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Abstract—Container technology is increasingly adopted in cloud environments. However, the lack of isolation in the shared kernel
becomes a significant barrier to the wide adoption of containers. The challenges lie in how to simultaneously attain high performance and
isolation. On the one hand, kernel-level isolation mechanisms, such as seccomp, capabilities, and apparmor, achieve good performance
without much overhead, but lack the support for per-container customization. On the other hand, user-level and VM-based isolation offer
superior security guarantees and allow for customization since a container is assigned a dedicated kernel, however, at the cost of high
overhead. We present vKernel, a kernel isolation framework. It maintains a minimal set of code and data that are either sensitive or are
prone to interference in a virtual kernel instance (vKI). vKernel relies on inline hooks to intercept and redirect requests sent to the host
kernel to a vKI, where container-specific security rules, functions, and data are implemented. Through case studies, we demonstrate that
under vKernel user-defined data isolation and kernel customization can be supported with a reasonable engineering effort. An evaluation
of vKernel with micro-benchmarks, cloud services, real-world applications show that vKernel achieves good security guarantees, but
with much less overhead.

Index Terms—container, kernel, isolation, performance.
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1 INTRODUCTION

CONTAINERS, also known as operating system (OS)-
level virtualization, are increasingly adopted in data

center management due to their high performance com-
pared to hypervisor-based virtualization, i.e., virtual ma-
chines (VMs) [1]. While OS-level virtualization offers near-
native performance, it does not provide adequate isolation
between containers since all on one host share the same
OS kernel [2]. The weak isolation has been shown to affect
both the security and performance of containers in shared
environments [3]. On the one hand, the ability of containers
to directly access the shared kernel opens up opportunities
for attackers to cause information leakage [4], privilege
escalation [5], and denial of services [6]. On the other hand,
sharing the host kernel not only leads to contentions on
shared data structures that cause performance interference
but also disallows application-specific customizations or
optimizations to the kernel [7]. The lack of isolation in the
shared kernel has become a barrier for container adoption
in new computing paradigms [8], such as serverless [9].

As shown in Figure 1, there exist several mechanisms for
inter-container kernel isolation. One approach is to deploy a
dedicated kernel different from the host kernel in each con-
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Fig. 1: The comparison of kernel isolation approaches

tainer. Since containers share nothing with the host kernel or
other containers, kernel separation offers superior isolation.
VM-based kernel separation deploys each container to a
separate VM running a full-fledged guest kernel. While VM-
based isolation provides strong protection and compatibility
to legacy applications, it requires a virtual machine monitor
(VMM) to expose virtualized hardware to guest kernels,
resulting in a larger per-container resource footprint and
slower startup times. Lightweight VMs, such as Kata [10]
and Firecracker [11] devise a minimal guest kernel and
VMM to reduce the memory footprint of containers but still
incur non-negligible overhead compared to native contain-
ers due to the additional layer of indirection at the VMM.
Application or user-level kernels, such as gVisor [12], [13],
intercept application system calls to create a system interface

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TC.2024.3383988

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



2

similar to the host kernel without the need for hardware vir-
tualization. However, request interception inevitably causes
excessive context switches and hence substantial overhead.

Another approach to kernel isolation is to leverage the
existing resource management and security mechanisms in
the OS kernel, such as cgroups, namespaces, capabilities [14],
seccomp [15], and apparmor [16], to provide containers with
segregated views of system resources and restrict their
accesses to system calls, privileged functions, and sensitive
files. While this approach achieves near-native performance
due to its tight coupling with the host kernel, it does not pro-
vide adequate isolation or allow applications to customize
kernel configurations or policies. To avoid the cost of request
indirection, such as context switches, unikernels [17], [18],
[19] are proposed to run a container and the guest kernel
in the same address space. Although this approach helps
mitigate the overhead, it requires significant engineering
efforts to port legacy applications to unikernels.

This paper proposes, vKernel, a kernel isolation frame-
work for containers. Unlike the existing approaches that
main separate kernels for a container and the host, vKernel
maintains a minimal set of private code and data for each
container that is necessary for isolation while shares the
remaining with the host kernel. The private code and data
includes that involved in the existing kernel security checks,
such as system calls, as well as functions and data that
cause interference between containers. At heart, vKernel
relies on inline hooks to intercept and redirect requests sent
to the host kernel to a vKernel instance (vKI), a Rust-based
kernel module where a container-specific system call table,
capabilities, file permission lists, and other user-defined
functions and data are implemented and stored. The vKI
can be dynamically loaded and updated as a kernel module
and is independent from the host kernel. We demonstrate
that vKernel supports the same types of security checks
the existing kernel security mechanisms offer but with less
overhead. We further showcase how users can customize
vKernel to improve data isolation in the commonly-used
futex system call, enable different configurations of shared
kernel parameters, and support customized scheduling that
only takes effect in a particular container.

This paper makes the following contributions:
• A comprehensive study of the existing kernel isolation

approaches and identify their limitations on usability,
performance, and specialization.

• A novel kernel isolation framework that allows indi-
vidual containers to maintain private code and data for
stronger, customizable, and more efficient isolation.

• An evaluation of vKernel with micro-benchmarks,
cloud services, real-world applications, case studies on
user-defined isolation and customization, and several
recently reported vulnerabilities shows the effective-
ness and efficiency of vKernel.

2 BACKGROUND AND MOTIVATION

Container isolation has recently attracted much attention
in industry and academia due to not only security but
also a growing concern of performance interference among
containers. An analysis of the Alibaba cloud trace [20]
found that only 1.63% of the servers run one container per

node while more than 80% of the servers run more than 6
containers. The lack of isolation in native containers, such
as Docker, impedes high-density container deployment due
to inter-container interference on the shared host kernel. In
what follows, we discuss the limitations of user-level ker-
nels, VM-based kernel isolation, and the existing isolation
in the Linux kernel.

