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Abstract—Integer division is key for various applications and often
represents the performance bottleneck due to its inherent mathematical
properties that limit its parallelization. This paper presents a new data-
dependent variable latency division algorithm, derived from the classic
non-performing restoring method. The proposed technique exploits the
relationship between the number of leading zeros in the divisor and in
the partial remainder to dynamically detect and skip those iterations that
result in a simple left shift. While a similar principle has been exploited
in previous works, the proposed approach outperforms existing variable
latency divider schemes in average latency and power consumption.
We detail the algorithm and its implementation in four variants, offering
versatility for the specific application requirements. For each variant, we
report the average latency evaluated with different benchmarks, and
we analyze the synthesis results for both FPGA and ASIC deployment,
reporting clock speed, average execution time, hardware resources, and
energy consumption, compared with existing fixed and variable latency
dividers.

Index Terms—Variable-Latency Divider, Integer Division, High-Speed
Arithmetic, Computer arithmetic, Real-time and embedded systems,
Low-power design

1 INTRODUCTION

Integer division is one of the fundamental operations in
computer arithmetic, used in a wide range of applications

such as digital signal processing [1], random number gener-
ation [2], cryptography [3], artificial intelligence [1], [4], [5],
matrix factorization [6], [7], and image processing [8], [9].

Compared to addition and multiplication, division is
inherently slower due to the absence of associative and com-
mutative properties that does not allow factorization and
parallelization [1], [5], [10]–[12], resulting in an expensive
hardware implementation or severe performance bottleneck
for many applications [10], [13]. The implementation of
dedicated integer division units is sometimes avoided and
replaced by alternative methods, emulating integer divi-
sions with floating-point dividers [12], yet requiring signif-
icantly large area and power consumption [14] that make
them unsuitable for Field Programmable Gate Array (FPGA)
implementation, or Integrated Circuit (IC) microarchitec-
tures with limited hardware resources. In these contexts,
low-hardware-cost dividers with a fixed execution latency
are often used [15], [16], possibly resulting in performance
limitation for those embedded applications where computa-
tional speed is critical such as automotive, video processing,
and industrial control.

Variable latency arithmetic units have been studied for
decades, covering addition [17]–[19], multiplication [20],
division [5], and more complex operations [21]. Variable

latency represents a valid alternative to fixed-latency when
the average execution time of the target application, re-
sulting from the average latency and the sustainable clock
speed, is significantly shorter than in a fixed latency imple-
mentation, with negligible hardware overhead.

In this paper, we propose a variable latency data-
dependent integer divider that significantly improves the
average convergence time and power consumption, outper-
forming existing fixed [22] and variable latency alternatives
[5], [12], [23], [24] in the literature, maintaining hardware

requirements of the latter. These properties make the pre-
sented approach perfect for low-power embedded applica-
tions where the execution time is critical, making it suit-
able for on-the-edge machine learning and edge computing
applications [25]–[28]. The contributions of the proposed
study are as follows:

• Introducing a novel variable latency integer division
algorithm derived from the classic non-performing
restoring technique;

• Proposing an efficient baseline hardware implemen-
tation of the algorithm, based on high-speed Count
Leading Zeros (CLZ) units and a single-cycle barrel
shifter with the reuse of the same register to store the
remainder and the quotient;

• Detailing the hardware architectures of the algorithm
in four different variants, specifically designed for
targeting different application contexts;

• Comparing all the proposed hardware schemes with
the reference designs in literature [12], [24], in terms
of average latency, hardware cost, operating fre-
quency and energy consumption on FPGA and ASIC,
demonstrating lower latency and energy consump-
tion per division compared to the reference designs;

• Reporting, to the best of our knowledge, the first
energy consumption analysis and ASIC synthesis of
variable latency dividers in the literature;

• Showing and discussing a comprehensive evaluation
of the performance on six benchmark applications.

The rest of the work is organized as follows: Section 2
reviews division techniques and analyzes the restoring al-
gorithm that forms the basis of our work. Section 3 presents
the adopted methodology and the proposed novel restoring
algorithm. In Section 4, we describe the basic hardware
implementation scheme for the proposed algorithm, and
three alternative implementation schemes optimized for la-
tency, clock frequency, and hardware resources, respectively.
Section 5 analyzes the average latency as a dependence of
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the input operands, by Monte Carlo functional simulation.
Section 6 reports synthesis and implementation results of
all the versions of the algorithm on FPGA using Vivado
2022.2 while Section 7 reports ASIC synthesis results. In
Section 8, we test the performance of each of the proposed
dividers using six real application benchmarks, compar-
ing the overall performance with state-of-the-art variable-
latency dividers and fixed-latency radix-n dividers. Finally,
Section 9 discusses the main outcomes of the work.

2 BACKGROUND AND RELATED WORKS

Integer division involves a dividend A and a divisor B,
resulting in two integer values, namely the remainder W
and the quotient Q, which are always less or equal to the
divisor B and the dividend A, respectively, and satisfy (1).

A = B ·Q+W (1)

Like all the division algorithms used for comparison with
this work [5], [12], [22], [24], we target unsigned integer
division. In the case of signed operands, the signs of the
results are determined separately from the division opera-
tion, according to (2).

sQ = sA XOR sB ; sW = sA (2)

Integer divisions can be implemented in hardware by
different algorithms, depending on the design requirements
such as computing speed and available resources [10]. The
algorithms can be broadly classified into fixed and variable-
latency schemes.

