by the application size, R.
Available techniques used to construct f-disjunct matrices
stipulate a set of conditions on matrix size and the row
weights which preclude the flexibility needed to meet design
and resource count constraints of operational testing of recon-
figurable fabrics. In this work, a new combinatorial search
algorithm is described to achieve f-disjunctness for any given
design parameters T , R, and d. In Sections 4 and 5, solutions
to these two challenges are discussed with results demon-
strating feasibility and advantages of the proposed approach.

4 DESIGN FOR DISJUNCTION ON RECONFIGURABLE

ARCHITECTURES

Design disjunction realizes a set of f-disjunct DCs, each of
which implements the same application functionality, and
then employs them to locate and evade defective resources
during system lifetime while maintaining optimal availabil-
ity. These DCs are produced prior to the test procedure;
therefore, only partial reconfiguration overhead of existing
DCs is incurred during fault diagnosis and recovery. Fault
tolerance is achieved by run-time reconfiguration to load
one of the bitfiles from the subset of DCs which does not
utilize defective resources. The constructive property of
f-disjunctness is shown to be effective for extracting highly
fault-resilient DCs against logic and interconnect failures.

In this work, FPGA-based fault scenarios are considered
for evaluation of design disjunction since FPGAs are the
prominent form of contemporary reconfigurable hardware.
Modern FPGAs have multiple levels of logic cell granularity.
For instance, basic logic elements such as LUTs and flip-flops
of Xilinx FPGAs are organized into logic slices which are

Fig. 2. (a) Example of two-disjunct design matrix. (b) Conventional
diagnosis decoder.
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considered the most primitive programmable logic blocks.
As such, design disjunction is examined at the slice level.
Thus, the columns of the design matrix DD correspond to sli-
ces while rows represent DCs. We also focus on logic fault
localization. However, the proposed work can be combined
with other application-dependent interconnect testing such
as [20] for fault isolation at the level of interconnect points.

Assuming an application is synthesized to a minimum of
R slices, then the weight, i.e. the number of non-zero ele-
ments, of every row of the design matrix must equal R. The
problem of constructing f-disjunct matrices has been
increasingly studied within coding theory literature [34].
For the interest of this work, we empirically evaluate the
lower bound on DC count required to reach f-disjunction
using the developed mosaic convergence algorithm. Let the
notation (T ,R,f)-disjunct matrix denote an f-disjunct design
matrix whose rows have exactly R non-zero entries out of T .
Algorithm 1 shows the pseudocode for the proposed mosaic
convergence approach for constructing such a matrix. Start-
ing with an initial row that has R non-zero entries (lines 4-
7), each added row represents the best-found row vector
that maximizes the accumulative disjunction ratio (lines 36-
49). The disjunction ratio is defined as follows:

Definition 4.1. Disjunction ratio (DR) is the proportion of GGT
f

elements that satisfy the condition stated in Eq. (2).

The binary coverage matrix �� (line 9) tracks whether each

combination S 2 GGT
f has satisfied the condition in Eq. (2).

Every added row is initially a T -dimensional row vector vv
of weight equals T (line 12). The combinatorial search for
optimal v, requires two nested sequential loops (lines 17-31)
which examine each non-zero element in v and pick the ele-
ment which, if flipped to zero, yields the largest increment
to the disjunction ratio DR. This latter step is repeated until
the weight of the vector vv is reduced to R. Once an optimal
row vector is found, the coverage matrix �� is updated to
include the incremental coverage of each row (lines 36-
49). The row-by-row construction of design matrix DD termi-
nates once the DR value reaches its maximum value of
1 (line 11).

The complexity of the binary search for each new row is
largely determined by T and the cardinality of set < � GGT

f

that have not yet satisfied the condition expressed in
Eq. (2). The cardinality of < decreases exponentially as
number of rows in the D matrix increase. For search of the
first few rows, the search space for optimal v is still large,
which rapidly decreases as more rows are added to the D
matrix. To decrease the execution time of the algorithm, one
option is to limit the combinatorial search to a randomly
selected subset of <. This will increase the speed of the con-
struction algorithm at the expense of obtaining a suboptimal
v in each row iteration. The effect of this suboptimality
appears in the final solution as an increase in g, or number
of required DCs to achieve f-disjunctness. In this work, we
utilized exhaustive combinatorial search to capture the
lower bound on number of DCs needed to achieve the dis-
cussed FT objectives, although search can be relaxed in
practice. The constructed design matrix is then used to
define the set of placement constraints supplied to the
design tools to implement disjunct DCs.