2.1 User-level Kernel Isolation
Kernel isolation at the user-level redirects the requests to the
host kernel to the application-specific kernel implemented
at the user-level. The key to redirecting user-level requests
and the major source of overhead is to intercept requests
to the host kernel. Among a variety of mechanisms for
request interception, ptrace is a tracing technique widely
used to implement user-level OS kernels. In ptrace, one
process (the “tracer”) observes and controls the execution
of another process (the “tracee”). A tracer can emulate
an entire foreign kernel with mutated system calls. The
popular user-level kernel framework gVisor uses a sentry
process to trace application processes. System calls issued by
application processes are intercepted by PTRACE_SYSEMU
and handled by the sentry process. Sentry emulates most
system calls and replaces the native system call with a user-
level implementation. It also redirects I/O operations to a
file proxy and implements task scheduling using Go.

While user-level kernel isolation achieves strong data
isolation, it suffers from high context switch and user-kernel
mode switch overhead. Ptrace requires multiple context
switches between the tracer and the tracee and gVisor may
incur additional context switches due to I/O redirection and
task scheduling.

2.2 VM-based Kernel Isolation
An alternative way to kernel isolation is to host containers
in separate VMs, each running a dedicated guest kernel.
VM-level kernel isolation offers strong protection between
containers as it is difficult for malicious users to escape
the guest kernel and compromise the host kernel or the
hypervisor. Although there have been significant efforts
dedicated to optimizing VMs to reduce virtualization over-
head and memory footprint, lightweight VMs, such as
those employed in Kata [10] and Firecracker [11], still incur
non-negligible overhead compared to native containers. X-
container [21] uses a unikernel as the guest kernel to further
close the performance gap. However, it requires a significant
engineering effort to port legacy applications to unikernels
and hence unikernel-based VM isolation is not readily avail-
able in production systems.

2.3 Isolation mechanisms in the Linux Kernel
The existing container isolation mechanisms in the Linux
kernel are based on isolated resource views and secu-
rity checks. Namespaces provide containers with isolated
views of process IDs, file systems, and network interfaces
while cgroups impose hard and soft limits on container
resource allocation. Security checks, which are often based
on a user-provided security profile, restrict container access
to specific system calls, privileged code, and sensitive files
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Fig. 2: The performance of system calls w and w/o seccomp.
The number in the parenthesis is the system call ID.

according to either a white or black list. Neither the isolated
resource view nor the access control imposed by security
checks can provide adequate performance isolation between
containers that make legitimate requests.
Seccomp is an eBPF-based system call filtering mechanism.
It implements fine-grained restrictions over dangerous sys-
tem calls before the actual system calls are invoked. Users
define a system call white-list through a seccomp profile,
and the container engine loads the seccomp filter generated
based on the profile to the host kernel. The seccomp filter
applies to all processes belonging to a container. Once the
container invokes a system call, the BPF interpreter inter-
cepts the request and executes the corresponding seccomp
filter. The seccomp filter checks whether the system call is
in the white-list and if the arguments for the call meet pre-
defined requirements. The filters return the signal “KILL”
if the requested system call is excluded from the white-list
and return “ERRNO(1)” if the parameters are invalid. Signal
“ALLOW” lets the container invoke the requested system call.
With the help of seccomp, containers are restricted to access
a few predetermined system calls that are deemed safe.

However, seccomp has several limitations. First, BPF
does not support dynamic memory allocation in construct-
ing the filter and hence seccomp has to statically write the
rules for system call check into an eBPF program. As the
eBPF filter is a generic program that is executed whenever
a system call is invoked, the filter program has to check
the invoked system call sequentially. The sequential check
incurs increasing overhead to system calls that reside at
the bottom of the profile. To quantify the overhead, we
wrote a micro-benchmark that repeatedly invokes various
system calls with different system call IDs for 10 million
times and measured their invocation time with and without
seccomp enabled. As shown in Figure 2, seccomp introduces
non-negligible overhead to system call invocations and the
performance slowdown ranges from 10% to 55.5%.
Capability is a permission check mechanism for privileged
functions in the Linux kernel. Capability works at a per-
process level and compares a process’ capabilities with
the privilege level of the functions it intends to invoke. A
process may possess multiple capabilities but the effective
capability is the one that takes effect. Upon a function call,
the Linux kernel performs the permission check by invoking
capable() to check the permission bits in a process’ effec-
tive capability against the function. Since capability check is
a bit operation, it does not cause noticeable overhead.

However, Capability works at the process-level based on
inheritance rather than at the container-level. Therefore, if
a process escapes the permission check by tampering with
its effective capability, it can bypass the security checks
imposed by its host container. For example, a possible way

TABLE 1: Shared kernel data structures and parameters.

Data structures syscalls Kernel parameters syscalls
dentry hashtable 79 overcommit memory 45
mount hashtable 67 tainted 34
mm percpu wq 7 nr open 19

system unbound wq 7 max map count 14
kblockd workqueue 5 vfs cache pressure 13

system power efficient wq 3 wmem default 8
idents hash 2 rmem default 7

mountpoint hashtable 2 protected symlinks 5
futex queues 1 protected fifos 4

to escape is to invoke commit creds() in the kernel, which
rewrites the process’s effective capability [22], [23]. Once the
process obtains full capabilities, the isolation enforced by
the Capability mechanism fails.
Apparmor restricts programs’ access to sensitive files based
on path-based access check. Only the matched paths in a
white-list are allowed to be accessed. An example apparmor
profile (black list) may deny any write access to files in
folders /proc and /sys as those operations could alter
system-wide configurations affecting other containers. At
container startup, the container engine loads the profile, and
apparmor analyses the profile and generates a deterministic
finite automation engine, which verifies on every file access
whether the request violates the paths denied in the profile.