In a fixed-latency divider, a constant number of quotient
bits is computed in each iteration of the algorithm, starting
from the most significant bit (MSB). Like the classic pen-
and-paper technique, the algorithm looks for the largest
multiple of the divisor that can be subtracted from a partial
remainder. The number of iterations of a fixed-latency di-
vider depends on the radix used to represent the dividend
and divisor, and not on their values. Due to the minimal
hardware requirements, a widely used fixed-latency divider
is radix-2, with one quotient bit computed at each iteration,
thus taking n clock cycles to perform an n-bit division.
Other typical values for the radix are 4, 8, and 16, which
imply a constant division latency of n/2, n/3, and n/4 clock
cycles, respectively. However, in resource-constrained de-
signs, in both FPGAs and ASICs, the hardware complexity
typically limits the implementation to radix-2 and 4 [10] [12].

A common way to implement a radix-2 fixed-latency
divider is the Restoring Division algorithm [22] [29], which
we detail here as a useful basis for discussing the proposed
novel schemes. The method is presented in Fig. 1. To per-
form a division between n-bit integer numbers, this algo-
rithm uses two n-bits registers, Q and W , to respectively
store the quotient and the partial remainder. W is initially
set equal to the dividend. Then, at each iteration, a tentative
remainder is computed by left-shifting the W register by one
bit and subtracting the divisor. If the tentative remainder is
non-negative, the new quotient bit is set to one. Otherwise,
the quotient bit is set to zero, and the divisor is added
back to W . When the iteration count reaches n, the division
finishes with the final quotient stored in the Q register and
the remainder stored in W . Notably, in hardware implemen-
tations, the registers Q and W are commonly concatenated

1: Input →
2: Divider : A ∈ [0, 2n − 1]
3: Divisor : D ∈ [0, 2n − 1]
4: Partial Remainder : W = A
5: Quotient : Q = 0
6: count = 0
7:
8: Procedure →
9: while count < n

10: W = (W << 1)−D
11: if W > 0 then
12: Qn−1−count = 1
13: else
14: Qn−1−count = 0
15: W = W +D # Restoration step
16: end if
17: count++
18: end while

Fig. 1. n-bit Restoring Division Algorithm

in a single 2n-bits register R, a technique we will refer to in
the following.

The main drawback of the approach is the restoration
step, which slows the execution. Several solutions have been
proposed to avoid this procedure. In the Non-Restoring
algorithm [22], the recovery step is omitted in exchange
for additional operations and more complexity. In the Non-
Performing Divider (NPD) [22], the tentative remainder is
stored only when the subtraction result is non-negative.
Thus, the addition in the restoring procedure is unnecessary
because the R register is updated only when required. How-
ever, these two solutions do not change the total latency of
the operation, which is fixed and equal to n clock cycles.

Conversely, variable-latency dividers can determine a
variable number of quotient bits per iteration, so that the
required cycle count for completing the division is not fixed
but depends on the input data values. Notably, differently
from approximation-based dividers [30], these solutions
produce an exact result in a variable number of clock cycles.
In [5], three variable-latency integer dividers are proposed
starting from the restoring division algorithm. In the first,
the subtraction is skipped until the MSB of the dividend
reaches the MSW of the remainder. In the second, the divisor
is shifted to the left to be aligned with the dividend, then
the shift is reversed, and the classical restoring division is
performed. In the third, the remainder and the divisor are
shifted dynamically (to the right and the left, respectively)
using priority encoders. The performance of the three solu-
tions has been evaluated in terms of speedup over the restor-
ing division algorithm using algorithmic simulations with
randomly generated operands. The work does not provide
any results on real benchmarks, hardware requirements, or
operating frequency.

Authors in [23] discuss and analyze the Needy Restor-
ing division algorithm, which does not need to perform
subtractions under some conditions, preventing the exe-
cution of the restoration step of the algorithm. The work
does not provide performance or hardware implementation
data. Furthermore, the algorithm requires an additional n-
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Fig. 2. Hardware implementation of the algorithm presented in [12]

bit register and iteratively checks the value of the shifted
R register, which would significantly limit the operating
frequency when implemented in hardware.

The work in [24] proposes a variable latency divider
based on the dynamic shift of the divisor, which skips un-
necessary steps by exploiting the relationship between the
remainder and the divisor itself. Priority encoders are used
to compute and implement the log2 function in hardware.
The technique achieves 2.73 clock cycles on average per 32-
bit integer division, assuming uniform operand distribution
and an operating frequency of 90 MHz with 316 LUTs in
the Virtex-7 FPGA. However, no performance data based on
real application benchmarks are provided.

In [12], a similar approach is used to realize a variable-
latency integer divider, denoted as Quick-Div. The algo-
rithm was specifically designed for FPGA-based soft pro-
cessors and compared in detail with fixed-latency radix-n
dividers. Similar to [24], this approach performs dynamic
shifting of the divisor but exploits a highly optimized hard-
ware design depicted in Fig. 2 that uses a Count Leading
Zeros (CLZs) technique and splits the shift into two steps.
During the first iteration, the divisor is left-shifted by its
number of leading zeros, whereas in the remaining ones, it
is right-shifted by the number of leading zeros in the re-
mainder. This approach maximizes the operating frequency
and allows using a 32-bit register to store the divisor, with-
out losing bits during the shift procedure. The division is
complete when the divisor is greater than the current partial
remainder. Notably, this requires an additional clock cycle to
set the completion signal at the end of the division. In our
solution, we avoid this by using an internal counter, which
is dynamically incremented without increasing the critical
path. Additionally, we use a single 64-bit register for storing
the remainder and the quotient on which we perform the
dynamic shift without losing bits. The Quick-Div algorithm
allows an average number of clock cycles per 32-bit integer
division of 1.69, assuming uniform operand distribution.
However, the hardware implementation requires a fixed

additional latency of two clock cycles: one for storing input
signals in registers and one for performing the first shifting
iteration, for an average of 3.69. The performance is tested
on many application benchmarks, and the implementation
results report 365 LUTs, 129 FFs and an operating frequency
of 426 MHz, making this architecture the reference design
for the performance comparison of the proposed work.