Algorithm 1. Mosaic Convergence Algorithm for Con-
structing (T ,R,f)-Disjunct Design Matrix

Procedure construct (T ,R,f)-disjunct matrix
Input: T : Total Number of Resources

R: Required Resources to Implement Application
f : Number of Defects
d: Disjunction Factor

Output: Design Matrix,DD g�T .

1 f :¼ ðTfÞ ¼ T !
f !ðT�fÞ!

2 " :¼ f� ðT � fÞ // binary check count

3 DR :¼ 0
4 Generate a random row vector vv; s.t.: lengthðvvÞ ¼ T

and vðvvÞ ¼ R
5 g :¼ 1 // point to the first row ofD
6 DDg :¼ vv // insert vv as the first row of the design

matrix

7 g :¼ gþ 1
8 CC :¼ GGT

f // set of all f-combinations out of T

9 �f�T :¼ ½d�f�T
//initialize binary coverage

matrix entries to d

10 DR funcðvvÞ // call functionDR func to updateDR
after inserting the row vector vv

11 while (DR 6¼ 1) do
12 vv :¼ ½1�1�T // start with a row vector

vv s:t: lengthðvvÞ ¼ vðvvÞ ¼ T
13 S max :¼ CCz max

14 for each k 2 S max do
15 vk :¼ 0
16 while (vðvvÞ 6¼ R) do
17 max :¼ 0
18 for i :¼ 1 to T for do
19 if (vi 6¼ 0) then
20 tt :¼ vv
21 yy :¼ �z max

22 ti :¼ 0
23 count :¼ 0
24 for each S 2 CC s:t: i 2 S do
25 for j :¼ 1 to T do
26 if (tj ¼ 1 ^ yj 6¼ 0) then
27 yj :¼ yj � 1
28 count :¼ countþ 1
29 if (count > max) then
30 top entry index :¼ i
31 max :¼ count
32 vtop entry index :¼ 0
33 DDg :¼ vv
34 g :¼ gþ 1
35 DR funcðvvÞ

// update DR after inserting a new row

36 Function DR_func(a)
37 count :¼ 0
38 max :¼ 0
39 for z :¼ 1 to f do
40 S :¼ CCz

41 if (88 k 2 S; aak ¼ 0) then
42 for j :¼ 1 to T s:t: j 62 S do
43 if (��z;j 6¼ 0 ^ aaj ¼ 1) then
44 ��z;j :¼ ��z;j � 1
45 count :¼ countþ 1
46 if (vð��zÞ > max) then
47 z max :¼ z
48 max :¼ vð��zÞ
49 DR :¼ DRþ count

"�d
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The mosaic convergence algorithm was implemented on
an Intel quad-core processor based PC design station. The
number of DCs g required to reach f-disjunctness with
respect to T and f is obtained for d ¼ 1. Fig. 3 shows col-
lected g values for f ¼ 1; 2; and 3. The logarithmic trend
lines indicate that g grows linearly as resource count
increases exponentially. The advantageous logarithmic
dependence of g on resource count T obtained by the mosaic
convergence procedure is consistent with results from other
probabilistic methods for constructing unconstrained dis-
junct matrices [36], [37]. Fig. 3 also shows the non-linear
increase in g for increasing f . The small number of disjunct
DCs signifies the advantage of design disjunction to lower
testing cost and recovery overhead.

5 DESIGN DISJUNCTION FOR FAULT TOLERANCE

5.1 Fault Diagnosis Using Design Disjunction

The binary decoder described in Section 3.2 provides only
binary diagnostic data which can lead to incorrect fault
diagnosis in the presence of inarticulate tests. Instead, a
ranking scheme that assesses resources according to their
existence rate in failed DCs can reveal a more accurate esti-
mate of the failure state of the resources. For each resource,
the proportion of failed DCs that utilize the resource is com-
puted and compared with other resources. This ratio is
referred to as fault sensing ratio (FSR) and can be expressed
as follows:

FSRi ¼
S g

k¼1Dk;i j Dk;i ¼ 1 ^ ok ¼ 1
�� ��

vðcciÞ ; 1 � i � T; (5)

where cci is the ith column vector of the design matrix D.
A resource with a large FSR has a high likelihood of

being faulty. To illustrate how FSR is obtained, the health
vector hh given by the example described in Section 3.2 can
be rewritten using FSR for each cell, as follows, in which
faulty resources get the highest FSR values.

hh ¼ ð 0:�3 0:�6 0:�3 1 0:�6 0:�6 0:�6 0:�6 1 0 ÞT

Similarly, the cumulative sum of FSR, denoted as CFSR,
for all resources used by each DC yields a failure ranking
metric for DCs. The CFSR is used to determine the best
operational DC if fault isolation at the design configuration
level is sought.