Compared to seccomp and capability that use white lists
for security and permission checks, Apparmor uses a black-
list to check file access. Since Apparmor lacks the aware-
ness of containers and files associated with them, every
file access, including those to sensitive and non-sensitive
files, needs to go through Apparmor check. This inevitably
introduces slowdowns to overall file system performance.
We used a micro-benchmark to resolve 10 millions file paths
and tested the completion time with and without Apparmor
enabled. Results show that apparmor incurs a consistent
overhead ranging from 11.5% to 22.2% on all file accesses.
Strengths and weaknesses The three discussed security
mechanisms are executed in the host kernel whenever a
container enters the kernel mode and hence do not suffer
from the request interception and redirection overhead as
do in user-level kernels and VM-based isolation. However,
they share some common weaknesses: 1) Whitelisting and
blacklisting-based kernel-level isolation are not as strong
or flexible as approaches that maintain separate kernels for
containers. Whitelisting can be overly restrictive and black-
listing is not effective against unknown threats. Most im-
portantly, except for the security check, there is no physical
isolation between containers, which may lead to evasion of
the permission check. 2) The existing security mechanisms
fall short of supporting container-specific kernel customiza-
tion or 3) data isolation among containers.
Lack of data isolation. Many kernel data structures are
allocated at kernel initialization and globally shared in the
kernel space. This allows for fast memory allocation and
deallocation as well as facilitating data reuse. Typically,
these data structures are allocated from fixed sized memory
blocks, which cannot be expanded after kernel boot. Perfor-
mance interference due to such shared data structures can
manifest in two ways. First, concurrent updates to shared
data can lead to severe contentions on locking, which can
lead to drastic performance degradation. Second, contain-
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(a) futex (b) dcache

Fig. 3: Slowdown due to contentions in futex and dcache.
The suffix in stat indicates the depth of file paths.

ers may unintentionally or intentionally exhaust the fixed
memory blocks needed for shared data and cause denial of
services or out-of-memory errors. We used the Linux system
called fuzzer system [24] to monitor data accesses to shared
kernel structures from all Linux system calls as shown
in Table 1. Dentry_hashtable and mount_hashtable,
which are lock-protected and allocated from a fixed pool of
memory, can be accessed from more than 60 different system
calls. Similarly, we also identified several kernel parameters
that are commonly referenced in many system calls with
overcommit_memory as the most referenced parameter.
The existing container isolation mechanisms in the kernel
do not isolate the shared data structures or parameters.

To demonstrate the sophistication of data isolation and
the severity of performance interference, we examined the
sharing of the futex_queues structure in system call
futex. Threads that fail to acquire a lock are placed in
a sleep state in the futex_queues where threads from
different containers may collide in the same bucket. There
are a slew of implications of performance interference be-
tween threads in the same bucket, including the order
of wakeup, the selection of CPUs to execute the threads
after wakeup, and data locality. To show the severity of
the problem, we placed threads from two containers in
the same futex_queues bucket and measured one con-
tainer’s performance of futex operations as the number
of threads in another container that occupied slots in the
futex_queues bucket gradually increased. Figure 3 shows
as much as 167.6% performance slowdown as interference
ramped up. Experiments with the ls and stat file opera-
tions also show significant performance degradation due to
contentions from colocated containers.

3 VKERNEL: DESIGN AND IMPLEMENTATION

Overview. To simultaneously achieve data/performance
isolation, kernel customization/specialization, and low
overhead, we propose vKernel, a generic container isola-
tion framework. Unlike the existing kernel isolation mech-
anisms, vKernel enhances isolation by maintaining private
copies of sensitive code (e.g., system calls and privileged
functions) and shared data that may cause interference (e.g.,
files and kernel data structures), and kernel configurations
into a per-container vKernel instance (vKI). Note that vKernel
does not seek to improve security and isolation beyond user-
level kernels and VM-based kernel isolation. The objective
is to achieve similar strong isolation with a minimal set of
private code and data and without the high cost of duplicat-
ing kernels in each container. vKernel begins with isolating
sensitive code and data identified by seccomp, capability,

TABLE 2: Comparison of LKM with eBPF

features LKM eBPF

Usability
memory allocation ✓

kernel function access ✓ limited
kernel function hook ✓ hard

safety
program verifier ✓

runtime isolation ✓

and apparmor and uses a security profile to specify them.
Furthermore, vKernel allows users to define customized
isolation rules and kernel configurations for each container.

Figure 4 shows the vKernel design. vKernel consists
of a container runtime (runvk), a vKernel builder (vkernel-
builder), a system-wide vKernel manager (vKM), and per-
container vKernel instances (vKI). runvk is modified from
the widely-used container runtime (runc), which is respon-
sible for loading, updating, and unloading vKIs for con-
tainers, and registering the container and its corresponding
vKI in vKM. runvk is consistent with OCI (Open Con-
tainer Initiative) specifications, ensuring compatibility with
existing container development tools. Users simply need
to select runvK as their runtime when creating contain-
ers with container development tools such as Docker, or
container orchestration tools like Kubernetes. vkernel-builder
analyzes container security profiles, verifies the safety of
the vKI code, and finally generates a loadable module
(vKI.ko). Notably, as shown in the table2, eBPF does not
support memory allocation, can only access limited kernel
functions, and is hard to hook kernel functions, therefore
loadable kernel module is more suitable for vKernel. vKM
is a loadable kernel module responsible for redirecting con-
tainer kernel requests to corresponding vKIs. It relies on
inline hooks to intercept system call and privileged function
invocations. vKI is also a kernel module loaded when a
container is launched and bound to the container based
on the container’s PID namespace. Both vKM and vKI are
implemented using the rust language to ensure code safety.
vKernel strikes a good balance between performance and
isolation. Unlike VM-based methods that employ an addi-
tional kernel to achieve full isolation, vKernel only isolates
the necessary data and code for container execution without
redundant isolation, resulting in lower performance over-
head. Compared to traditional Docker Runc, vKernel offers
more comprehensive isolation that can achieve parameter
isolation and code customization.