3 PROPOSED DIVIDER

As summarized in Section 2, the fixed-latency NPD [22]
represents an optimized version of the Restoring divider
in which the tentative remainder is stored only in the case
of positive subtractions. Whenever the difference between
the MSW of R << 1 and the divisor is negative, the
previous value of R simply shifts one position to the left.
As a result, several iterations will only perform a left shift
of the R register, while the subtraction result is not used.
Fig. 3 shows the statistical distribution of consecutive ”shift-
only” iterations within a 32-bit division using the NPD. In
more than 98% of the cases, the division performs 27 to 32
consecutive steps in which the R register is just shifted to the
left.

The variable latency data-dependent divider proposed in
this work is based on the NPD in conjunction to exploiting
the relationship between the number of leading zeros in the
divisor and in the partial remainder, to dynamically detect
and skip the consecutive iterations that would perform only
a left shift.

Fig. 4 depicts the step-by-step overview of the presented
division technique. At each iteration, the CLZ function
computes the position of the most significant non-zero
bit for the R register and the divisor D. The difference
between these two quantities represents the number of
division steps in which the subtraction result is certainly
negative, and it is used to shift the R register dynamically
by shift amount bit positions. The term −1 in the cal-
culation of shift amount accounts for a classical division
step, which is always performed after the dynamic shift. If
shift amount > 0, an equivalent amount of quotient bits
is evaluated in a single step, skipping the same number of
”shift-only” steps. The iteration counter is updated accord-
ingly. Note that when shift amount results greater than the
remaining division iterations, i.e. 32− 1− count, the actual
shift amount is limited accordingly.

Fig. 5 and 6 illustrate an example of 8-bit integer di-
vision performed with the standard NPD algorithm and
the proposed technique, respectively. In the first step of the
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Fig. 3. Statistical analysis of ”shift-only” consecutive steps in 32-bit
integer divisions. For more than 98% of the divisions, the consecutive
shifts are between 27 and 31, underlying the importance and impact of
a dynamic shift mechanism on the NPD.
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original algorithm (Fig. 5), the difference between the 8 most
significant bits of R << 1 and the divisor D is computed
and results to be negative, so R is left-shifted by one bit
position. The same situation occurs for the following six
iterations. The whole procedure consists of 8 iterations, with
subtraction results used in only 2 of them.

In the first step of the proposed algorithm (Fig. 6), R and
D have 13 and 6 leading zeros, respectively, which means
that for (13 − 6) − 1 = 6 iterations the difference between
the shifted remainder and the divisor will be negative. Thus,
R is left-shifted by 6 bit positions and the classic division
iteration is executed, obtaining a non-negative difference
between the 8 most significant bits of R << 1 and D. The
subtraction result is stored in the 32 most significant bit of
R, and the least significant bit R0 is set to one. In the second
step, count=7 and only the classic division step is executed.
The whole procedure consists of 2 iterations.

While the presented algorithm can be extended to high-
precision computations, from 64 to 1024 bits, the proposed
work focuses on medium or low-precision embedded appli-
cations, and we go into the details of hardware synthesis of

1: Input →
2: Divider : A ∈ [0, 232 − 1]
3: Divisor : D ∈ [0, 232 − 1]
4: R(63 : 32) = 0× 0000
5: R(31 : 0) = A
6: count = 0
7: division complete = 0
8:
9: Procedure →

10: while division complete == 0
11: leading D = CLZ(D) ∈ [0, 31] # D Leading Zeros
12: leading R = CLZ(R) ∈ [0, 63] # R Leading Zeros
13:
14: # Dynamic Shift:
15: shift amount = leading R − leading D − 1
16: if shift amount> 0
17: if shift amount > 31 − count
18: shift amount = 31 − count
19: end if
20: R = R << shift amount
21: count = count + shift amount
22: end if
23:
24: # Classic division step:
25: difference = R(62 : 31) −D
26: if (difference< 0)
27: R = R << 1
28: else
29: R(63 : 32) =difference
30: R0 =’1’
31: end if
32:
33: if (++count==32)
34: division complete=1
35: end if
36: end while

Fig. 4. Algorithmic description of the presented VLNPD.

Fig. 5. Example of an 8-bit integer division with the NPD. The R register
is just shifted to the left for six subsequent steps.

Fig. 6. Example of an 8-bit integer division with the proposed VLNPD.
This approach allows skipping six steps.

the 32-bit implementation.
In the following, we will refer to the proposed division

algorithm and its hardware implementation variants as
Variable Latency Non-Performing Divider (VLNPD).

4 HARDWARE IMPLEMENTATION

4.1 Baseline Version (VLNPD-Std)

The schematic diagram in Fig. 7 depicts the baseline hard-
ware implementation (VLNPD-Std) for the proposed algo-
rithm, with the critical path highlighted in red. The hard-
ware unit has two 32-bit input data signals, an enable signal
Div enable, a clock signal, and a reset signal. An output
signal Division completed flags that the division has been
completed, and the result (quotient and remainder) is avail-
able on the output of register R. The architecture includes
a 64-bit and a 32-bit registers for R and for the divisor D,
respectively, a 6-bit register in the iteration count logic, and
a 1-bit output register sampling the Division completed
flag, for a total of 103 sequential logic elements, which is
exactly the same amount as for the implementation of the
NPD. The division starts when Div enable is set, the input
operands are stored in the registers, and the counter is set
to zero. At each iteration, corresponding to one clock cycle,
the value stored in the R register is updated according to
Fig. 4. A 32-bit CLZ unit is used to find the number of
leading zeros in the divisor D, while a 64-bit one is used
for the R register. The difference between the number of
leading zeros defines how many bit positions the R regis-
ter should be dynamically left-shifted, according to Fig. 4.
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Fig. 7. Basic hardware implementation for the proposed variable latency
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to set the dynamic shift. D is subtracted from the output of the dynamic
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When shift amount is greater than the remaining division
steps, i.e. 32 − 1 − counter, it is accordingly limited, and
a control signal named limited shift is set. Conversely,
no dynamic shift is performed when this difference is less
than or equal to zero. Finally, the classic division step is
implemented by subtraction between the 32 most significant
bits of the shifted R register and the divisor.