We first focus on the case of ideal test coverage in
which all fault-affected DCs manifest at least one errone-
ous functional output. Fig. 4 illustrates an example of a
single fault isolation case on a reconfigurable partition of
size 20� 15 ¼ 300 slices for an application mapped to 195
slices. Using the mosaic convergence procedure in Algo-
rithm 1, 16 DCs (indexed 1-16) are found sufficient to
achieve one-disjunctness for d ¼ 1 in this example. The
resource grouping defined by a (300; 195; 1)-disjunct
design matrix is shown by the dark blue cells for each
DC. Based on fault detection outcomes after evaluating
all the 16 DCs, the FSR value for each slice is computed.
The highest observed FSR reveals the location of faulty
slice as depicted by the FSR heat map.

To examine the quality of fault isolation using the pro-
posed ranking method, the terms isolation accuracy and fault
coverage are defined as follows:

Definition 5.1. Isolation accuracy is the number of non-faulty
resources that have lower FSR values than all defectives,
divided by the total number of resources.

For instance, given a pool of 1;000 resources having two
defects, an isolation accuracy of 95 percent indicates that
b998� 95%c ¼ 948 of non-faulty resources score lower FSR
values than the two defects.

Definition 5.2. Fault coverage is the proportion of all combina-
tions of faulty resources of size up to f that attain a specified
isolation accuracy.

Fig. 3. Required number of DCs versus resource count for typical values
of f (d ¼ 1).

Fig. 4. Fault diagnosis using the FSRmetric.
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Fig. 5 shows the required number of DCs, g, to reach vari-
ous isolation accuracies and their fault coverage values. The
results also demonstrate how Algorithm 1 progresses
towards the termination criteria, i.e. DR ¼ 100 percent, as g
increases. The resource count T chosen for this analysis
equals 1;000 and disjunction parameters are f ¼ 2 and d ¼ 1.

In this case, 55DCs are sufficient to identify all 1;000
2

� �þ 1;000
1

� �
possible fault locations with 100 percent isolation accuracy.
The value of g can be considerably reduced while maintain-
ing a high isolation accuracy. A reduction of 36:4 percent
(61:8 percent) in g results in a slight decrease in isolation
accuracy of 1 percent (5 percent). This tradeoff between isola-
tion accuracy and number of required tests can be conducted
based on system reliability goals, e.g., the extent sufficient to
achieve fast self-repair. It is important to note again that
these simulation results are collected under the conditions of
reliable tests. It is expected that g is increased to tolerate inar-
ticulate tests whilemaintaining equivalent isolation accuracy
as demonstrated in Section 5.2.

5.2 Inarticulate Operational Testing

In the preceding analysis, we have assumed that a test out-
come generated by a fault detection scheme embedded
within each DC is reflective of the actual health state of
used resources. However, this assumption for functional
testing of digital designs cannot be guaranteed for various
reasons. These include low test coverage due to node’s con-
trollability and observability constraints, common mode
failures, or stuck-at 0 fault conditions in the fault detection
logic. Error-resilient NGT was previously investigated
through probabilistic and theoretical analysis with direct
numerical simulations [37], [38]. In Section 3.2, a discussion
was provided for the classical requirement to obtain f-dis-
junction which states that d must be greater than or equal 1.
As d increases beyond 1, the effect of inarticulate tests on
the decoding procedure can be masked. In the context of
operational testing of reconfigurable hardware, increasing
the disjunction factor d results in an increased number of
alternative DCs. Since resources are sensitized in a diverse
way as the device is reconfigured to different DCs, diversity
among DCs enables a better collective diagnostic coverage

to attenuate the chance of false test outcomes during indi-
vidual tests.

In this work, we study how such an extension affects
fault diagnosis using the proposed ranking scheme. The
described combinatorial construction method given by the
mosaic convergence procedure in Algorithm 1 is also used
to realize design disjunction for d > 1. Fig. 6 shows the
number of DCs for one-disjunctness and selected d values. It
is evident that design disjunction for d > 1 is achieved at
modest linear increase in DC count g. For instance, the case
of 7;000 resources indicates that d can be increased by an
order of magnitude from d ¼ 1 to d ¼ 10 while only roughly
tripling the number of DCs required. In Section 6, we evalu-
ate the effect of increasing d on fault diagnosis for various
case studies in which we compare the isolation accuracy
under the low coverage of operational testing.