3.1 vKernel Builder

vKernel Builder (vkernel-builder) is a rust-based, automatic
tool for building user-customized vKI. vkernel-builder by
default uses a security profile that restricts container access

Fig. 4: The architecture of vKernel
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to system calls, privileged functions, and sensitive files, as
in seccomp, capacity, and apparmor. It also allows users to
specify kernel code, data, and configuration to be included
in a vKI. The output of vkernel-builder is a loadable rust
kernel module vKI.ko if vKI passes rust compilation and
contains no unsafe code. Note that vKI.ko can be reused
for any containers sharing the same isolation requirement.
Since building a vKI is done offline, it does not add any
delays to container startup.

3.2 vKernel Manager
The responsibility of vKM is to intercept kernel requests,
such as system calls and privileged functions, issued by
a container and redirect them to the corresponding vKIs
based on a hash table. At boot time, the host OS loads
vKM as a loadable kernel module, which registers inline
hooks for the default security checks and user-defined
isolation. Note that vKM does not use the existing in-
kernel monitoring hook mechanism (ftrace) due to its
high indirection overhead. Instead, vKM uses inline hooks.
It first looks up the addresses of the functions that need to
be redirected and then builds a stub function by invoking
text_poke to redirect them to new function implemen-
tations in vKM. Figure 5 shows examples of hooking the
system call interface do_syscall_64, the entry function
of the dentry cache d_hash, and the function that manages
memory over-commitment vm_enough_memory. When the
tracer function is invoked in the container, the request
is redirected to registered call-back functions, e.g., replac-
ing do_syscall_64 with vkm_do_syscall_64. The call-
back functions invoke the corresponding implementations
of the intercepted functions in a container’s vKI.

3.3 vKernel Instance
A vKernel instance (vKI) is a per-container rust kernel
module responsible for container-specific security checks,
data isolation, and user-defined customization. As vKI has
its own code and data, it essentially serves as a minimal
virtualized interface on top of the shared host kernel. With
the help of vkernel-builder, users can define profiles
based on their requirements and generate a vKI, i.e., a
container-specific vki.ko. The profile specifies what sys-
tem calls, privileged functions, and files the container is
allowed to access as well as user-defined data isolation
and other resource management policies. vKM stores the
pairs of a container’s PID namespace and a pointer to its
corresponding vKI in a hash table. Note that a vKI can be

Fig. 5: The inline hooks in vKM

updated without restarting the container. A newly loaded
vKI can be bound to the container’s namespace, replacing
the existing vKI, and subsequently become effective for the
container. In what follows, we explain how vKI achieves
more efficient isolation for system calls, permission checks,
and file accesses as in seccomp, capability, and apparmor.
System call isolation. Linux kernel saves the ad-
dresses of all system calls in a global system call table
(sys_call_table) and locates the implementation of a
system call based on its ID. As the system call table is
shared among all containers in a host, the existing se-
curity mechanisms for system call permission check, e.g.,
seccomp, use a permission filter to check a request system
call against all calls in the table until a match is found.
Contrary to this design, vKI keeps a private system call
table vki_sys_call_table for each container, which only
contains the system calls the container is allowed to access.
The entries for all other system calls are marked as NULL in
the private system call table, which will be denied by a KILL
signal. The per-container private system call table ensures
that the permission check can be completed in constant time
regardless of the call ID.
Privileged function isolation.

For capability, if a process obtains elevated capabilities
by exploiting the existing vulnerabilities of the kernel, it
can evade the permission check. Inspired by the secu-
rity isolation in VMs which leverages malicious processes’
unawareness of hardware virtualization to prevent them
from escaping from the guest kernel, we impose an ad-
ditional permission check for privileged functions at the
vKI. Each vKI maintains a read-only effective capability
vki_caps_effective for a container. The container-wide
capability is an upper bound on what processes can do
within a container and overrides per-process capabilities
if there is a conflict. When the cap_capable function is
intercepted, the vKI first checks the request against the
container’s capability. If passed, vKI performs per-process
permission check as done in Capability. Otherwise, a process
evasion is detected and the request is denied. Since the
container-wide capability is read-only and is not visible to
processes within a container, vKI is more secure than the
capability mechanism.
File isolation. For Apparmor, since all file accesses need to be
checked, a majority of which does not involve sensitive files,
apparmor imposes unnecessary overhead. To address this
issue, vKI employs a two-step process for file permission
checks. First, vKI leverages an unused bit in the file inode’s
i_opflags to indicate if a file is sensitive. The sensitive
bit is set to 1 if any container’s apparmor profile includes
its path in its black-list. Second, at initialization, vKI scans
a container’s apparmor profile to identify sensitive files that
should be checked upon file accesses and builds a hash table
mapping from the sensitive files’ inode numbers to the cor-
responding access permissions specified in the profile. Upon
a file access, vKI intercepts the generic_permission
function and checks the sensitive bit in the i_opflags in
the requested inode. If the bit is clear, vKI immediately re-
turns ALLOW. Otherwise, it looks up the access permissions
of the inode in the hash table. If any match is found in
the black-list, the file access is denied. vKI helps remove
permission checks in accessing non-sensitive files.
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4 USER-DEFINED CUSTOMIZATION

vKernel is designed to provide a lightweight framework
for isolation and customization. In addition to the three
standard access controls, vKernel allows users to define
customized rules for data isolation and kernel customiza-
tion. The containers can achieve better performance with
customization. In the following, we present four case stud-
ies. The case study on isolating Linux dcache demonstrates
how to isolate shared kernel data structures without much
change to the code accessing them while the futex system
call study shows sophisticated isolation involving both code
and data. We further present a case for allowing containers
to configure their own kernel parameters. Last, we show
how to enable a customized task scheduling policy for a
particular container. Here, we leverage the isolation frame-
work provided by vKernel to tailor the parameters and
codes extensively utilized by containers. Additionally, we
can employ profiling tools [25], [26] to pre-run the container,
extract the code and parameters involved in its execution,
and further customize the kernel specifically for containers.

