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Model-based Generation of Hardware/Software
Architectures with Hybrid Schedulers

for Robotics Systems
Ariel Podlubne, Johannes Mey, Andreas Andreou, Sergio Pertuz, Uwe Aßmann and Diana Göhringer

Abstract—Robotic systems compute data from multiple sensors to perform several actions (e.g., path planning, object detection).
FPGA-based architectures for such systems may consist of several accelerators to process compute-intensive algorithms. Designing
and implementing such complex systems tends to be an arduous task. This work proposes a modeling approach to generate
architectures for such applications, compliant with existing robotics middlewares (e.g., ROS, ROS2). The challenge is to have a
compact, yet expressive description of the system with just enough information to generate all required components and to integrate
existing algorithms. The system model must be application-independent and leverage FPGA advantages, such as concurrency, energy
efficiency, and acceleration due to custom designs, surpassing software-based solutions. Previous work mainly focused on individual
accelerators rather than all components involved in a system and their interactions. The proposed approach exploits the advantages of
model-driven engineering and model-based code generation to produce all components, i.e., message converters as middleware
interfaces and wrappers to integrate algorithms. Data type and data flow analysis are performed to derive the necessary information to
generate the components and their connections. Six different schedulers are proposed to cover multiple scenarios. Solutions to several
identified challenges for generating entire systems from such models are evaluated using four different use cases.

Index Terms—HW/SW Co-Design, Robotics, Code Generation, Model-Based, Embedded Hardware, FPGAs.

✦

1 INTRODUCTION AND MOTIVATION

THE range of robotic applications has been increasing
lately, from manufacturing [1], collaborative robots in-

teracting with humans [2], biomedicine [3], drones [4] as
well as mobile robots [5], to name a few. As the range
of applications expands, robotic platforms are becoming
more complex. This complexity arises from the requirement
to concurrently process heterogeneous data from multiple
sensor types to meet real-time constraints. An architecture
should facilitate the development of robotic systems by
providing helpful constraints on the design and implemen-
tation of the desired application without being overly re-
strictive [6]. Field Programmable Gate Arrays (FPGAs) pro-
vide the flexibility to reprogram them with custom designs,
suited for targeted applications. However, designing FPGA-
based architectures for such systems tends to be an arduous
process as it requires low-level hardware (HW) knowledge
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and a long and complex design process. Even though the
proven advantages of FPGAs (i.e., concurrency, lower en-
ergy consumption, acceleration due to custom HW design)
for robotic applications [7], [8], [9], porting them from
software (SW) to embedded HW platforms or accelerating
parts requires the creation of suitable interfaces. This often
means the re-design of several parts of the applications.
Lastly, the manual interconnection of multiple components
for complex applications (i.e., multiple accelerators) turns
into an error-prone process. Therefore, this work proposes
a modeling approach to automatically generate and deploy
architectures for robotic applications in FPGAs. The research
questions to answer are how to generate all required compo-
nents for such architectures from a holistic model and how
that model should be defined. This brings some require-
ments: (R1) the description should be compact, concise, but
expressive enough containing the necessary information to
derive the system’s components and their relations. (R2) the
approach must be application-independent, and (R3) it must
exploit the benefits of FPGAs over SW solutions. Finding the
optimal trade-off among these requirements poses signifi-
cant challenges. Existing solutions address specific subsets
of these requirements, but this study aims to fill the gap
by providing a comprehensive solution that covers all of
them. The tree main identified challenges are: (CH1) Obtain
the explicit and derive the implicit information from the
system specification. (CH2) The system specification has to be
a compact and meaningful description so writing it is not
as cumbersome as deploying the system manually. (CH3)
There has to be an understanding of the specifications of
interfaces to generate the compliant components and the
relations among each other. Addressing these requirements
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needs sophisticated tooling, specification design, and static
and runtime analysis. These go beyond the scope of con-
figuration and scripting-based approaches found in related
works, which only tackle specific aspects of the problem.
Hence, the main contributions of this work are:

• Model Analysis: A comprehensive analysis of the
system specification to derive the holistic model that
includes all the components to generate, their inter-
faces and how they all interact among each other.

• Interfaces: Wrappers for accelerators based on
middleware specifications to ease their integration.

• Scheduler: Multiple algorithms tailored for hybrid
HW/SW architectures.

• Design Space Exploration: Evaluation frame-
work to decide the most suitable scheduler for each
application.

This work builds upon our previous one [10], extending
the pool of scheduling algorithms and incorporating Do-
main Space Exploration (DSE) for evaluation and selection
of the most suitable algorithm for each application. To the
best of the authors’ knowledge, no comparison of multi-
ple HW IP-based scheduling algorithms, including the one
presented in this work, has been conducted in the given
context. Furthermore, our novel contribution of generating
the complete system from a simple description replaces
the arduous process of the traditional FPGA flow, allowing
roboticists, who may not be FPGA experts, to leverage the
benefits of FPGAs.

2 RELATED WORK

Research over the last years showed the potential advan-
tages of FPGAs over Central Processing Units (CPUs) and
Graphics Processing Units (GPUs) concerning performance,
energy consumption and latency for efficient implemen-
tations of robotics applications [7], [8], [9]. An essential
aspect of FPGA acceleration for robotic applications is how
to integrate accelerators into software-centric robotics sys-
tems. Most approaches rely on the Robot Operating Sys-
tem (ROS), which has become the mainstream middleware
used by roboticists over the years. It is an open-source
middleware that runs on top of Linux and provides an
off-the-shelf solution to deploy algorithms easily in a SW
distributed system. It consists of nodes where computation is
performed, and they exchange messages with each other over
topics. Different approaches have been proposed to combine
FPGAs and ROS, improving the computational power of
robotic systems. However, most of them focus on a single
dedicated solution, often neglecting the integration aspects.
The extended capabilities of the new ROS2 version finally
enable real-time support and the specification of Quality of
Service (QoS) settings for publishers and subscribers. Given
the significance of communication between SW and HW
in meeting these requirements, there is a need for flexible
message scheduling to address potential bottlenecks.

Early approaches [11], [12], [13], [14] focused on
HW/SW Co-Design techniques to accelerate parts of SW
applications. They proposed the automatic generation of
interfaces between HW and SW, partitioning ROS message
specifications. They aimed to minimize the communication
time between these two and use High Level Synthesis (HLS)

to increase productivity. These solutions were not integral,
as they mainly focused on particular applications rather
than general architectures.