5.3 Fault Recovery Using Design Disjunction

The combinatorial characteristics of f-disjunct design matri-
ces add another advantage for design disjunction. The defi-
nition expressed in Eq. (2) implies that any f-disjunct set of
DCs should guarantee that for any possible accumulation of
f faulty resources there exists at least one DC whose
resource set does not include a defective. This implication
should not be considered as the upper bound on the num-
ber of recoverable defectives. Since hardware utilization
ratio R=T can increase or decrease the sparsity of design
matrix, it is possible to guarantee fault evasion for larger
than f defectives. The normal probability pdc nfðdÞ that up
to d defective resources are not used by a DC is given as:

pdc nfðdÞ ¼
Yd
k¼1

1� R

T � k� 1

� �
; d 5 1: (6)

Thus, recovery coverage (RC), defined by the probability of
recovery for g DCs, can be computed for any accumulated
fault count d as:

RCðdÞ ¼ 1� 1� pdc nfðdÞ
� 	g

; d 5 1: (7)

Fig. 5. Isolation accuracy versus g (T ¼ 1;000, f ¼ 2, d ¼ 1).
Fig. 6. DC count for increasing d (f ¼ 1).
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In order to examine the recovery behavior of the pro-
posed method, three sets of f-disjunct designs for f ¼ 1; 2;
and 3 were tested against all possible set of fault locations

GGT
d for varying accumulated fault count d. Fig. 7 compares

simulation results against our model given by Eq. (7).
Recovery coverage on the left vertical axis also indicates the

proportion of GGT
d combinations of defective(s) that were suc-

cessfully evaded by at least one DC. All three disjunct sets
exhibit high fault resilience for fault count d larger than f .

A target recovery rate can be met by choosing the appro-
priate hardware utilization as indicated in Eq. (6). For practi-
cal considerations, the optimal number of DCs for recovery
during the system lifetime can be generated at design-time
and stored in an off-chip flashmemory.The data in the exter-
nal flash memory can be protected using hardware redun-
dancy or error correction schemes in addition to functional
verification by CEDwhich is resident on the FPGA.

5.4 Incidental Disjunction for Interconnect
Fault Tolerance

Contemporary reconfigurable devices utilize hundreds of
thousands of routing points. For instance, Xilinx 7-series
FPGAs fabricated in a 28 nm process allow over 3;500 pro-
grammable interconnect points (PIPs) to be defined in each

switch tile of the device. This presents a significant chal-
lenge for run-time interconnect testing and diagnosis. Spe-
cialized functional testing for interconnects based on output
pattern analysis as in [20] and [39] has been shown to be
effective for diagnosis at the net level of a target design.
However, a net in a design can utilize a considerable num-
ber of PIPs spanning multiple switch tiles that can prolong
the self-repair process. Since allocation of interconnect
resources is precipitated by mapping and placement of logic
resources [40], a design disjunction in the logic fabric has
been demonstrated to also confer significant incidental dis-
junction in interconnect resources. This property effectively
extends fault recovery to routing fabrics as demonstrated in
Section 6.2.

6 EVALUATION

6.1 Evaluation Setup

The proposed work is initially evaluated on a set of MCNC
and ISCAS benchmarks through hardware simulations to
show its applicability to a variety of applications. A modu-
larized AES128 encryption core is selected as a realistic tar-
get application for the hardware prototype. The actual
hardware demonstration is performed on the commercial
Xilinx KC705 FPGA evaluation board. The KC705 board fea-
tures: 28 nm-based Kintex-7 FPGA, 1 GB DDR3 memory,
128MB linear flash memory, and a joint test action
group (JTAG) interface. For hardware simulation, a soft-
ware-based CED scheme is utilized to detect failures during
simulation. Parity-based and DWC error detection methods
are adopted in the hardware prototype. For all case studies,
Xilinx 7-series FPGAs using Xilinx design toolsets are used
to generate disjunct DCs.

The design flow for the evaluation framework is depicted
in Fig. 8. The flow starts from a conventional design in a
hardware description language using Xilinx’s ISE synthesis
tool. The synthesized netlists for target application are
imported to Xilinx’s PlanAhead to generate the physical
implementation of all disjunct DCs. To enable partial recon-
figuration support in the PlanAhead tool, a reconfigurable
partition (RP) must be floorplanned such that it contains T
resources necessary to realize the disjunct DCs. The RP is
interfaced with the static region (SR) outside the RP through
proxy LUTs. All disjunct DCs must use the same proxy logic
for the target application’s input and output ports which is
possible by locking all port sets with the LOC constraint.
Each DC is defined as a distinct reconfigurable module

Fig. 7. Recovery coverage of disjunct DCs (T ¼ 100, R ¼ 30, d ¼ 1).

Fig. 8. Framework of demonstration system.
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(RM) inside the RP. Resource allocation for each RM is dic-
tated by the design matrix constructed for the target applica-
tion according to the design parameters discussed in
Section 4. Resource allocation for each DC is added to the
design flow by defining the placement AREA_GROUP and
CONFIG_PROHIBIT constraints in the user constraints
file (UCF) for each RM. The PlanAhead tool then generates
Xilinx’s native circuit description (NCD) netlist for each RM.