4.1 Kernel data structure isolation

The Linux dcache mechanism caches the mappings be-
tween file paths and inodes in a d_entry cache. It is critical
to fast file system operations that involve a large number of
inode accesses, such as ls and stat. The key operation in
dcache management is the allocation of a d_entry from
the dentry_hashtable, which is a structure referenced
by 79 system calls and a source of interference. vKernel
allocates a private dentry_hashbable for each container
to cache inodes specific to the container’s file access. No
significant changes to the kernel code are necessary unless
replacing the original d_hash with vkm_d_hash in the
vKM to redirect a container’s file access.

4.2 Futex isolation

Fast userspace mutex (futex) is a widely-used system
call applications use to implement efficient synchronization,
such as POSIX mutex and barrier. Threads that fail to
acquire a lock (i.e., waiters) are put to sleep in a wait queue.
Futex maintains a single, system-wide futex_queues
with multiple buckets. Threads waiting on the same lock
are placed in the same bucket. Futex uses the address
of the userspace lock as the key to hash_futex to select
the bucket. Since futex_queues is shared among all con-
tainers, as discussed in Section 2.3, threads from multiple
containers may collide in the same bucket. Performance in-
terference manifests in two ways. First, interleaving threads
from different containers in the same bucket compromises
wake-up efficiency as one container need to scan other
threads before locating a thread to wake up. Second, sleep-
ing threads on the futex_queues are removed from CPU
run queues and later will be inserted back into a run queue
when they wake up. It is difficult to preserve threads’ data
locality, i.e., placing them back to the CPUs where they were
running before sleep if multiple threads are simultaneously
waking up from a shared queue.

vKernel provisions a dedicated futex_queues for each
container in its vKI and devise private futex functions that

operate only on the container-local queue. For example, the
private vki_hash_futex function only maps a thread to
a container local queue. It should be noted that the private
kernel data allocated for containers exclusively consists of
the management structure of the hash table. The memory
overhead associated with this component remains at the KB
level. As the number of containers grows, the memory over-
head does not become excessively prominent. Container-
specific wake up is more challenging as multiple containers
may simultaneously wake up threads and attempt to insert
them to CPU run queues. This may lead to locking on the
same run queue to prevent simultaneous insertion. To com-
pletely isolate the wakeup process of different containers
and preserve thread locality, we also isolate threads from
different containers in their own CPU runqueues. With the
help of cgroups, a reasonable change to the Linux com-
pletely fair scheduler (CFS) with approximately 200 lines of
code ensures that threads are scheduled on their container-
local CFS runqueue. As such, the thread is guaranteed to be
on the same CPU where it ran, not only preserving data
locality but also avoiding inter-container run queue con-
tention. To enable this new wakeup mechanism, we override
the generic futex_wait and futex_wake functions with
new implementations in vKI and add a is_waking flag to
each thread. Vki_futex_wait does not put a thread into
sleep but forces the CPU scheduler to bypass the thread with
the is_waking(0), emulating sleeping on the futex queue.

4.3 Kernel parameter isolation
The Linux kernel includes many tunable parameters for
users to control its runtime behavior. Most of these parame-
ters are global and shared among all containers on the same
host. The change to a shared parameter will take effect for
all containers. Although parameters local to a namespace is
private to a container, there exist a vast majority of kernel
parameters, some performance critical, need to be isolated.

For example, parameter overcommit_memory speci-
fies whether an application can allocate a memory region
in its virtual address space that exceeds the amount of
available physical memory, and overcommit_kbytes and
overcommit_ratio determine whether the current mem-
ory usage deems to be an overcommitment. While memory
overcommitment leads to more flexible memory allocations,
it also could result in memory thrashing. Setting this pa-
rameter indistinguishably for all containers inevitably leads
to suboptimal performance. Parameter isolation not only
requires the duplication of parameters per container but also
needs to override kernel functions that report statistics as-
sociated with the parameters as well as those implementing
the corresponding resource management policy. Specifically,
to allow per-container memory overcommitment configu-
ration, vKI replicates the three parameters for each con-
tainer, overrides the handlers for the procfs to report per-
container memory usage, and replaces the generic memory
management functions, such as vm_memory_committed,
with per-container vKI implementations.

4.4 Scheduling customization
The Linux kernel is equipped with four CPU schedulers –
the default CFS, first-in-first-out (FIFO), round-robin (RR),
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TABLE 3: The lines of code (LOC) of vKernel

line of code
runvk 1060+/72-
vkernel-builder 718+

vKM vKI
system call isolation 421 47
privileged function isolation 30 82
file isolation 202 94
futex system call isolation 46 209
kernel parameter isolation 42 392
dcache isolation 40 35
scheduling customization 10 276
total 751 1135

and deadline scheduler. In native Linux, scheduler selection
can be made on a per-process basis but the configuration
requires root privilege. Since containers are unprivileged
and reside in userspace, they can only select the CFS
scheduler. Different schedulers are desirable in different
situations. For example, FIFO scheduling avoids frequent
context switches and benefits throughput-oriented work-
loads. The challenges in enabling scheduling customization
for containers are twofold: 1) the customized scheduling
policy should only take effect on processes belonging to one
container; 2) elevating container privilege to alter host-level
scheduling is risky and hence should be forbidden.