The effectiveness of the proposed division scheme relies
on the availability of a fast single-cycle barrel shifter and

single-cycle CLZ units, in order to avoid increasing the clock
cycle time. The CLZ units were implemented according
to [31], featuring a high-speed design tailored for small
hardware overhead on FPGAs. The best-performing barrel
shifter implementation for the chosen 32-bit operand length
was found to be the multiplexing structure shown in Fig. 8,
taking a 64-bit signal as the input and performing any left-
shift between 1 and 31 bit positions. For 64-bit division
implementations and above, a better implementation could
be a multi-level architecture, as explored in [32]. The Count
Unit detailed in Fig. 9 updates the iteration count, calculates
the remaining steps and sets the Division completed flag
bit. If a dynamic shift is performed, the count is updated by
adding shift amount+ 1 to the previous value; otherwise,
it is incremented by 1. When the updated count value
reaches 32, or the limited shift control signal is ’1’, the
division ends and the Division completed flag is set. The
final remainder and the quotient are stored in the 32 most
significant bits and the 32 less significant bits of the R
register, respectively.

Notably, unlike the architectures presented in [12] and
[24], in the proposed implementation, the output control
logic uses the updated value of the internal counter to detect
the division completion, rather than checking the condition
remainder < divisor. This allows to avoid an additional
clock cycle to set the completion signal without increasing
the critical path.

4.2 High-Frequency Version (VLNPD-HF)
Since the basic architecture has the CLZ units and the
barrel shifter on its register-to-register critical path, a first
optimization can be obtained by splitting that combinational
path into two different clock cycles for a higher operating
frequency, paying in terms of the average latency. In the first
cycle, the classic division step and CLZ of the subtraction
result are executed, while in the second clock cycle, the
dynamic shift is performed, aligning the operands and
making them ready again for the next step. Compared to
the VLNPD-Std, this solution requires an additional clock
cycle every time the operands are not aligned.

The actual hardware implementation is shown in Fig.
10. With respect to the baseline implementation, the R
register has been moved after the calculation of the dynamic
shift, a 6-bit register called CLZ Remainder has been
inserted to contain the 64-bit CLZ output, a 5-bit one named
CLZ Divisor contains the 32-bit CLZ output and a 1-bit
register called shift en has been introduced to disable the
shifter every time the operands have been already aligned
in the previous clock cycle. Whenever shift amount > 0
and shift en = 0, the dynamic shift of R is carried out,
and the output of the shifter is directly written back into
the R register instead of being used in the subtractor. At the
next iteration, the most significant ’1’ of register R is already
aligned with that of the divisor, and the divisor is directly
subtracted from the 32 most significant bits of R. Note that
if shift amount > (32 − count), the shifter takes R << 1
as input to perform up to 32 iterations in one clock cycle.

Notably, this approach makes it possible to move the re-
mainder’s leading zeros count in a different clock cycle with
respect to the dynamic shift, decreasing the maximum num-
ber of division steps per clock cycle from shift amount+1
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to shift amount, splitting the previous critical path and
creating the new one highlighted in Fig. 10.

4.3 High-Performance Version (VLNPD-HP)
In the described VLNPD-Std variable latency divider, the
dynamic shift of the R register is done to align its most
significant one with that of the divisor. Then, the classic
division step is performed, and the sign of the result is used
to choose the new partial remainder value. However, it is
possible to observe that whether the result of the subtraction
is negative after a dynamic shift, at the next clock cycle,
the new R << 1 will certainly be greater than the divisor,
the dynamic shift will not be performed, and the results of
the subtraction will always be greater than zero. When this
condition occurs, R can be directly assigned to the result of
the subtraction between R << (shift amount+1) and the
divisor, saving one clock cycle. Fig. 12 depicts this technique
on an 8-bit integer division example.

From the hardware point of view, this version is depicted
in Fig. 11 in which it is possible to highlight that it requires
two parallel subtractions at each clock cycle and additional
control logic to select which result chooses as new R register.
The additional logic results in a higher area occupation and
lower frequency (due to the longer critical path length) but
allows for a significant reduction of the average latency per
division, as will be described in Section 5.

4.4 Limited Area Version (VLNPD-LA)
In the baseline VLNPD-Std architecture, the dynamic shifter
requires the most hardware resources. This unit takes 64-
bit data as input and can shift up to 32 positions to the
left dynamically at each iteration of the algorithm and is
represented by a 5-bit control signal (shift amount). The
implementation of this unit is optimized by a series of three
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(VLNPD-HP). In this unit, one step is saved each time a dynamic shift is
performed, and the subsequent difference is negative.

Fig. 12. Example of an 8-bit integer division in the VLNPD-HP. The HP
version performs a total of 7 steps in one clock cycle.

multiplexers, as shown in Fig. 8, but despite that, it requires
151 LUTs. An alternative divider version with significantly
lower area occupation paid in performance can be obtained
by limiting the possible shifting range. Observing the statis-
tical distribution of the average number of subsequent shift-
only steps in a 32-bit division (Fig. 3), it is possible to note
that this number appears to be gathered in the range and 24-
31. Therefore, reducing the required area for the dynamic
shifter is possible by limiting the shift in this range. The
performance deviation with this solution depends heavily
on the application domain, as will be discussed in Section
8, but from a statistical point of view, this solution allows a
significant reduction in the hardware resources in exchange
for a small deviation in the division average latency.
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in magnitude (as powers of two) between the operands.