Shi et al. [15] presented a heterogeneous platform based
on OpenCL to enable researchers and engineers without
FPGA expertise to develop heterogeneous computing ap-
plications efficiently. They mainly targeted the most active
research fields in robotics, namely Simultaneous Localiza-
tion and Mapping (SLAM), motion planning, and Convolu-
tional Neural Network (CNN). Even though it simplifies the
process by relying on OpenCL, the authors mainly focused
on particular kernel generation. The concurrent execution of
multiple kernels as a holistic system is left for future work.

Lienen et al. [16] presented an event-based programming
approach that leverages [17], a framework to map ROS2
nodes to SW or reconfigurable HW. It is based on callbacks
to partially reconfigure pre-allocated slots for either SW or
HW executions. There may be a limiting factor for specific
applications with time constraints smaller than the recon-
figuration time needed for each callback. The work was ex-
tended by introducing a reconfigurable slot model [18]. This
enables dynamic loading and execution of HW-mapped
ROS2 callback nodes instead of statically placing them in re-
configurable logic. The scheduling algorithm follows a First
In First Out (FIFO) approach for registering callbacks, which
can make retrieved data unusable, as discussed in Sec-
tion 4.3. This motivates the proposed scheduler schemes in
this work. The evaluation includes six accelerators, but the
system’s scalability remains unclear with a large number of
accelerators.

A complete HW architecture and the generation of in-
terfaces compatible with robotics middlewares is presented
in [19]. The main advantage of this work is the auto-
matic generation of HW components based on message
specifications to interface HW accelerators. The automatic
integration of accelerators is solved in the current work,
eliminating the need for manual implementation. The pro-
posed model-based approach facilitates a comprehensive
understanding of the desired system via model analysis.
This is particularly crucial for simplyfing the generation and
deployment of complex systems, such as those involving
multiple interconnected accelerators with full middleware-
based interfaces.

CPU+FPGA scheduling has been previously stud-
ied [20], [21], [22], mainly focusing on one specific algorithm
for a given use case. [23] proposed heterogeneous resource-
elastic scheduling for maximizing the utilization of CPU and
FPGA resources by dynamically scaling the resource alloca-
tion for tasks. Unlike these approaches, our work provides
different algorithms that can be seamlessly integrated with
DSE. This enables the selection of the optimal algorithm
for each use case, particularly in scenarios involving data
exchange between SW and HW. The scaling factor of the
system is relevant and it is also evaluated.

3 CODE GENERATION WORKFLOW

A typical robotics system consists of various components,
including CPUs, accelerators, and converters that serve as
interfaces between them. The concepts shown in this work
follow the Zynq device model with a Processing System
(PS) and a Programmable Logic (PL) sharing data via Direct
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Fig. 1: Quaternion to Euler converter with ROS interfaces

Memory Access (DMA). However, this is not limited as the
CPU support can be extended (e.g., soft-cores) or removed if
not needed. An example is shown in Figure 1, which consists
of a subscriber converter to receive a quaternion, an accelerator
to compute the conversion to Euler angles, and a publisher
converter to broadcast the result. AXI Stream (AXIS) slave
(S_AXIS) and master (M_AXIS) connect to DMA through a
Manager to schedule transactions between PS and PL [19].
Understanding the characteristics of each component and
their interactions is essential to automatically generate the
necessary artifacts and deploy robotics systems according
to a given specification. Listing 1 shows how to describe
such a system for the proposed workflow. The interfaces
of the accelerator (Line 12 and Line 15) include a message
type. Wrappers are generated to provide the desired signals
corresponding to that message type for the components
performing the computation. In this case, the accelerator
is an HLS component (Line 7), so the equations for the
conversion are defined in a .cpp file (Line 8), leavriging
tools such as Vivado or Vitis HLS. VHDL is also supported
and further HW description languages can be added with
templates, as explained below. A SW implementation is also
possible by changing the type to ROS-SW. How to specify
all components and how they interact with each other
is shown from Line 17. Similar to the accelerators, it is
necessary to define the message types for publishers and
subscribers . Lastly, the output of each component must be
declared as outgoing, defining the destination block. Like so,
in a compact specification, the characteristics of accelerators,
their interfaces, and how to establish the communication for
incoming and outgoing data have been defined. Multiple
components are involved in such architectures besides the
converters and accelerators. They are the ones that depend
on the integrity of the system (i.e., Manager, DMA), depend-
ing on how many converters and accelerators are involved.
These components are not part of the system specification as
they are not generated, but their configuration is derived
from it. Additionally, tailored scripts are needed to deploy the
entire architecture. The workflow of the proposed toolchain
is shown in Figure 2, with Listing 1 as an example of a system
specification.

Model Analysis: The information to generate the dif-
ferent converters, wrappers for accelerators, and tailored
scripts is deduced only from the system specification. All
required information that is not explicitly defined (e.g., total
components to manage transactions between PS and PL)
is derived by doing data-type and data-flow analysis of
the message types and connections of the components. All
individual connections (at signal level) among all blocks,
based on the specification and their interfaces, are also
inferred. All this derived information is expressed in an

1 project:
2 name: RotationConverterNode
3 fpgaPart: xc7z020clg400-1 #FPGA family is derived
4 # Definition of accelerator types
5 accelerators:
6 - name: QuaternionToEuler
7 type: HLS # can be HLS, VHDL or ROS-SW
8 sources: ./QuaternionToEulerConverter.cpp
9 interface:

10 input:
11 - middleware: ROS
12 message: geometry_msgs/Quaternion
13 output:
14 - middleware: ROS
15 message: geometry_msgs/Point
16 # Definition of all components and their relations
17 blocks:
18 - name: Quaternion_sub # converter
19 type: # ROS > accelerator
20 middleware: ROS
21 mode: subscriber
22 message: geometry_msgs/Quaternion
23 outgoing: # can have many destinations
24 - name: QuatToEuler_acc
25 - name: QuatToEuler_acc # accelerator of the type
26 type: QuaternionToEuler # defined in line 7 and it
27 outgoing: # can be used multiple times
28 - name: Euler_pub
29 - name: Euler_pub # converter
30 type: # accelerator > ROS
31 middleware: ROS
32 mode: publisher
33 message: geometry_msgs/Point

Listing 1: System specification for a Quaternion to Euler
system
extended and detailed version of the system specification, as
a template configuration for the template engine.