To this end, we demonstrate how vKI can help derive
customized scheduling for containers without changing
host-level scheduling. Specifically, the objective is to emulate
the effect of FIFO scheduling in a container on top of CFS
scheduling in the host kernel. The methodology remains the
same – intercepting generic scheduling functions and over-
riding them with container-specific functions implemented
in vKI. Schedulers differ in the way they select the next task
to run and where to insert a completed task back into the
run queue. The CFS employs a global cfs rq (a red-black
tree) to manage all runnable threads, where threads from
the same container are grouped and managed in a distinct
sub-cfs rq (a sub-tree). With this design in mind, we can
implement container-specific scheduling strategies within
these sub-cfs rq, ensuring that such custom strategies af-
fect only the threads contained within them. To emulate
FIFO, vKI intercepts CFS functions __enqueue_entity
and pick_next_entity and manipulates scheduling to
ensure a process is always kept running until it exits and
newly admitted processes are inserted to the tail of the
partial CFS run queue of the container. Since the customized
policy only works on the partial cfs rq of the container,
it can promise effectiveness inside the container, without
affecting the scheduling of global cfs rq and the fairness
between containers.

5 EVALUATION

In this section, we present and discuss the experimental
results. We seek to answer three questions: (a) How is vK-
ernel’s performance compared with that of other kernel iso-
lation approaches? (b) What are the benefits of user-defined
isolation and customization enabled by vKernel? (c) How
well does vKernel address the existing container vulnera-
bilities? Our experiments are performed on a PowerEdge
R730 server equipped with dual 10-CPU Intel Xeon 2.30
GHz processors, 128 GB memory, and a 1.8TB SATA hard
drive. We used Ubuntu 20.04 64bit and Linux kernel version
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Fig. 6: Startup time of a minimal container image

6.0-rc7 as the host kernel. Docker 20.10.13, gVisor release-
20210927.0, and kata 1.13.0 were used as the container tech-
nology. For comparison, we evaluate the following cases: the
vanilla docker container with seccomp, capability, and appar-
mor enabled (docker), gVisor container with user-level kernel
isolation (gVisor), container in a lightweight VM (Kata), and
the docker container with vKernel enabled (vKernel). Each
result was an average of 10 runs. The engineering effort to
implement vKernel is summarized in Table 3. Except for
the implementation of runvk using the Go language, other
components of vKernel are implemented using rust.

5.1 Container startup
The efficiency of startup is important for short-lived con-
tainers, and the mechanisms used for kernel isolation may
negatively impact container startup time. We test the startup
time of the alpine OS [27] in containers with different kernel
isolation approaches. The startup time is normalized to
that of the docker and two hardware configurations were
tested. As shown in Figure 6, vKernel does not cause a
noticeable increase in containers’ startup time. Note that the
virtual kernel instances in vKernel were built offline and
thus the result only included vKI’s load time. As vKI can
be reused by containers with similar security profiles, we
do not expect vKI build time to be on the critical path of
container startup. On average, it takes approximately 2.5s
to build a vKI offline based on the default security profile.
gVisor increases the startup time by 18.7% mainly due to the
initialization of user-level tracer processes. In contrast, Kata
needs to boot a VM before a container can be started which
increases 90% startup time.

We also test the startup time and memory footprint when
multiple instances are simultaneously started as shown in
Figure 7. In terms of the total time taken to batch start mul-
tiple instances, docker, vKernel, and gVsior show similar
results, because the startup process is executed in parallel
on multiple cores. Additionally, vKernel exhibits memory
consumption consistent with docker due to its loading of
only a small amount of code necessary for container exe-
cution, whereas gVisor and Kata both require independent
kernels to be started.
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Fig. 8: The performance of system calls
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Fig. 9: The performance of cloud benchmarks

5.2 System call

The security mechanisms for kernel isolation mainly affect
the performance of system calls and those also with file
accesses. We use LMbench [28] to test the performance of
various system calls. We also test the bitmap mechanism
proposed by Draco [29] which accelerates system call check-
ing by using bitmap to cache always-allowed system calls.
We begin with system call without much computation, I/O
accesses, or parameters, such as getpid and getgid, and
denote them as null call. To evaluate system calls that require
file access checking, we configure LMBench to issue various
stat system calls to sensitive and non-sensitive files with-
out data operation. This is to separate system call invocation
time from data transfer time. It is labeled as stat. We also
includ system call personality, which requires param-
eter check, and commonly-used system calls exec, fork,
pipe, and et.al. As shown in Figure 8, vKernel achieve an
average 10.5% performance improvement compared with
docker, especially 41% for personality by avoiding the
sequential parameter check in seccomp, and 35% for null
io by eliminating unnecessary permission check on non-
sensitive files. Our results also show that the overhead due
to docker would have been much higher if LMBench is con-
figured to only scan sensitive files. As expected, gVisor has
the worst performance with as much as 40x slowdown be-
cause each system call invocation requires multiple context
switches. The kernel of the Kata is specifically designed to
be lightweight, and the version of the kernel is high. These
ensures that system calls with minimal resource usage are
fast for Kata, such as null call andnumll io. However,
Kata suffers high overhead of file operations because of
a longer IO stack, and performs worse with exec, which
requires frequent page table creations, an operation known
to incur high overhead due to memory virtualization.

5.3 Cloud benchmarks

Then, we test the performance of cloud services from
CloudSuite with different containers. As shown in Figure 9,
vkernel outperformed docker on cloud services by about
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Fig. 10: The performance of real-world applications
8.5% on average. The reason is that cloud services neither
enter the shared kernel and nor trigger security checks as
frequently as micro-benchmarks. Cloud services in gVisor
show at least 30% performance degradation (Graph Ana-
lytics), again proving that user-level kernel isolation does
not apply to real-world service deployment. Kata leads to
20x slowdown of media streaming due to IO virtualization.
Virtio can help alleviate the io virtualization overhead of
kata, but the overhead cannot be completely removed. The
results show that vkernel can serve all cloud services well
without any performance impact.