The stuck-at fault (SAF) model is adopted for fault injec-
tion in this evaluation. Fault injection is incorporated into
the flow using Xilinx’s FPGA Editor which can inject SAF
into NCD netlists at any randomly chosen location.
Resource information for generating appropriate fault injec-
tion commands for the FPGA Editor tool are extracted from
Xilinx design language (XDL) netlists. For hardware simula-
tion of each benchmark, a post PAR simulation model is
generated from each NCD netlist before Xilinx’s ISim simu-
lator is invoked to verify functionality of each DC. To drive
each simulation case, a subset of random inputs generated
from a uniform distribution are used to mimic run-time
operational inputs. It is worth noting that operational test-
ing using concurrent error detection schemes employs a
functional fault model (FFM) which encompasses SAF and
a wide range of failure modes that can alter application
functionality.

The considered AES encryption core for the hardware
prototype is comprised of non-linear substitution boxes, a
key expansion and addition units, and other logic blocks for
shifting and mixing columns of the state matrix where input
words are arranged. The AES core is decomposed into eight
modules each of which has its own embedded error detec-
tion domain. Fig. 9 shows a block diagram for the hardware
demonstration system on the KC705 FPGA board. Error
detection schemes for the AES modules are derived mostly
from [41]. An embedded MicroBlaze processor orchestrates
execution flow of fault recovery and diagnosis, and consti-
tutes a golden element in this prototype. Partial reconfigura-
tion (PR) using the internal configuration access port (ICAP)
is utilized for partial reconfiguration to minimize reconfigu-
ration overhead. Xilinx provides the AXI_HWICAP IP core
and a set of basic library functions supplied with the
Xilinx’s software development kit (SDK) that are used to

control partial reconfiguration via the ICAP at the system
level. The advanced extensible interface (AXI) bus system is
used to interface the processor with the ICAP, memory
interfaces, RPs, and other IPs used in the prototype.

Design disjunction is evaluated on the hardware plat-
form using high-resolution image data which reside in the
external DDR3 during the recovery process. A hardware
timer is attached to the developed system bus to accurately
capture system throughput and processing time of fault
diagnosis flow. Xilinx’s IPs which form the processing
system (PS) including the MicroBlaze core, memory and
communication interfaces, and ICAP reconfiguration logic,
reside in the SR of the device. Partial reconfiguration is inte-
grated in this prototype by defining a distinct RP for each
AES module. Disjunct RMs are then defined and added for
each RP. The design flow of the hardware prototype is
extended from the implementation steps of experimental
simulation. The static bitfile for the SR and partial bitfiles
for each RP are obtained from the NCD netlists using
the Xilinx’s BitGen tool. The software module running
on the embedded processor developed for the prototype
using the Xilinx’s SDK is combined with the static bitfile
using Xilinx’s Data2MEM tool before programming the
FPGA board through its JTAG interface. Partial bitfiles for
all RPs are stored in the off-FPGA flash memory chip before
the evaluation begins. When partial reconfiguration is
required, the embedded MicroBlaze processor moves each
partial bitstream in the flash memory to the DDR3 memory
before being written by the ICAP.

The evaluation process including resource allocation for
design disjunction, fault injection, and simulation, is carried
out by a Python-based software module that automates
design and simulation tasks by invoking all required Xilinx
tools through external system commands. The Python mod-
ule also parses post PAR design files to extract delays and
build a slice-level netlist using a net connectivity graph
with associated functionality and routing resource informa-
tion. This netlist is used to examine the recovery rate in rela-
tion to logic resources and PIPs.

6.2 Design Parameters and Results

For each MCNC and ISCAS benchmark, two f-disjunct sets
of DCs are generated for f ¼ 1 and f ¼ 2. Table 2 lists the
isolation accuracy results averaged over 1;000 experimental
runs on all benchmarks for f ¼ 1 and f ¼ 2. Results include
the 95 percent confidence interval (CI) and the area require-
ments indicated by parameters R and T . In this evaluation,
T values are selected such that the area overhead T=R 	 2
and T=R 	 3 for f ¼ 1 and f ¼ 2, respectively, to demon-
strate adaptation to various design parameters. The execu-
tion time of the mosaic convergence algorithm, denoted by
tmc, to generate the (T ,R,f)-disjunct design matrix for each
benchmark is also included. For this evaluation, design dis-
junction for each benchmark is realized using d ¼ 1 to
observe the effect of inarticulate operational testing on fault
isolation. As discussed in Section 4, the execution time of
the mosaic convergence algorithm depends largely on T

and size of GGT
f . The average execution time of the algorithm

for the application set examined in this evaluation is
89:8 ms (61:1 s) for f ¼ 1 (f ¼ 2). Table 2 also shows that the

Fig. 9. Block diagram of hardware demonstration system.
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average isolation accuracy over all benchmarks for
f ¼ 1 (f ¼ 2) is 96:4 percent (94:4 percent). Although the
obtained isolation accuracy results are still promising, it is
evident that design disjunction for d > 1 is needed to over-
come the impact of low test coverage. Test coverage also
depends on the quality of input test patterns, a higher isola-
tion accuracy can be achieved if specialized high-coverage
test patterns generated by conventional ATPG tools at
design-time are used at run-time.