Template Engine: The template engine1 along with tem-
plates are used to generate the intermediate artifacts. A tem-
plate is a generic source code that resembles the expected ar-
tifact. It is expanded with given specifications (template con-
figuration) accordingly to the needs (e.g., names, bit widths).
These templates are included in the toolchain. They are coded
once and are re-used for any system specification. There are
multiple ones involved, according to the intermediate artifact
to generate. These can be for HLS or VHDL sources (e.g.,
converters) or tailored scripts as configurations for vendor
dependent tools to generate the expected components. New
templates can be added to the toolchain with ease to extend
it for new components, additional HW description methods
(e.g., Verilog), or scripts for different vendors. This is proven
in [19] by extending support from ROS1 to ROS2. The main
difference lies in the serialization of messages in ROS2 to
improve memory alignment and influences the logic of
the generated VHDL converters. It is worth noting that
most proposed HW components remain independent of the

1. Mustache—Logic-Less Templates, https://mustache.github.io
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1 accelerators:
2 - name: GrayScale
3 type: HLS
4 sources: ./grayScale.cpp
5 interface:
6 output: # Same for input
7 - middleware: ROS # (simplified due to space)
8 message: sensor_msgs/Image
9 include: ["height", "width", "data"]

10 blocks:
11 - name: ImgFilter_sub # converter
12 type: # ROS > accelerator
13 middleware: ROS
14 mode: subscriber
15 message: sensor_msgs/Image
16 outgoing:
17 - name: ImgFilter_pub
18 exclude: ["height", "width", "data"]
19 - name: GrayScale
20 include: ["height", "width", "data"]
21 - name: GrayScale_acc # accelerator of the type
22 type: GrayScale # defined in line 2
23 outgoing:
24 - name: ScaleDownNearest_acc
25 include: ["height", "width", "data"]
26 - name: ImgFilter_pub # converter
27 type: # accelerator > ROS
28 middleware: ROS
29 mode: publisher
30 message: sensor_msgs/Image

Listing 2: Snippet of the connections between accelerator
and publisher converter

middlewares, as the middleware’s influence is reflected only
in the logic of the converters.

Generators: They take the intermediate artifacts to build
and deploy the entire system. There are two types. Those
that generate components (i.e., accelerators, converters,
manager), and the system generator which does not generate
components but uses them. The latter one takes a set of
tailored scripts for each application and the information of
a (vendor-dependent) targeted platform. It deploys all the
generated components and the derived ones (e.g., Manager,
DMA). Additionally, as their interactions have been derived
(each individual signal), it connects all of them accordingly,
as specified in the template configuration. This work uses bash
scripts to handle different tcl scripts for Vivado, and Vivado
and Vitis HLS tools. These tools are used to import the gen-
erated and provided sources (i.e., .cpp for the accelerators,
.vhd for the converters and manager), and export them as
IPs for automatically deploying the desired holistic system.

4 CODE GENERATION CHALLENGES
FOR HW/SW ARCHITECTURES

The generation of the previously described architecture
presents three main challenges, which are outlined below.

4.1 Concise Holistic Model

An important aspect is to have a concise but expressive
description of the system (CH2), as shown in Listing 1.
This means that there has to be a mechanism to include or
exclude signals from one component to another. Examples
of these are shown in Listing 2 (Line 18 and Line 20).
These keywords are analyzed to determine which signals
corresponding to a message specification (Line 15) should
be connected to which component. They can be individual
signals as well as submessages. Analyzing the structure
of the message definition allows filtering and deriving the
desired signals from one component to another.

4.2 Dynamic Frame Length

Listing 2 shows the specification of a system which con-
tains an HLS accelerator of an image processing application
compliant with a sensor_msgs/Image message from ROS. This
message includes a string (i.e., frame_id) which varies with
every new frame, and the image itself could also vary
depending on the application (e.g., image upscaling/down-
scaling). Hence, the number of bytes for the publisher to
transmit (frame length) can change dynamically. Figure 3
depicts the generated components for such system. It con-
tains the subscriber and publisher converters (to send/receive
the image message from/to the PS over DMA), and the
image processing application itself provided by the user
(Line 4). The transmission of the message through the
publisher converter cannot start unless the total number of
bytes (frame length) to transmit is known. Hence, the frame
length component computes this at runtime. Considering the
case that the message may not transmit all of its fields, or
the ones containing fields that change their length dynamically
(e.g., strings), the total length cannot be known at compile
time. Therefore, a tailored component to obtain dynamically
the frame length of each publisher is generated when needed
and added as shown in Figure 3. SW implementations have
access to large memory blocks, and the entire message is
available constantly. This is not possible on the HW side
as data is streamed, which makes it necessary to have a
mechanism to compute the total bytes in each frame as
they can change dynamically. The fields of a message that
are involved in this computation are derived by analyzing
Listing 2. This will provide the individual lengths of dy-
namically changing fields that are needed as inputs for this
new component to compute the publisher’s frame length. The
fixed-sized field lengths are calculated in the analysis, as
these are known at compile time.

Algorithm 1 computes the length of a message from its
contained fields using the helper methods FIELDLENGTH to
compute the length of a field and TYPELENGTH to compute
the length of a type. Fields can be arrays of variable length
not known before receiving a message. Thus, signals con-
nected to AXIS must be used to obtain the length at runtime
using the signal() function. Note that because arrays (and
messages) can be nested, but their contents are not uniform,
each information taken from a signal must be obtained at the
right time during the reception of the message. This means
the TOTALLENGTH can only be computed once the last size
signal of an array within the message has been received.
Because the size signals are evaluated at different times,
parts of the message might need to be buffered [24], which
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is also inferred at the Model Analysis stage.
4.3 Scheduling Transactions between HW and SW

Addressing the communication between the HW and SW
components is a crucial aspect when dealing with hybrid
HW/SW systems. In our case, the SW part is based on ROS.
Its default scheduling scheme to receive new messages is
shown in Figure 4a. It consists of a shared callback queue
for all subscribers. Hence, the callback queue needs to be
read three times (retrieving B) before A can be read, in a
FIFO manner. This can cause a message to no longer be
usable for a given subscriber. Therefore, a modification to
this scheme is proposed (Figure 4b) by using individual
callback queues for each incoming message. This leads to
the question of which spinner thread should get a hold of
the DMA to exchange data from PS to PL. Similarly to
the different SW threads, accelerators also compete to get
a hold of the DMA to send data from PL to PS. Therefore,
multiple scheduling algorithm are proposed and their de-
tailed HW implementation is described in Section 6. The
HW schedulers remain independent of the ROS version,
as the converters are influenced by the middleware and
responsible for providing the necessary interfaces.