5.4 Real-world applications
Next, we evaluate vKernel’s performance with three real-
world applications. Nginx and Httpd are popular web
servers with frequent network-related system call invoca-
tions and file retrievals. We use the workload generator
ab to emulate 20 concurrent users making a total number
of 3000k requests. As shown in Figure 10, gVisor causes
a dramatic 77% and 71% throughput loss in Nginx and
Httpd, respectively; Kata performed even worse. In contrast,
vKernel does not affect throughput. Pwgen is a widely-used
password generator. It is mostly computationally intensive
with little I/O activity but rich of malloc-like memory
allocations. Except for gVisor, all other approaches achieve
acceptable performance in Pwgen. The major source of
overhead in gVisor is the tracer that frequently intercepts
memory system calls and causes context switches. Note that
function interception in vKernel is entirely in kernel mode
and does not cause noticeable overhead.

5.5 User-defined isolation and customization
Dentry cache. We use two representative file operations
stat and ls to evaluate the performance of the isolated
dentry cache. The baseline is native docker with a globally
shared dentry cache. The stat test instructs each container
to repeatedly display file information at different directory
depths i.e., 0 (current directory), 20, and 30, for 800 thousand
times. For the ls test, we recursively listed directory infor-
mation until reaching a directory depth of 20 and repeated
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Fig. 11: Effectiveness of vKernel for data isolation. vKernel
is the base for normalization.

the operation. Figure 11 (a) and (b) show the performance
due to vKernel against the baseline docker. The results
suggest that the contention on the dentry cache significantly
degrades performance when 100 containers simultaneously
request d_entry from the dentry_hashtable. In con-
trast, vKernel delivered consistent performance regardless
of activities in colocated containers, indicating good isola-
tion on the dcache.
Futex. We evaluate how well vKernel enforces isolation on
the shared in-kernel futex_queues and preserves data
locality. We first use perf-bench to stress test the futex
subsystem with two containers. The container under test
runs perf-futex with a single thread while a malicious
container launches a large number of threads to contin-
uously occupy the buckets in futex_queues. We con-
trolled the malicious container to place on average 1 or
200 threads in each bucket to cause different levels of con-
tention. Figure 11 shows the performance of the container
under test with different kernel isolation approaches. Docker
experiences significant slowdowns when contention is high,
suggesting no isolation on the shared futex_queues. In
comparison, vKernel offers effective isolation with container-
local futex_queues and reduces the time of the wake up
from 10000 ns to 100 ns.

In addition, we use benchmark streamcluster in the
PARSEC [30] suite to evaluate thread locality in futex.
Streamcluster is a barrier-intensive workload that has a large
number of threads waking up simultaneously when exiting
a barrier. Without isolation, the placement of these threads
back on CPU run queues is nondeterministic, likely causing
loss of locality. Figure 11(d) shows that vKernel with locality
optimization (vKernel futex in the figure) effectively pre-
served thread locality via vKI’s mechanism for futex wait
and wakeup, in which data locality does not deteriorate
with the thread count. In contrast, docker with no isolation
and vKernel without locality optimization suffered much
worse performance.
FIFO Scheduling. We compare workload performance un-
der CFS and FIFO to confirm that vKernel truthfully em-
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Fig. 13: Performance of Postgresql and Redis under different
overcomit_memory settings. Docker shares kernel param-
eters, while vKernel enables customization.

ulates FIFO scheduling in userspace with the help of vKI.
The hackbench [31] benchmark spawns a large number
of processes, each aggressively communicating with oth-
ers via pipes and performing little computation. Hack-
bench performance is largely determined by the number of
context switches and benefits from FIFO scheduling. Fig-
ure 12 shows the performance of hackbench under different
scheduling policies and different types of containers. Note
that the docker has no root privilege and is unable to use the
FIFO scheduler. In the figure, the ”docker-fifo” component
is running within a privileged Docker container. This privi-
leged container can have an impact on the scheduling poli-
cies of other containers running alongside it. On the other
hand, the ”vkernel” supports the use of FIFO scheduling
policies within the container. The results demonstrate that
vKernel’s performance using the emulated FIFO scheduling
faithfully reflected FIFO performance.
Container-specific memory overcommitment. We demon-
strate that vKernel containers can configure different val-
ues for globally shared kernel parameters, which lead to
superior performance for different types of workloads. We
selected Postgresql and Redis for evaluation as they have
distinct preferences for memory overcommitment in the ker-
nel. Postgresql is a highly concurrent database that supports
a large number of worker threads. It prefers not to aggres-
sively request memory beyond the physical memory size.
As Linux employs on-demand memory allocation, aggres-
TABLE 4: The kernel vulnerabilities of container escalation

CVE-ID should be disabled docker gVisor Kata vKernelseccomp capability apparmor
2023-0045 prctl ✓ ✓ ✓
2022-0185 unshare ✓ ✓ ✓
2020-8835 bpf ✓ ✓ ✓ ✓
2019-13272 sys admin+ ptrace ✓ ✓ ✓ ✓
2018-18955 setgid ✓ ✓ ✓
2017-7308 net raw ✓ ✓ ✓
2017-5123 waitid ✓ ✓ ✓
2016-1583 /proc/environ ✓ ✓ ✓
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sive memory requests that overcommit memory will lead
to memory thrashing when concurrency increases, though
the requests could be successfully due to the overcommit-
ment configuration. This translates to high error rate in
Postgresql. In contrast, a background process (bgsave) in
Redis occupies a large amount of virtual memory in case
the database needs to be dumped on disk. Bgsave does
not actually always consume the requested memory but
needs to provision for the peak demand in case the entire
database has to be dumped. Redis prefers to enable memory
overcommitment otherwise the foreground database engine
may not use the memory occupied by bgsave.