5 RESULTS

This section analyzes the performance in terms of clock cycle
latency for each variant of the presented VLNPD, to verify
the effectiveness of the proposed approach. Subsection 5.1
analyzes the properties of the latency as a function of the
input data, showing how it changes with the amplitude
ratio between the operands. In subsection 5.2, Montecarlo
simulations for 4, 6, 8, 12, 16, and 32-bit integer divisions
evaluate the average latency of the proposed dividers for
uniformly distributed input values, for direct comparison
with the other dividers available in the literature.

5.1 Latency behavior analysis

All the VLNPD implementation variants have data-
dependent latency, meaning that the number of clock cycles
required to complete a division depends on the input data
values. Here we discuss some particular cases to understand
the expected behaviour of the VLNPD:

• dividend < divisor: If the dividend is smaller than
the divisor, the correct result is the quotient equals
zero, and the remainder equals the dividend. How-
ever, it is unnecessary to check this condition, as
the number of leading zeros in the dividend will
certainly be less than in the divisor. In the first
iteration, the dividend is placed in the LSW of the
R register, the shift amount is always greater than or
equal to 32, and the shift limiting mechanism is en-
abled, shifting R left by 31 positions and subtracting
the divisor. This last step always returns a negative
result, resulting in an additional shift of R. In this
way, in a single clock cycle, the dividend is shifted
from the LSW to the MSW, becoming the remainder
of the division. On the other hand, the quotient in
the LSW, is zero;

• dividend = divisor: when the dividend and divisor
are equal, the difference between the leading zeros
is exactly 32. As in the previous case, these divisions
automatically end in one clock cycle with the differ-
ence that the result of the final subtraction will be
non-negative and equal to zero. Consequently, the

quotient is set to 1 and the remainder to zero, which
gives the correct result;

• dividend = 1: the special case of the dividend equal
to 1 may fall into one of the two previous cases, and
both are completed in one clock cycle, as described;

• divisor = 1: this case is the most critical for vari-
able latency algorithms since this division requires
as many clock cycles as the number of ’1’s in the
dividend. The latency for these cases ranges from
1 (when dividend equals 1) to 32 (when dividend
equals 232 − 1). However, it is important to note
that, unlike other architectures in the literature, we
can solve this situation by checking whether the
number of leading zeros in the divisor equals 31; still,
we did not implement that to avoid adding extra
hardware overhead. By adding this extra condition
to the division complete flag, divisions by one are
completed in one clock cycle. The produced result
is automatically the correct one since, in the first
iteration, the quotient is equal to the dividend and
the remainder is equal to zero;

• log2(dividend) = log2(divisor): if the base-2 loga-
rithm of the dividend is equal to that of the divisor,
the operands have the same n number of leading
zeros. At the first iteration, R has n + 32 leading
zeros, and it is, then, dynamically left-shifted by
(n+32)−n− 1 = 31 positions. The most significant
ones are aligned in this way, and the final subtraction
gives the correct result of the operation. In this case,
the difference is always positive (because dividend
> divisor and log2(dividend) = log2(divisor)): the
quotient is set to 1, and the result of the subtraction
is the new remainder;

• (dividend/divisor) mod 2 = 0: if the dividend is
equal to the divisor multiplied by any power of two,
the proposed algorithm performs integer division in
two clock cycles. In the first one, the leading ones
are aligned, the result of the subtraction is zero, and
the quotient bit is set to one. After this operation, all
subsequent division steps consist only of a left shift
of the R register and can be dynamically performed
in the second clock cycle. Note that this case also
includes the divisions where both the dividend and
the divisor are powers of two.

Fig. 13 shows how the average number of cycles required by
the proposed algorithm varies as a function of the distance
(in powers of 2) between the dividend and the divisor. For
distances between 0 and 213, the clock cycles required by
the VLNPD-Std algorithm are always less than or equal to
8, the latency expected from a radix-16 divisor. After this
value, the number of cycles remains less than 12 (latency of
a radix-8) up to a distance of 219. The VLNPD-Std variable
latency divider is also better than a radix-4 one for distances
up to 225. The number of clock cycles as a function of the
distance is lower in the VLNPD-HP version and higher in
the VLNPD-HF one, for the reasons outlined in Section 4.

5.2 Monte-Carlo Simulation Analysis

To compare and evaluate the performance between the
proposed algorithm and the fixed latency solutions, we
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in 2 cycles, 7% in 3 clock cycles. VLNPD-HP: 75% in 1 clock cycle.