5 THE MODEL-DRIVEN CODE GENERATION
TOOLCHAIN

After discussing the toolchain in Section 3 and three particu-
lar challenges in Section 4, this section explains the technical
details of the implementation and argues why a model-
driven approach is beneficial. Model-driven engineer-
ing [25], [26] offers a systematic and domain-oriented de-
velopment approach using domain-specific models, model
transformation and code generation to create comprehensi-
ble and maintainable SW. The toolchain shown in Figure 2
has two essential components: the model analysis and a set
of provided resources and inputs that are used to construct
the system using a template engine. In this case, a logic-
less template approach is used with simple placeholders in

Algorithm 1 Computation of message length
1: function MESSAGELENGTH(Message m)
2: l := 4
3: for each Field f in m do
4: l := l + FIELDLENGTH(f )
5: return l

6: function FIELDLENGTH(Field f )
7: l := 0
8: if f is no array then
9: l := l + TYPELENGTH(f )

10: else if f is fixed-length array then
11: for i in range(array_length(f)) do
12: l := l + TYPELENGTH(index(f, i))
13: else if f is variable-length array then
14: l := l + 4
15: for i in range(signal(f, length)) do
16: l := l + TYPELENGTH(index(f, i))
17: return l

18: function TYPELENGTH(Field f )
19: l := 0
20: if type_of(f) is built-in type then
21: l := size_of(t)
22: else if type_of(f) is message then
23: l := l + 4
24: for each Field s in f do
25: l := l + FIELDLENGTH(s)
26: return l

the template rather than programmed instructions, which
simplifies the definition of templates for domain experts.
Therefore, all analysis and reasoning must happen within
the tool.

The toolchain uses and extends the open-source solu-
tion provided by [19] and thus also uses a grammar-based
modeling approach based on attribute grammars [27]. As
opposed to other modeling approaches, grammars describe
trees rather than models comprised of arbitrarily structured
elements. This approach was used in [19] to derive all re-
quired information to generate the converters for individual
messages; here, we include the middleware-based interfaces
generated in [19] and extend the approach to the generation
of the entire system. Thus, the analysis must be able to
derive all relevant information for the creation from the
system specification (e.g., in Listing 1) and the provided static
resources. Attribute grammars are an approach to compute
semantic properties of a language (or, in our case, a model)
in a declarative and formalized way. In this case, the concept
of higher-order attributes [28] is used, which additionally
allows the computed properties to be entire new artifacts.
For this, we employ relational reference attribute grammars
[29], [30], which allow efficient linking of tree elements with
cross-tree relations.

The three challenges identified in Section 4 are used to
illustrate why such a model-based approach is a necessary
and adequate solution to generate HW/SW architectures.

5.1 Tailored Information using Intermediate Represen-
tations

Since a major target of the proposed system is to have
concise specifications (CH2), most required information to
construct a complete system is only included implicitly.
However, the employed template engine needs all infor-
mation explicitly specified; thus, an analysis with computed
attributes on the input model are used. However, doing
this transformation in one step is difficult and does not
allow for reuse (R2), since there are multiple template
configurations to be created. Therefore, we employ multiple
intermediate representations, i.e., models based on reference
attribute grammars obtained using model transformation
using higher-order attributes.

One example is an extended system specification model.
As suggested in Section 4.1, to keep the input specification
concise and the implementation efficient, signals connecting
messages can be filtered using include and exclude
hints. This is a shorthand for the specification of all required
signals, which is only possible, because the contents and
nestings of message types are analyzed. In the full system
specification, the inclusion hints are expanded to contain a
(potentially long) list of all individual fields to be included.
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5.2 Simplifying Runtime Computation

The computation of the length of the message was already
highlighted in Algorithm 1. It consists of two main functions
used in a recursive process following the nested structure
of a message definition. The first benefit of the chosen
approach is that the algorithm can be simplified when con-
sidering the intermediate message representation from [19],
which no longer contains fixed-length arrays and less nested
messages, which have been flattened whenever possible.
This removes the else branch in lines 10 to 12 of Algorithm 1
and reduces the nesting depth of the function calls. Sec-
ondly, since the signal data required in the algorithm are
available at different times, function calls have to be inlined
depending on the message type. So, again, type analysis is
required. Finally, the signals required by the algorithm must
be connected, which requires a data flow analysis, which
can be performed using the attribute grammar approach
[31]. Additionally, optimization can be applied if signals are
known at compile time, e.g. when signals are not connected.

5.3 Benefits of Model Analysis in the Development Life-
cycle

In addition to the aforementioned analysis and optimization
steps, the use of a model-based, attribute grammar analysis
approach allows for potential further analysis improving
performance at development time, compile time and run-
time. During development, the construction and verifica-
tion of the system model can be aided by static analysis,
aiding the developer with syntactic and semantic checks,
code completion and suggestions, and refactoring support.
During compile time, knowledge of the entire system can
help with the generation of optimized code beyond the
abilities of the FPGA compiler toolchain or optimizations
for better resource utilization. One example for runtime
benefits is the use of Worst Case Execution Time (WCET)
analysis to ensure real-time guarantees in combination with
Algorithm 1 to adapt the scheduling scheme dynamically,
knowing the time left for the accelerator.

6 SCHEDULERS

The heterogeneous data transmission between PS and PL
components are synchronized through different schedul-
ing algorithms, proposed here to have different options,
adaptable for each application. The algorithms presented
here focus on data movement between CPUs and FPGAs,
as the algorithms are meant to be fully implemented as
IP cores, compared to related work that mostly focuses on
accelerating mostly the compute-intensive parts. Despite the
advancements in real-time scheduling in ROS2, which are
independent of HW/SW architectures, it is important to
note that the schedulers presented here focus specifically
on addressing resource starvation issues when partitioning
applications in a HW/SW Co-Design. In our case, ROS is
used as the communication layer to send/received data
between non-accelerated external components, and the PS-
PL communication is after the callbacks.