We create two containers each with a 2 GB memory
limit set by cgroups. The first container runs docker and
configures the system-wide overcommit_memory param-
eter. A value of 1 in overcommit_memory allows memory
overcommitment while a value of 2 disables it. In order to
achieve the optimal performance of Redis, under Docker
and vKernel, overcommit_memory of Redis is set to 1.
Redis performs equally well under Docker and vKernel
(not shown). In this case, as shown in Figure12 13(a), for
Docker with shared kernel, overcommit_memory (fixed to
1) cannot be adjusted for Postgresql, resulting in a sudden
increase in error rate as concurrency increases. For vKernel,
which can customize parameters, overcommit_memory
corresponding to Postgresql can be set to 2, and the error
rate remains stable. To optimize Postgresql performance,
overcommit_memory for Postsql is set to 2 in Docker and
vKernel. In this case, as shown in Figure 13(b), for shared
kernel Docker, overcommit_memory cannot be adjusted,
while vKernel can adjust the parameter to 1 for Redis.

5.6 Security isolation

We demonstrate that vKernel is more efficient than the
existing isolation mechanisms using user-level kernels and
VMs. Next, we evaluate whether vKernel achieves a similar
level of security for the data and code that are required
during the execution of a container. Accordingly, we only
test whether the data and code required for the container’s
execution can be vulnerable to attacks. We used the POCs
(proof of concept) selected from [22] to test eight known
container-related kernel vulnerabilities. The vulnerabilities
mostly manifest as privilege escalation. Table 4 shows
details of the vulnerabilities, whether a particular kernel
isolation approach is vulnerable, and the potential fix if
one exists. Note that all vulnerabilities and fixes have been
tested on our testbed. Table 4 suggests that vKernel can
defend against the listed known threats, at a similar level
of security as gVisor and Kata.

6 LIMITATION AND DISCUSSION

vKernel is a virtualization framework that aims to present
required kernel isolation for containers. vKernel takes effect
for containers based on the cooperation between a system-
wide vKM and multiple vKIs. To promise extreme perfor-
mance for containers, vKernel implements vKM and vKI as
LKMs, and strips the changes to the host kernel by way
of inline hooks. In such a design, vKernel may introduce
additional security implications, because it extends the host

kernel with more code and data through LKMs. Rigorous
code checks are required through vkernel-buidler when
building a customized vKI, but it’s still far from enough.
In the future, we will implement the fault isolation for vKIs
and learn from KPTI to achieve vKI address space isolation
to further eliminate the security risks. Having said that,
vKernel bravely introduces a new kernel isolation approach
that does not give up the host kernel. Based on the design of
vKM and vKI, vkernel requires no changes to host kernel,
therefore supporting live upgrades and multiple versions
of the Linux kernel with strong usability. It allows users
to customize the vKI for containers and obtain extreme
performance while promising better security guarantees
than the commonly-used secure docker container. Currently,
vKernel is not as secure as user-level or VM-based isolation.
However, it may be a good choice for performance-sensitive
services without that strong security requirement, especially
those deployed based on secure docker previously.

7 RELATED WORK

We discuss additional prior work related to vKernel.
Kernel-level isolation. Containervisor [32] focuses on

isolating containers’ memory, while Slim [33] implements an
isolated network stack for containers. ContainerLeaks [34]
identifies security issues caused by kernel data leakage
in a container environment. Huang et al. [35] introduce
sys namespace to provide dynamic private memory views
for container applications. Song et al. [36] isolate file system
data structures to reduce IO competition among containers.
In contrast, vKernel offers a low-overhead isolation frame-
work that does not specifically enhance the isolation of in-
dividual resources. By implementing these aforementioned
isolation methods within a vKernel instance, we can achieve
customization for a container without requiring extensive
code modifications in the kernel.

Kernel specialization. An emerging trend of kernel iso-
lation is to reduce kernel based on kernel specialization.
Confine [37], SPEAKER [38], and sysfilter [26] as well as
temporal specialization [39] customize and minimize the
kernel interface for containers. SHARD [40] implements a
practical framework to enforce fine-grain kernel specializa-
tion and kernel reduction. Shadow-kernels [41] provides a
primitive for an individual application to access the ded-
icated kernel text sections at the kernel. Similarly, other
approaches [42], [43] based on virtualization can achieve
kernel reduction by building upon a minimized kernel
view. The kernel specialization offered by vKernel instance
supports both kernel reduction and customization for users.

Hardware-based isolation. Recent work [29], [44], [45],
[46], [47], [48], [49] explores new hardware to implement ad-
ditional isolation for containers. SCONE [44] and ARMlock
[47] place the container inside the trusted execution domain
based on the Intel SGX and ARM TrustZone. FastPass [48]
and Iron [46] further isolate memory management and net-
work stack for containers. They are efficient without notice-
able overhead, but lack versatility and comprehensiveness.
In contract, vKernel is a generic kernel isolation framework,
which does not require specific hardwar.
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8 CONCLUSION

In this paper, we present vKernel, a kernel isolation frame-
work for containers. Compared to the existing kernel secu-
rity mechanisms, user-level and VM-based kernel isolation,
vKernel is able to simultaneously achieve near-native per-
formance and strong isolation. The key to vKernel isolation
is an additional layer of indirection between the container
and the host kernel, namely the proposed virtual kernel
instance (vKI). vKI allows for efficient implementation of
the existing kernel isolation mechanisms as well as user-
defined functions and policies. The layer of indirection
effectively prevents users from obtaining escalated privilege
or escaping from a container.
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