Design disjunction for d > 1 is also evaluated to demon-
strate feasibility to reach optimal fault isolation under inar-
ticulate testing. Table 3 shows how design disjunction for a
moderate increase in disjunction factor d results in a greater
than 99 percent isolation accuracy for all selected bench-
marks. The three selected benchmarks include the misex3
benchmark which gives the worst combined isolation accu-
racy for f ¼ 1 and f ¼ 2 using d ¼ 1. Nevertheless, isolation
accuracy exceeding > 99 percent given by the upper 95 per-
cent CI is reached using d ¼ 5. A diminishing return in
improving isolation accuracy is also observed as d increases.
Thus, the range 14d411 can be chosen for an optimal
tradeoff between isolation accuracy and g. A linear depen-
dency of g on d is also observed that is consistent with the
analysis provided in Section 5.

Fig. 10 reports fault recovery results for the exhaustive
fault coverage evaluation on logic and PIPs for f ¼ 1 and
d ¼ 1. The design parameters for these benchmarks are

similar to those listed in Table 2. It is evident that design
disjunction allows the ratio of shared PIPs among DCs to be
much lower than that of logic resources. This is attributed to
the PAR mechanism in the FPGA tool and its reaction to the
diverse logic realizations. Also, it translates into an increase
in the likelihood of finding at least one DC that avoids all
faulty resources as confirmed here for logic slices and PIPs.

To observe the impact of design disjunction on applica-
tion performance, the timing slacks along critical paths of
all DCs are compared to the total slack of baseline design
for each benchmark. The baseline design is the conventional
physical implementation of an application inside its dedi-
cated RP without resource constraints. For typical imple-
mentation, PAR algorithms search for the best placement
and routing to meet timing constraints. Total slack s is given
by post PAR timing reports as follows:

s ¼ ttarget � ttotal ¼ ttarget � ½tcp � tcps þ tcu�; (8)

where ttarget is target clock period, ttotal is total delay, tcp is
critical path delay, tcps is clock path skew, and tcu is clock
uncertainty. ttarget is set such that the total slack of baseline
design is 2 ns. Figure 11 shows s and tcp data for each bench-
mark. The average increase in tcp compared to the baseline
design is 1:49 percent and the average decrease in the ratio
of the total slack to the total delay is only 1:78 percent. It is
also observed that the top-performing DC can be slightly

TABLE 2
Isolation Accuracy Results (d ¼ 1)

f ¼ 1 f ¼ 2

Isolation Accuracy (%) Isolation Accuracy (%)

Benchmark R T g tmc m 95% CI T g tmc m 95% CI

Circuit (ms) lower upper (s) lower upper

alu4 73 144 15 41 96.86 96.07 97.65 198 41 12.74 95.78 93.89 97.67
c880 16 30 10 7 95.80 93.85 97.75 45 25 0.057 95.56 93.54 97.57
misex3 103 198 15 98 91.73 89.28 94.18 286 44 51.7 88.16 84.34 91.99
exp5 22 40 11 9 97.17 96.28 98.07 66 29 0.161 93.42 90.19 96.64
vda 43 84 14 13 98.32 97.15 99.50 119 35 1.97 97.13 95.12 99.15
c6288 139 256 15 211 99.14 98.53 99.75 390 48 174.7 97.01 94.69 99.33
seq 132 252 15 205 91.71 89.69 93.74 385 47 170.3 89.90 86.49 93.32
apex4 70 136 14 31 98.56 97.75 99.37 204 41 14.7 97.40 95.87 98.94
des 146 275 16 262 97.31 96.26 98.35 391 48 179.8 92.67 89.55 95.79
c3540 58 112 14 21 97.66 96.31 99.01 162 38 5.97 96.67 95.16 98.19

average – – – 89.8 96.43 95.11 97.74 – – 61.12 94.37 91.88 96.86

TABLE 3
Isolation Accuracy versus d for Selected Benchmarks (f ¼ 1)

misex3 c3540 alu4

Isolation Accuracy (%) Isolation Accuracy (%) Isolation Accuracy (%)