A SW implementation is needed to schedule the transac-
tions from PS to PL, and a HW counterpart for the PL to PS
ones. The HW implementation details are described below,
as one needs to consider the low-level signals that are not
needed in SW. Particularly for this work, tasks represent

the time each component can stream its data. In general, a
scheduler has multiple inputs for the requests from the accel-
erators, meaning that they have data available to broadcast
and they are ready to be scheduled. The scheduler’s output
is the grant, allowing only one accelerator to perform the
transmission at a time.

As the AXIS is the chosen communication protocol,
tvalid is used as requests and tready is used as grants.
All proposed schedulers follow the same philosophy with
different variations in how each computes the grants. Each
accelerator that sets tvalid to 1 will get a grant as long
as it is the only one with the highest priority. Only one
accelerator can get the grant on each clock cycle. Therefore,
it will be computed according to each algorithm when
multiple accelerators have data to stream simultaneously.
The end of each task is denoted with tlast, following the
AXIS protocol.

There are four characteristics considered for the sched-
ulers:

• Preemptive: a running task is paused when a higher
priority task arrives and gives the grant. The first one
resumes after the latter one completes.

• Non-Preemptive: a running task will not be inter-
rupted until its execution is completed.

• Fixed Priorities: priorities are set at design time and
kept for the entire runtime of the process.

• Dynamic Priorities: priorities are updated dynam-
ically during runtime according to the scheduling
algorithm.

There is no need for dynamic task allocation during
runtime because the task-to-accelerator mapping is already
fixed and determined at compiletime. Considering that the
end goal is to generate all these components from an abstract
description of the system, the core of implementing the
different schedulers has to be generalizable. The adaptable
statechart shown in Figure 5 serves as the base, comprising
two types of states and transitions. Some states are static,
among all schedulers, while others are customized to meet
the needs of each algorithm, encompasing computations
such as deadline and slack , as well as transition conditions.
Therefore, only certain parts of the statechart differ from
one scheduler to the other. A priority table is initialized
at the beginning. The algorithm-dependent conditions are
computed to use them for updating the priority table accord-
ingly, depending on the algorithm. The updated priorities
are used in the Set Grant superstate to find the maximum
value (highest priority) to asses which accelerator will get
the grant. The transitions within this superstate also depend
on the algorithm, as each of them dictates how to react to
new requests or internal conditions.

The automatic code generation process is simplified by
following this statechart for all algorithms. However, as
each algorithm has different characteristics and computes
priorities differently, the Compute Condition state defines
how this is done. There is no relation between accelerators
and the schedulers, so there is data independency for all
tasks.

Implicit deadlines were chosen for the Earliest Deadline
Fist (EDF) and Least Slack Time (LST) algorithms presented
below. This means, for this work, that relative deadline Di
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is not larger than the transfer time (Ti) plus the frequency Fi

(number of clock cycles after its last transmission, and the
availability of new data to be streamed) , i.e., Di ≤ Ti + Fi

, for every task τi. Moreover, soft real-time constraints are
assumed for the system, meaning that missed deadlines will
not have severe consequences. Four different algorithms are
proposed, two of them with two variations, making six
schedulers in total. They are based on SW solutions with
the corresponding adaptations to HW implementations and
a chosen streaming interface. Below are the details of each
of them:

Least Recently Used (LRU): this algorithm is mainly
used to manage buffer memories and caches. It dynamically
changes the priorities based on the accelerator that got the
grant the latest. This one will be moved to the bottom of
the priority list, ensuring all accelerators to get the grant.
This guarantees that there will be no resource starvation.
However, some accelerators will likely miss their deadlines.
This is more evident the more accelerators are included be-
cause it takes N rounds (in the worst case) for an accelerator
to be on top of the priority list. To avoid this, only the
accelerators which set their requests are considered each time
the priorities are evaluated.

Fixed Priority (FP): this is a static priority algorithm
where priorities remain unchanged throughout the entire
execution time. The VHDL model’s entity defines the prior-
ities based on its N-bit port (N is the amount of accelerators),
with lower-priority signals assigned to the lower bits and
higher-priority signals assigned to the higher bits.. Each
tvalidi signal acts as request and determines the priority of
each accelerator. The lower the N, the higher the priority.
Accelerators are assigned indexes, and the one with the
lowest index, which sets its request is assigned the grant.
There are two variants for this algorithm: preemptive or
non-preemptive. The difference lies in whether the grant
may change at any clock cycle.

EDF: this is a dynamic priority scheduler. Priorities are
updated dynamically on each clock cycle throughout the
entire runtime. These updates depend on the state of the
requests and the proximity of each deadline to the current
time. Deadlines are decremented for each accelerator, with
the request set to one on every clock cycle. Newly arrived
requests are assigned a priority based on their implicit
deadline. Two main computations are required. The first one
is to decrement the deadlines of every accelerator to increase
their priorities. As this is a dynamic priority scheduler, pri-
orities are updated whenever a new request arrives to mod-
ify the priority table. There are two versions proposed. Firstly,

the resources-optimized one (ROEDF) follows the statechart
shown in Figure 5. Secondly, the latency-optimized version
(LOEDF) is a slight modification of the generic statechart
as some computations are merged into the same state. This
reduces the number of state transitions, resulting in fewer
clock cycles but comes at the cost of increased resource
consumption. Thus, a tradeoff exists between resource uti-
lization and latency.

LST: is also a dynamic priority scheduler. Contrary to
EDF, this algorithm will evaluate the slack time of the accel-
erator requesting the grant on every clock cycle according to
si = di − ai − ci, where si is the slack time (priority) of the
accelerator acci with a deadline of di. The time acci sets its
request is represented by ai and ci is the remaining execution
time for the task. The accelerator holding the grant will get
ai incremented and Ci decremented by one on each clock
cycle to keep its slack time until it completes its transmission
or gets preemted by an accelerator with higher priority. For
all other accelerators with request set to one, their arrival
time will be incremented by one, resulting in a lower slack
time on each clock cycle. This algorithm is the most complex
one as it needs to keep track of the remaining processing
time, deadlines, and arrival time of new requests, implying
a higher resource consumption compared to the previous
algorithms.