TABLE 1
Average latency of integer dividers for uniformly distributed numbers,

including the ones required by the hardware implementation

Average Latency

NPD 33.000

VLNPD-Std 2.546

VLNPD-LA 2.786

VLNPD-HF 3.268

VLNPD-HP 2.370

Quick-Div [12] 3.693

Priority Encoders [24] 3.730

tested more than 1010 dividend and divisor pairs through
Monte-Carlo simulations in the case of 4, 6, 8, 12, 16 and
32 bit operand width. Fig. 14 shows the results obtained
for each version. The results were obtained by simulating
until the first and second decimal places of the average
latency remained constant over 10 billion iterations. In all
the implementation variants the increase in the average
latency becomes negligible for bit-widths greater than 12,
except for the case of VLNPD-LA in which the limited range
of the shifter causes a steeper increase, yet remaining below
1.8 cycles. The VLNPD-Std version of the proposed divider
presented in Section 3 requires an average number of clock
cycles converging at a value of 1.55. This average latency is
achieved thanks to the presented dynamic shifting method.
In detail, Fig. 15 reports the clock cycle distribution required

by a 32-bit integer division performed with the VLNPD-Std
algorithm. Overall, 66.67% of the divisions are completed
in one clock cycle. The 21% and the 7% of divisions are
completed in two and three clock cycles, respectively, while
the number of divisions requiring more than five clock
cycles is less than 1%. The optimization technique described
in Section 4.3 allows a lower average number of clock cycles
for the VLNPD-HP version, which converges at 1.36. In this
case, thanks to the additional step that can be performed at
each dynamic shift, 75% of the divisions are completed in
one clock cycle. In contrast, the average latency increases
in the VLNPD-HF divider, reaching a value of 2.27, in
exchange for a higher operating frequency. As explained
in Section 4.2, this is due to the additional cycle at each
dynamic shift, which allows the splitting of the critical
path. With the VLNPD-LA version, the number of clock
cycles statistically slightly increases and reaches 1.78. As
mentioned before, the performance of this version strongly
depends on the application, as will be detailed in Section
8. Finally, Fig. 14 also shows the performance of Quick-Div
[12], which exhibits to an average number of clock cycles of
1.69 and completes 50% of divisions in one clock cycle.

All the results reported in Fig. 14 refer to the algorithmic-
level performance, assuming the operands are already avail-
able in the local input registers and without considering
any additional latency overhead related to the implemen-
tation. For the architecture in [12], in fact, one more cycle
is required to split the shift into two steps and increase the
operating frequency. The average number of clock cycles, in-
cluding the ones required by the hardware implementation,
are summarized in Table 1 for all the VLNPD variants and
the designs in [12], and [24].

Notably, in VLNPD schemes, the latency might be fur-
ther reduced by avoiding one clock cycle to load the
operands in internal registers, introducing a multiplexer to
directly pass the dividend at the input of the shifter and the
CLZ unit. In the present analysis, we did not implement this
further improvement to limit the hardware overhead and
to assume the same operation setup for all the compared
dividers.

6 IMPLEMENTATION ON FPGA
We synthesized and implemented the VLNPD divider, in
all its variants, on the Xilinx Virtex UltraScale+ VCU118
board (XCVU9P-L2FLGA2104E) using Vivado 2022.2. We
also replicated the design in [24], for which the data avail-
able in the literature are related to a Virtex-7 FPGA board.
Table 2 reports the results of the implementations in terms
of hardware resources, i.e. Look-Up Tables (LUTs) and Flip-
Flops (FFs), operating frequency, average execution time per
division at the maximum operating frequency, and average
energy consumption per division.

The average execution time per 32-bit division is com-
puted according to (3) and is reported in Table 2.

Execution time =
average latency

frequency
(3)

The average dynamic energy consumption per division
and average static energy consumption per division is cal-
culated according to (4) and (5).
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TABLE 2
Operating frequency, execution time, area and energy consumption results obtained on Xilinx Virtex UltraScale+ VCU118 board

Operating Number of Number of Average Dynamic Average Static Average Execution
Frequency [MHz] LUTs FFs Energy per Division [pJ] Energy per Division [pJ] Time per division [ns]

NPD 800 136 103 2969.010 10.189 41.250

VLNPD-Std 300 385 103 178.270 6.290 8.489

VLNPD-LA 315 290 103 195.056 4.370 8.846

VLNPD-HF 460 463 115 326.846 7.020 7.105

VLNPD-HP 268 438 103 165.820 8.733 8.839

Quick-Div [12] 426 365 129 332.391 6.424 8.670

Priority Encoders [24] 286 446 103 261.100 13.162 13.321

E dynamic =
Pdynamic

frequency
∗ average latency (4)

E static =
Pstatic

frequency
∗ LUT% ∗ average latency (5)

where Pdynamic and Pstatic are the dynamic and static
power data, respectively, which have been obtained by the
Vivado power estimation based on the switching activity
trace file extracted from the gate-level simulation of actual
division operations; LUT% is the percentage of the total
LUTs of the device occupied by the division unit. For the
design in [12], the energy results were not available in the
literature and therefore they were produced by replicating
the microarchitecture on the same target FPGA.

The original NPD shows an operating frequency of
800 MHz and a very low area occupancy. It requires an
average execution time of 41.25 ns and an average dynamic
energy of 2969.01 pJ due to its fixed latency of 33 cycles.

The VLNPD designs significantly improve the execution
time and the average dynamic energy per division, at the
cost of more hardware resources. The VLNPD-Std version
requires 385 LUTs and 103 FFs with an operating frequency
of 300 MHz. Despite the lower frequency, thanks to an
average of 2.55 cycles per division, it exhibits an average
execution time of 8.489 ns, providing a speedup of 4.86×
over the original algorithm and 1.02 compared to [12]. The
latency difference also affects the average dynamic energy,
which in the case of the VLNPD-Std equals 178.270 pJ ,
93.99% less than the original division algorithm and 46.37%
less than [12]. These values are also lower than all the com-
pared variable latency architectures, making the proposed
VLNPD the most performing in terms of the average latency,
average execution time, and average static and dynamic
energy.

The VLNPD-HF version described in Section 4.2 allows
the operating frequency to be increased by 53.33% over
the VLNPD-Std version, resulting in a value of 460 MHz.
This version requires 20.25% more LUTs, 12 more FFs,
and a higher average number of clock cycles (Table 1).
Nevertheless, this architecture has the highest frequency
and the lowest execution time of all the compared variable
latency dividers. In fact, the VLNPD-HF version exhibits an
average execution time speedup of 5.80× over the original
algorithm, 1.20× compared to the VLNPD-Std version and
1.22× over [12].