d g tmc m 95% CI g tmc m 95% CI g tmc m 95% CI

(ms) lower upper (ms) lower upper (ms) lower upper

1 15 98 91.7 89.3 94.2 14 21 97.7 96.3 99.0 15 41 96.9 96.1 97.7
3 25 146 96.4 94.7 98.0 23 43 99.7 99.5 99.9 26 75 99.7 98.4 99.5
5 36 201 97.7 96.0 99.4 33 59 99.8 99.7 100.0 34 101 99.7 99.5 99.9
7 46 281 98.8 97.6 100.0 42 79 99.9 99.8 100.0 44 142 99.8 99.7 100.0
9 55 339 98.9 98.0 99.7 51 123 100.0 99.9 100.0 53 179 100.0 100.0 100.0
11 65 426 99.3 98.5 100.0 – – – – – – – – – –
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faster than the baseline design due to the stochastic nature
of placement and routing algorithms which does not guar-
antee convergence to the optimal solution, or due to random
variation of the timing of logic resources [42].

Table 4 lists design parameters, execution time to realize
the design matrix, error detection method, and size of
partial bitstream for each distinct AES module shown in
Fig. 9. A failure in any module triggers the embedded pro-
cessor to execute diagnosis and recovery service routines.
Initially, transient and permanent failures are undistin-
guished. Thus, articulating inputs are re-issued to ascertain
if reconfiguration scrubbing can resolve possible SEUs. If
discrepancies persist, then DCs of the respective RP are
configured to the FPGA through the ICAP. Reconfiguration
occurs while using application throughput to stimulate test
sequences and maintain availability. The evaluation win-
dow for this prototype is set to 1;000 blocks which can be
adapted to maintain a desired throughput rate. If the fault
detection signal is asserted at any time within the evaluation
window, the fault isolation flow will continue by loading
a subsequent DC. The feedback from the fault detection
logic is captured by the processor where diagnostic data
are decoded to identify faulty resources and the optimal
resilient DC based on the ranking scheme described in
section 5.1.

Figs. 12a and 12b show the outlier behavior for FSR and
CFSR ranking metrics, respectively, for 15 test cases. For
the sake of comparison, FSR and CFSR values for each test
case are normalized from 1 to 10. Each test case is conducted
by first selecting an AES module at random and then inject-
ing a SAF at a randomly chosen LUT input. Fig. 12a depicts

the top 50 resources in ascending order of FSR for each of
the 15 test cases. The defective resources indicated by the
red dots rank the highest in FSR with a considerable differ-
ence to their next lower ranking resources. The normalized
CFSR values for DCs for the 15 test cases depicted in
Fig. 12b show that faulty DCs accumulate higher CFSR val-
ues. Thus, the DC ranking the lowest CFSR for each test
case is selected as the optimal fault-resilient candidate DC
for recovery.

Fig. 12c shows the encryption time of the AES core dur-
ing fault-handling routine for a selected test case. The test
procedure is triggered after injecting a SAF at a randomly
chosen LUT input in one of the 32-bit s-boxes. At the begin-
ning, DC14 is deployed during fault occurrence. The fault
recovery procedure reconfigures the device with the partial
bitfile of DC14 to rule out SEUs. Since discrepancies persist,
diagnosis flow continues by testing the remaining 23 DCs.
Execution time is given per 100 plaintext blocks. The
encryption core throughput is mainly impacted by the par-
tial reconfiguration overhead tpr ¼ 4:58 ms and the latency
of post-testing decoding phase td ¼ 6:14 ms. The entire diag-
nosis flow completes in a millisecond-order time. Fault
recovery is achieved after the second test using DC2 which
can be kept in service to maintain availability during time-
critical events. The fault diagnosis flow can continue as
shown until all DCs are evaluated so that the locations of
damaged resources and DC for recovery are determined.
Since design disjunction is realized using d ¼ 3 for the hard-
ware prototype, the inarticulate tests of DC12 and DC19

have no impact on the trends given by FSR and CFSR. The
obtained optimal resilient DC in this test case is DC6 which
is deployed to guarantee sustained recovery.

Fig. 10. Fault recovery coverage (f ¼ 1, d ¼ 1).
Fig. 11. Effect of design disjunction on system performance.