7 EVALUATION

The fulfillment of the requirements and how the challenges are
solved with the contributions listed in Section 1 are analyzed
in Section 7, through four different use cases. The schedulers
are evaluated in Section 7.2.
7.1 Code Generation

7.1.1 Quaternion to Euler

This use case addresses the challenge of obtaining all the in-
formation (explicit and implicit) from the system specification
(CH1). Listing 1 shows that with only 33 lines of code, the
system depicted in Figure 1 can be generated and deployed
(R1). It can be seen that the input and output signals of
the Quaternion to Euler Converter have not been individually
specified. They have been defined by their message type
(Line 12 and Line 15 in Listing 1). This means that all the
signals that constitute such messages are generated (CH3).
Even though they have not been explicitly defined, they are
derived by analyzing the message type. The information
derived (template configuration) also includes the integration
of the components shown in Figure 1 to the PS via DMA,
which is where native ROS is running to communicate with
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TABLE 1: Execution time of hardware accelerated functions.

Function Software∗[ms] Hardware+[ms] Speedup

Quaternion to Euler 0.012884 0.003730 3.45
Gray Scale conversion 801.45 62.20 12.9
Scale Down Nearest 381.95 20.73 18.4
Integral 212.22 20.73 10.2
Robotic Arm Kinematics 0.017 0.008 2.12
∗Cortex-A9 running at 666 MHz — +HLS IPs running at 100 MHz

external nodes. Additionally, a wizard is provided to avoid
manually writing the system specification but generate it
interactively. This further reduces the possibility of making
mistakes in such an error-prone process. The subscriber
and publisher take 35 and 28 clock cycles, respectively.
The Quaternion to Euler Converter takes 373 clock cycles.
Therefore, the interfaces are not an overhead with respect to
the time it takes to perform the computation (8%, 6%, and
86%, respectively). Table 1 shows the speedup obtained with
the Quaternion to Euler conversion in HW with respect to
SW (R3) running on the PS.
7.1.2 Image Processing

An image processing use case, consisting of pipelined func-
tions (i.e., RGB to Grayscale, Downscaling, and Integral
computation), was generated. Listing 2 shows a snippet of
the system specification used, defining the interfaces for the
accelerators (CH3), which are targeted to be in HLS. It also
includes which elements of each interface is connected to
where. Table 1 shows the execution time of each function.
They take images with an input resolution of 1920x1080
(full HD) scaled down to 640x480. A speedup of 12.9x, 18.4x
and 10.2x respectively was achieved. In this case, the length
of the images (and therefore the resulting AXIS frame) can
change. Therefore, the frame length is dynamically com-
puted, as shown in Figure 3. The component to compute it
is obtained following Algorithm 1 and it only consumes 48
Lookup Tables (LUTs), as it is a purely combinational logic.
In this case, the sensor_msgs/Image does not contain nested
arrays or messages, so there is no need to buffer any signals
to wait for their sizes.
7.1.3 Multi-type messages

A system consisting of multiple converters for differ-
ent types of messages, namely sensor_msgs/Image, sen-
sor_msgs/LaserScan and geometry_msgs/TwistStamped was
generated. Each set of converters (one publisher and one
subscriber for each type of message) had a pass-through
component in between (considered as the accelerator). The
aim of this use case is the evaluation of the scheduling
proposed in Section 4.3. On the SW side, three different
callback queues were set. They received three types of ROS
messages with different lengths at different frequencies.
Depending on the dynamically changing priority list of the
LRU scheduler, transactions between PS to PL occurred.
The evaluation of the HW counterpart for all schedulers is
shown in Section 7.2.
7.1.4 Robotic Arm position estimation

A system to compute the forward kinematics of a 7 De-
grees of Freedom (DoF) robotics arm2 was generated. This
sort of computation becomes relatively complex and pro-

2. https://frankaemika.github.io

portional to the amount of DoF. This is particularly im-
portant when performing motion control by generating a
trajectory without colliding with objects. The accelerator
is based on the desired and measured joint state values
(q and q_d), and the measured and desired end-effector
spatial matrices (O_T_EE and O_T_EE_d), read from the
franka_msgs/FrankaState message. The outputs are the
pose of each joint as fourteen spatial matrices (T1 to T7 and
T1_d to T7_d, based on q and q_d), and the medium square
error (T_mse) of the calculated spatial matrices concerning
O_T_EE and O_T_EE_d. The reason why the Lines of Code
(LoC) for the Generated Artifacts (Table 2) is so large is due to
the extend of the franka_msgs/FrankaState message. However,
this is not a concern when writing the system specification
as it only requires to include the elements that contain the
joint states as the input interface of the HLS accelerator to
compute the kinematic equations. Table 1 shows a speedup
of 2x compared to the SW execution, which would be
beneficial to perform collision detection by knowing the
position of each joint (spatial matrices) as soon as possible.
7.1.5 Manual Vs. Generated Deployment

Table 2 compares the LoC that are manually written (or gen-
erated interactively via the wizard) of the system specification
and of all intermediate artifacts for all use cases. Even though
not all the artifacts would have to be manually written,
the ratio between the LoC of the system specification and
all the intermediate artifacts provides an indication of the
effort for manual deployment in relation to the proposed
workflow in this work. Evidently, the more complex the
project becomes (more accelerators and converters, and
more complex message specifications), the higher the effort.
However, it is important to note that the effort escalates less
when following our model-based approach than manual
deployment.
7.2 Schedulers