The VLNPD-LA design described in Section 4.4 reduces
the number of LUTs by 24.67%, making this version the

one with the smallest area occupation and the lowest static
energy per operation.

Finally, although the VLNPD-HP version has the lowest
operating frequency and the highest hardware resource
utilization, it has the lowest average latency per division,
providing significantly better performance.

7 IMPLEMENTATION ON ASIC
We further evaluated the ASIC implementation of the pro-
posed VLNPD dividers by synthesizing them with Synop-
sys Fusion Compiler on GlobalFoundries 22FDX (GF22FDX)
technology. Table 3 contains the comparison between the
proposed dividers and the existing reference dividers, again
in terms of area, dynamic and static energy consumption per
division operation, maximum operating frequency in typical
process corner, and resulting average time per operation.
Also, for the ASIC implementation, energy consumption
data were obtained by the power calculator tool based
on switching activity trace files extracted from gate-level
simulations of real operations.

With respect to the original NPD, the four VLNPD di-
viders proposed in this work provide an average execution
time speedup that ranges from 7.77× for the VLNPD-Std
version to 8.48× for the VLNPD-HF version. Correspond-
ingly, the average energy per division operation is reduced
by 77.12% for the VLNPD-Std implementation up to 84.32%
for the VLNPD-LA implementation.

To compare with the reference variable-latency design
Quick-Div, we replicated and synthesized the design re-
ported in [12] on the target technology. The execution time
speed-up obtained by the VLNPD dividers ranges from
1.18× to 1.29×, while the average energy per division
operation is reduced by 16.50% up to 42.79%.

The VLNPD-Std version of the variable latency divider
shows an operating frequency of 1 GHz (40% less than the
original algorithm), which is increased up to 1.40GHz (only
15.66% less than the original algorithm and 12.83% higher
than the reference design Quick-div) by the VLNPD-HF
architecture. The area occupation range from 619.27 um2

for the VLNPD-LA design to 893.30 um2 in the VLNPD-
HP occupying less area than the reference design Quick-div.
Overall, the VLNPD-HF Variable Latency Divider results to
be the best version for ASIC implementation.

8 PERFORMANCE ANALYSIS ON BENCHMARK
PROGRAMS

Since the actual speed of variable latency dividers is data-
dependent, it is relevant to explore the performance of the
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TABLE 3
Operating frequency, execution time, area and energy consumption results obtained on Synopsys Fusion Compiler in GF22FDX technology.

Operating Total cell Average Dynamic Average Static Average Time
Frequency [GHz] Area [um2] Energy per Division [pJ] Energy per Division [pJ] per division [ns]

NPD 1.66 310.97 13.464 1.171 19.800

VLNPD-Std 1.00 727.10 3.081 0.686 2.546

VLNPD-LA 1.06 619.27 2.111 0.484 2.451

VLNPD-HF 1.40 750.80 2.735 0.665 2.334

VLNPD-HP 0.98 893.30 3.375 1.008 2.407

Quick-Div [12] 1.22 722.78 3.690 0.775 3.026

proposed design as well as other reference designs in the
execution of real-world computation kernels. We imple-
mented the execution of six representative benchmarks in
C++ using the target division algorithms. Also, since it is
very likely that in a system-on-chip architecture, the critical
path that imposes the clock frequency is not in a small
sequential divider, we compared the actual performance
of the dividers in a continuous range of frequencies from
100 MHz up to the maximum operating frequency specific
to each divider. The range of considered clock frequencies
is representative of an FPGA implementation; equivalent
results may be obtained for frequency ranges related to
ASIC implementation.

8.1 Benchmark set
Details on the six benchmark routines adopted for the
analysis are the following:

RNG: pseudo-random number generation function. At
each iteration, a new random number, Xn+1, is calculated
starting from the previous one, according to (6). Like the
minstd rand functions in C++, we used m = 231 − 1, a =
16807 and c = 0. In this benchmark, 23% of the executed
instructions are divisions.

Xn+1 = (aXn + c) mod m (6)

SQRT: Newton-Raphson method used to find the ap-
proximate value of the square root of a number x according
to (7). The iterative method starts with an initial guess g
and uses it to improve the estimation, g′, until the desired
accuracy is achieved. In this routine, 26% of the operations
are divisions.

g′ = 0.5 ∗ (g + x/g) (7)

PRIME: function that checks whether an integer input n
is a prime number. If at least one of the divisions between
n and every possible divisor in the range [0,

√
n] has a

remainder equal to zero, the number is not prime. In this
benchmark, 25% of instructions are divisions.

RSA: function for decrypting text files using RSA tech-
nique (8), [33]. The private key is indicated with d, and the
modulus is indicated with n. The percentage of divisions
in this benchmark depends on n; on average, circa 13% are
divisions.

m =
(
cd mod n

)
(8)

LU FACT: function for performing the LU factorization
of fixed-point matrices. This technique is used for efficiently
solving linear systems and inverting matrices in AI tasks
such as regressions and recommendation systems. For 3× 3

matrices, in this benchmark 16% of the operations are divi-
sions.

IMDIV: pixel-wise image division used to report the
fractional change or ratio for each pixel. In this benchmark,
33% of operations are divisions.