TABLE 4
Design Parameters for AES Modules

Module R T d g tmc(ms) Bitstream Size Detection Scheme

32-Bit s-boxes 60 119 3 24 41 Parity-based [41]
Mix Columns & Add Round Key 55 111 3 24 39 57.9 KB
128-bit Rotate/Rcon Logics for Key Expansion 52 102 3 23 32 DWC
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7 COMPARISON OF DESIGN DISJUNCTION AND

MODULAR REDUNDANCY

Modular redundancy using anNMRmethod is themost com-
mon form of hardware redundancy to tolerate failures. NMR
methods can be realized using commercially-available and
academic design tools such as Xilinx TMR (XTMR) and BYU-
LANL TMR (BL-TMR), respectively. NMR employs N repli-
cas and majority voting which masks failed modules by
selecting a majority output. The area and power overheads of
this scheme are approximately ðN � 1Þ-fold including over-
heads incurred by voting logic. A single failure in a module
can render that module unusable which compromises failure
recoverability besides pre-determining resource use. Failure
recoverability, denoted by FR, is defined as the cumulative
sum of recovery coverage for all possible combinations of
fault locations. This definition can be expressed for a given
fault count d as:

FR ¼
XT
d¼1

RCðdÞ: (9)

Let Am be the minimum resource count required to
implement a single module and mf be the number of failed
modules, then recovery coverage for NMR scheme denoted
by RCNMR is computed as follows:

RCNMRðdÞ ¼
jfx 2 GT

d s:t: mf 4 bN�1
2 cgj

jGT
d j

: (10)

For NMR systems where N ¼ 3 and N ¼ 5, RCNMR can

be given as 3 � jGAm
d j=jGT

d j and ½10 � jG2Am
d j � 15 � jGAm

d j�=jGT
d j,

respectively. Fig. 13a compares the FR of the proposed
work with that of NMR. The area overhead of design dis-
junction in this comparison includes the overhead of CED
based on DWC. Both redundancy methods achieve a linear
increase in failure recoverability as more redundant resour-
ces are added; however, design disjunction offers a higher
linear increase. Designing for a higher disjunction factor d

increases g which proportionately results in a higher RC as
given by Eq. (7) and thus improves FR.

As depicted in Fig. 13a, due to the provision of fine-
grained resource allocation and relocation by design dis-
junction, a higher FR compared to NMR schemes can be
obtained for the same area overhead. For instance, with a
similar area overhead to TMR, design disjunction achieves
83:6 percent (143:3 percent) increase in FR over TMR for
d ¼ 1 (d ¼ 7). Similarly, design disjunction can provide a
comparable FR to that of TMR using a considerably lower
area overhead. Fig. 13b reflects the area efficiency of the pro-
posed work compared to modular redundancy. Area effi-
ciency is quantified by the ratio of FR to the total resource
count T . Similar to modular redundancy methods, a dimin-
ishing return on FR occurs as more hardware resources are
considered. The resultant area advantage from using design
disjunction is more prominent for larger area overhead. For
the lowest design setting, i.e., f ¼ 1 and d ¼ 1, design dis-
junction still enables a higher FR per area than any NMR
setup included in this analysis. It is also worth noting that

Fig. 12. Execution of isolation phase on an AES module.

Fig. 13. Area efficiency of design disjunction.
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the area advantage of design disjunction can be further
enhanced by using parity-based error detection instead
of DWC.

The proposed approach can be applied at the reconfigur-
able logic block level with a broadened range of design
parameters to meet area and power constraints while main-
taining both adequate fault isolation and recovery. The area
overhead imposed by design disjunction is roughly limited
to T=R, where R includes the resources required to deploy
a CED scheme. Other components such as the embedded
processor and memory controller are often present in
embedded reconfigurable systems, and thus do not incur an
additional area cost. The reliability of these components
falls within the scope of embedded system reliability and
can be protected by appropriate techniques [43]. The
reconfiguration structure is not limited to ICAP. For
instance, Xilinx has recently introduced processor config-
uration access port (PCAP) interface [44] for ARM-based
systems to write configuration bits. Design disjunction is
realized without loss of generality by the regularity and
reconfigurability features of the FPGA device used. Since
these features are ubiquitous in contemporary reconfigur-
able devices, the proposed approach can be highly com-
patible with many FPGA families from different vendors
and other classes of reconfigurable ICs, such as complex
programmable logic devices (CPLDs).

8 CONCLUSION

Design disjunction offers a mathematically-rooted, parame-
terized, multi-fault isolation and recovery technique for
reconfigurable hardware fabrics. Combinatorial construc-
tion methods for disjunction and failure ranking schemes
for fault diagnosis are developed using operational testing
techniques. Experimental results for a set of benchmarks on
a Xilinx 7-series FPGA have demonstrated f-diagnosability
at the individual slice level with a minimum average isola-
tion accuracy of 96:4 percent (94:4 percent) for f ¼ 1 (f ¼ 2).
An algebraic-based extension was also developed to tolerate
inarticulate tests and increase isolation accuracy to any level
deemed adequate for successful recovery and repair. Based
on these favorable properties and low costs, design disjunc-
tion is worthy of consideration for autonomous resiliency in
reconfigurable systems demanding high availability.
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