The accelerators competing to get a hold of the DMA have
two parameters. One is the transfer time (T ), in this case,
representing the length of its payload to be streamed in
bytes (one byte per clock cycle is transmitted). The other
is the frequency (F ), the number of clock cycles after its
last transmission, and the availability of new data to be
streamed. Each pair is called a set Si = {Ti, Fi}, and
the evaluation methodology followed for the schedulers
consisted of a normal distribution for the generation of N
sets for M = {2, 4, 8, 16, 128, 256} accelerators. The N -
sets constitute a dataset DM = {(S1, σ1), . . . , (SN , σN )},
where σ is its standard deviation. Every algorithm is eval-
uated with the same dataset to understand the behavior
of each scheduler for the same scenario. There are two
types of exploration spaces (composed of the datasets). On
the one hand, a large one with 200 sets, centered around
Slarge = ({100, 100}, 50). Therefore, there will be evenly
distributed sets between 50 and 150 for transfer time and
frequency. This dataset gives a heterogeneous exploration
space to have a general evaluation. On the other hand, the
so-called "corner cases" are evaluated with four different
datasets of ten sets each. They are centered around Scc1 =
({20, 20}, 10), Scc2 = ({20, 180}, 10), Scc3 = ({180, 20}, 10)
and Scc4 = ({180, 180}, 10). These represent short and long
transfer times and frequencies in extreme conditions, and as
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TABLE 2: Lines of Code of Input vs. Generated Artifacts

Use Case
Input Generated Artifacts Generated

to Input
Ratio

System
Specification

Template
Configuration

Acc.Wrappers
and Scripts

Converters
and Scripts

System
Components

Combined
Artifacts

Quaternion to Euler 35 99 22 459 102 682 19.48
Image Processing 83 136 34 692 107 969 11.67
Multi accelerator system 143 322 34 2320 172 2848 19.91
Robotic arm 45 1007 22 16540 307 17876 397.24
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Fig. 6: Schedulers’ resource utilization

σ is small, there is homogeneity in these exploration spaces,
focused on small areas around their centers.

The simulation time for the large dataset is 100us be-
cause the sets are heterogeneous enough, so it is a mix of
large and short slack. The simulation time for the "corner
cases" is 500us because when either the transfer time or
frequency is large, there is less slack, so datasets with a large
number of accelerators are preempted more (mainly the
dynamic priority ones), so they need more time to complete
their transactions. Hence, to have equal comparisons for all
four corner cases, all of them have the same simulation time.
These four ones do not require many datasets as their sets
are homogeneous due to the small standard deviation. All
simulations were performed at 100MHz.

Different metrics are used to evaluate the proposed
algorithm: scalability, schedulability, and performance.
7.2.1 Scalability

The design of the statechart and its derivations for the dif-
ferent scheduling algorithms is meant to rely only on LUTs
and Flip-Flops (FFs). Figure 6 shows that both LUTs and FFs
have linear behavior, which is desired when scaling up, so
the resource consumption does not grow exponentially.

Table 3 shows the ratio for resource utilization between
the two versions of EDF. It proves that, on average, the
ROEDF algorithm shows a 5% reduction in FFs and a 40%
decrease in LUTs. This proves a tradeoff between resource
utilization and latency, as ROEDF consumes fewer resources
but exhibits higher response time and lateness (as shown
below) compared to LOEDF
7.2.2 Schedulability

The schedulability is studied to understand the abilities of
the different algorithms to schedule tasks (to give accelera-
tors the grant). It has a significant impact on the evaluation
of the performance done below. The total number of acceler-
ators that got the grant at least once are shown in Figure 8.
These numbers can be further analyzed by distinguishing
between accelerators that completed at least on transaction

(full bars) and those that did not (striped bars) but still got
the grant once. To further understand the schedulability,
Figure 7 shows each algorithm’s average preemptions per
accelerator (per completed transactions).

There is a clear difference of LST to the other dynamic
priority algorithms, as this one preempts accelerators at least
four times more. The reason is that LST not only considers
the time to the deadline but also takes into account when
the request was set. Unlike EDF, this consideration greatly
influences the slack and leads to more frequent priority
updates, resulting in higher rate of accelerator preemption.
These characteristics have significant implications, particu-
larly when a large number of accelerators are present in the
architecture (128 and 256). As a result, more accelerators
get the grant. However, not all of them can complete their
transactions in the simulation time set for the evaluation. It
is worth noting that a longer simulation time would allow
more accelerators to complete their transactions success-
fully. So, it is not a flaw of the scheduler but a restriction
on the evaluation methodology 3.

The FP schedulers stand out in Figure 8 as they cannot
give the grant to many accelerators, with a top of eight and
just two can complete their transactions. This is expected
as all accelerators have the same priorities during execution

3. The evaluation was done until 256, but it is not limited as larger
values can be used.

TABLE 3: Resource-Latency EDF tradeoff

Accelerators ROEDF/LOEDF

LUTs FFs

2 0.87 0.95
4 0.54 0.95
8 0.62 0.95
16 0.51 0.96
32 0.49 0.96
64 0.43 0.95
128 0.66 0.96
256 0.73 0.97
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tion)

time, and the ones on the top of the priority list will be
scheduled regularly. It can be seen in Figure 8 the differences
between the two non-preemptive algorithms. The counter-
part of the limitations of NPFP mentioned before can be
seen with the LRU, with completed transactions for almost
all accelerators that get the grant. However, as shown below,
this has some drawbacks with its performance.
7.2.3 Performance

Multiple metrics are used to characterized the scheduling
algorithms.

Average response time: The response time (ri) represents
how long it took for an accelerator to get the grant since the
moment it set its request. It is obtained with ri = gi − ai,
where gi is the time when the grant is given, and ai is
the arrival time of the request. The average response time
(ravg) measured for n completed transactions, computed
with Equation (1), is shown in Figure 10a.

ravg =

n∑
i=0

ri
n

(1)

It can be seen that both FP versions are the ones with the
shortest response time, which would lead to think this is
a good result. However, the schedulability of these two is
the worst for all algorithms, as explained before, due to the
small number of accelerators scheduled. As expected, LRU
is the one with the worst results. This is not an issue as
performance is not the main characteristic of this algorithm
but to ensure accelerator schedulability. LST is the one that
shows the best performance with the drawback that it takes
a bit longer for all accelerators to complete their transac-
tions. There is a clear difference between both EDF versions,
being LOEDF the one with the shorter response time, ap-
proaching the same results as LST, but with the tradeoff of
more significant resource consumption. Lateness: Denotes
how much later than the deadline the data transmission was
completed and is computed with Li = fi − di, where fi is
the time when accelerator acci finishes its transactions and
di is its deadline. Negative lateness means the transmission
was completed before its deadline.