8.2 Results

The results of the analysis are expressed as the average divi-
sion absolute execution time when running the benchmark
routines, in the examined clock frequency range. Fig. 16
summarizes the obtained data. The general most relevant
outcome of the analysis is that - in all the benchmarks
- the proposed VLNPD dividers can obtain the same or
better average execution time at a frequency lower than the
other compared dividers. This is particularly relevant as it
would allow running the entire system-on-chip architecture
- in which the divider is to be integrated - at a lower
frequency while maintaining the same division operation
performance, in the view of low power consumption. Other
specific details on the results are discussed below. In the
RNG benchmark, the VLNPD-Std version of our variable
latency divider shows an average number of clock cycles of
2.49, providing a speedup equal to 13.25× over the original
algorithm and 1.40× over Quick-div. The low average is
due to how this benchmark works. Considering that in (6),
m is equal to 231 − 1, this function performs two types of
division:

1) dividend ≤ m: as described in Section 5.1, the pro-
posed algorithm always completes these divisions
in one clock cycle;

2) 231 < dividend < 232: in this case, the distance
(in powers of two) between the dividend and the
divisor can be at most 1, and these divisions require
two clock cycles (Fig. 13). Such a range for the
dividend means that the first performed dynamic
shift equals 32 − 1 − 1 = 30. The subtraction
result will certainly be negative and another shift
will be required. However, this is exactly the case
optimized in the VLNPD-HP version that, in this
benchmark takes an average of 1 clock cycle.

To this quantity, an additional clock cycle must be added
due to the hardware implementation, as described in Section
5. This discussion also explains why the VLNPD-LA exhibits
the same performance of the VLNPD-Std in this benchmark.

In the SQRT benchmark, the latency increases with the
difference in magnitude between input operands, reaching
its maximum in the last iteration when the estimation g′
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Fig. 16. Average execution time per division required in six different benchmarks as a function of the operating frequency

matches the actual number’s square root. In this case, the
following condition holds: log2(g

′) = 1
2 log2(x), meaning

that the maximum latency according to Fig. 13, will be
equal to 10 clock cycles. On average, the VLNPD-Std version
requires 6.65 clock cycles for this benchmark, providing a
speedup equal to 4.96× compared to the NPD and 1.15×
over Quick-div.

The PRIME benchmark is the worst for variable-latency
dividers since the dividend is fixed and the divisor varies
in [2,

√
n]. Also, the procedure is interrupted on the first

division with a non-zero remainder, meaning that, in most
cases, only a small part of the available range is tested. For
this benchmark, the VLNPD-Std presents an average clock
cycle of 14.61, providing a speedup of 2.26× and 1.06× over
NPD and Quick-div, respectively. Note that this example
shows how the workload strongly impacts the performance
of the VLNPD-LA version that is almost never capable of
performing the dynamic shift.

In the RSA benchmark, no particular observations are

required since the latency depends on the distance of the
powers of c and the modulus n. The VLNPD-Std presents
an average number of clock cycles equal to 7.49, with a
speedup equal to 4.41× compared to NPD and 1.07× over
Quick-div.

In the LU FACT routine, the elements of the lower
triangular matrix are computed through the division by the
corresponding diagonal elements of the upper triangular
one. In this benchmark, the VLNPD-Std requires 4.82 clock
cycles, with a speedup equal to 6.84× relative to the NPD
and 1.1× over Quick-div.

Finally, in the IMDIV program, the division is usually
performed between two pixels with similar values. The
VLNPD-Std has an average of 2.62 cycles and a speedup
of 12.60× compared to NPD and 1.50× over Quick-div.

9 CONCLUSIONS

The presented variable latency data-dependent division ex-
ploits the relationship between the leading zeros in the
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divisor and the partial remainder to reduce the average
execution time and energy consumption. These features
make it suited for low-power embedded applications with
high speed requirements.

We presented the algorithm, its hardware implementa-
tion and a detailed performance analysis to evaluate its
effectiveness. Experimental results show that the approach
achieves an average of 1.55 clock cycles per 32-bit integer
division, providing a speedup of 20.65× over the starting
NPD algorithm, and in the range of 2.26× up to 13.25×
when applied to real benchmarks, depending on the input
data.

We illustrated four implementation versions of the pre-
sented divider, and we synthesized all of them on a
Xilinx Virtex UltraScale+ VCU118 FPGA, as well as on
ASIC GF22FDX technology. The FPGA VLNPD-Std version
achieved the lowest execution time per division in the liter-
ature with an average of 8.489 ns, also reaching the lowest
average dynamic energy consumption, with a reduction of
93.99% compared to the original algorithm and 46.37% over
the reference design. The same properties were observed
on ASIC in GF22FDX technology, with an execution time
of 2.546 ns and dynamic and static energy consumption of
3.081 pJ and 0.686 pJ , respectively. The VLNPD-HF version
improved the operating frequency by 53.33% on FPGA and
40% on ASIC, leading to a further reduction in the average
execution time compared to the VLNPD-Std version, with
7.105 ns on FPGA and 2.334 ns on ASIC despite a higher
average latency in clock cycles. The best performance in
terms of latency was achieved by the VLNPD-HP version
with an average of 1.36 clock cycles and the 75% of divisions
completed in just one iteration. In contrast, the VLNPD-
LA version reduced the area occupation by 26.67%, leaving
performance highly dependent on the target application.

The availability of different versions allow selecting
the implementation according to the system requirements.
Overall, the VLNPD-Std is the most versatile hardware
implementation of the algorithm that balances operating
frequency, power consumption and hardware requirements,
offering a general excellent alternative to fixed-latency solu-
tions in embedded systems. The VLNPD-HF version should
be preferred when the system performance is limited by
the operating frequency of the variable latency arithmetic
units. The VLNPD-HP results particularly suited when
clock frequency is imposed by other parts of the system,
so that minimizing the clock cycle count per division is
primary. Finally, the VLNPD-LA version is recommended
in scenarios with very strict hardware resource constraints
and the workload profiling can be used to tune the shifter
range.
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