The only requirement to measure the lateness is that
accelerators must complete at least one transmission. Similar
to the response time, the lateness (Figure 10b) shows that
accelerators with both FP finish the transactions earlier,
albeit at the cost of not scheduling a significant number of
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Fig. 8: Accelerators that completed at least one transaction
or only got the grant and have not finished a transaction

them. Also, LRU has the largest lateness. For this metric,
both EDF versions outperform LST since the latter one
will preempt more accelerators, leading them to finish their
transactions in a longer time. LOEDF shows better perfor-
mance compared to ROEDF as intended. The reason for this
is a shorter latency, which also translates to the smallest
lateness for LOEDF among all dynamic priority schedulers.

The maximum lateness in any given system specification
with multiple accelerators can be used to estimate the length
of the buffers mentioned in Section 4.2.

Communication Channel Utilization: This measurement
quantifies the duration which any of the accelerators get the
grant and transmits their data. To be fair with all schedulers,
only the time which there are active requests is taken into
account. Therefore, the utilization is measured according to
Equation (2).

U =

M∑
i=0

acci
tsim

(2)

where acci stands for the total time accelerator acci sets
its request and was given the grant. tsim stands for the
total simulation time in clock cycles. The communication
channel utilization measured is shown in Figure 9. Same
as the other metrics, LRU is the one that performs the
worst due to its design to avoid resource starvation, leading
to long response time and lateness, which translates to
less channel utilization. Both FP schedulers show a high
communication channel utilization, but one has to keep
in mind the low number of accelerators that are actually
able to finish a transaction. However, as there is no time
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to update the priority table, this algorithm reacts fast to
give the grant to accelerators. Regarding EDF, the resource-
optimized version takes longer to give grants and also
preempts the current accelerator holding the grant every
time a new request arrives to recalculate the priorities,
which translates into lower channel utilization compared
to LOEDF. This directly impacts the channel utilization as
accelerators can stream their data faster (in terms of when
each can restart after being preempted). The last point is
that as more accelerators get the grant with LST (Figure 8),
the communication channel utilization is the highest for this
algorithm.
7.2.4 Corner Cases

As mentioned previously, four cases with different transfer
times and frequencies were evaluated to understand the
behavior of the schedulers in these areas of the exploration
space. The previously used metrics also help to understand
the behavior of the algorithms for these cases.

Schedulability: In these four cases, the FP algorithms
only schedule a low of number of accelerators as before.
However, all accelerators for the dynamic priority schedulers
finished a transaction at least once. The average preemp-
tions per accelerator is impacted by the different transfer
times and frequencies, as shown in Figure 11. In all cases,
LST continues to be the algorithm that preempts most of
the accelerators, and the preemptions increase significantly
with larger transfer times, regardless of their frequency. This
is clear because each accelerator requires to have the grant
for more time to finish a transaction which causes more
preemptions. Moreover, these four datasets have a small
σ. Therefore, the possibility for laxity ties (two or more
accelerators with the same priority constantly preempting
each) is high.

Performance: The transfer time of the accelerators affects
the response time, increasing it with higher values, as shown
in Figure 12. It is possible to see that the response time
increases by one order of magnitude in the cases with
the largest transfer time. Previously, LOEDF and LST had
similar performance. Here, for short transfer times, it is
actually LOEDF with a shorter response time (as opposed
to LST in Figure 10a), same as for long transfer times but
up to a certain number of accelerators. When more than
64 are present, LST has a lower response time, making it a
better candidate for this situation. The lateness is affected
by the shortest period, as it takes longer for the accelerators

to complete their transactions, either when their frequency
is short or long (Figure 13a and Figure 13b). Figure 13c and
Figure 13d depict the worst-case scenario, when the transfer
time is the longest, meaning that it takes significantly more
time (one order of magnitude) to finish. Note how LST
diverges from the other accelerators after 128 accelerators
due to the significant increase of preemptions at this point.

As for LRU, it is the algorithm with the worst perfor-
mance for these corner cases because its goal is to make
sure that all accelerators can finish their transactions at least
once.

7.2.5 Combining Schedulers

It is possibile to improve the schedulability by smartly
combining different schedulers. A dataset of 256 accelerators
served as the baseline to evaluate how many get the grant
with the two most promising schedulers, namely LOEDF
and LST. Two different cases are studied. The first consists
of splitting the accelerators into smaller datasets, in this case,
dividing one large scheduler with 256 accelerators into two
of the same one but with 128 accelerators each. The second
one also splits into a smaller number of accelerators per
scheduler, but with two different algorithms. All these require
a third scheduler also to manage the new smaller ones. LRU
is chosen for this study as it ensures that all requests get a
grant. Results are shown in Figure 14. Splitting them does
not increase the number of accelerators that got the grant
for LOEDF but increases 1.16x for LST.

Combining schedulers resulted better for LOEDF (1.29x)
as it was done with LST, which showed better schedulabil-
ity. However, in the LST case, combining it with LOEDF was,
in fact, detrimental. Note that every combination of sched-
ulers is possible. However, it does not guarantee improved
schedulability as the decision on which schedulers to pick
for the best result should be done following a similar design
exploration as shown above.

Combining schedulers proved to be beneficla for LOEDF
(1.29x improvement) enhancing its schedulability. However,
in the case of LST , combining it with LOEDF had a negative
impact. Note that while every combination of schedulers
is possible, it does not guarantee improved schedulability.
The decision of selecting the appropriate schedulers for
optimal results should be made through a thorough design
exploration, simillarly as shown previously.
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Fig. 11: Schedulers’ corner cases: Average Preemption per algorithm
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Fig. 12: Schedulers’ corner cases: Response time
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Fig. 13: Schedulers’ corner cases: Lateness
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8 CONCLUSION AND FUTURE WORK

This work presents a model-based approach to generate
FPGA-based architectures for robotics applications. Our
systematic approach circumvents the arduous process that
involves designing complex architectures and the modifi-
cations of HW accelerators needed to incorporate them in
existing solutions. For this, a toolchain which takes a concise
and expressive system specification is introduced. It derives a
holistic model of the desired system and generates all needed
components. The advantages of the systematic procedure
are shown with different use cases. Six different scheduling
algorithms are proposed to deal with a hybrid HW/SW
architecture, and the framework used for evaluating them
can be used as part of the toolchain to evaluate which
algorithm would fit best each system by performing design
space exploration. It is left for future work to dynamically

change the scheduling algorithms with Dynamic Partial
Reconfiguration (DPR) based on the current workload.
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