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Node-wise Hardware Trojan Detection
Based on Graph Learning

Kento Hasegawa†, Member, IEEE , Kazuki Yamashita†, Seira Hidano, Kazuhide Fukushima,
Kazuo Hashimoto, Member, IEEE , and Nozomu Togawa, Member, IEEE

Abstract—In the fourth industrial revolution, securing the protection of supply chains has become an ever-growing concern. One such
cyber threat is a hardware Trojan (HT), a malicious modification to an IC. HTs are often identified during the hardware manufacturing
process but should be removed earlier in the design process. Machine learning-based HT detection in gate-level netlists is an efficient
approach to identifying HTs at the early stage. However, feature-based modeling has limitations in terms of discovering an appropriate
set of HT features. We thus propose NHTD-GL in this paper, a novel node-wise HT detection method based on graph learning (GL).
Given the formal analysis of the HT features obtained from domain knowledge, NHTD-GL bridges the gap between graph
representation learning and feature-based HT detection. The experimental results demonstrate that NHTD-GL achieves 0.998 detection
accuracy and 0.921 F1-score and outperforms state-of-the-art node-wise HT detection methods. NHTD-GL extracts HT features
without heuristic feature engineering.

Index Terms—hardware Trojan, detection, gate-level netlist, graph learning, node-wise
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Specification
RTL Design

(Behavior Level)

Netlist

(Gate Level)

Physical Design

(Layout Level)

Fabrication /

Packaging
Market

3PIP core 3PIP core
Third-party

EDA tool

Design Phase

Manufacturing Phase

Off-the-shore

fabs

Fig. 1: Typical IC design process. Malicious 3PIP cores as
well as third-party EDA tools might be involved in the
process.

model captures for HT detection (Section 5).
• NHTD-GL, the hardware Trojan detection method for

netlists using GL is proposed (Section 6), the theoret-
ical background of which is described in Section 5.

• NHTD-GL is evaluated through experiments. The ex-
perimental results demonstrate that NHTD-GL out-
performed state-of-the-art HT detection methods.
Additionally, by comparing a GNN-based HT detec-
tion method with simple node features, it is shown
that the GNN model effectively extracts the features
characterizing HTs from a given training dataset
(Section 7).

2 RELATED WORKS

HT detection. HT detection methods were reviewed in [1].
The typical IC design process is illustrated in Fig. 1. During
the design phase, specifications are sequentially broken
down into the behavior level, gate level, and layout level.
3PIP core and third-party EDA tools have the opportunity
to participate in the design phase. Henceforth, malicious
attackers may take advantage. The IC design is written in
hardware description language (HDL) and stored in an elec-
trical design interchange format (EDIF). Skillful attackers
who know the language and format can hide HTs to contam-
inate the IC design or modify the design information. On
the other hand, an attack during the manufacturing phase
is difficult since the manufacturing system is working in
real time and being controlled by a vendor-specific man-
agement process. Therefore, attacking during the design
phase is a more realistic scenario than attacking during the
manufacturing phase. This paper focuses on HTs inserted
in the design phase and particularly in netlists rather than
the more abstract level design, such as the register-transfer
level (RTL), as the IC design described in RTL is ultimately
translated into a netlist.
HT detection by logic testing. HTs are likely to be acti-
vated to evade logic testing. Focusing on rare activation
conditions, early studies have proposed analytical detection
methods based on truth tables or simulations [10], [11]. The
weakness of hardware verification by logic testing is that it
is time-consuming to apply for large-scale circuits and that
there are techniques for making HTs less detectable to logic
testing, as proposed by DeTrust [12].
Feature-based HT detection. Another approach is the
feature-based method proposed in [3], which requires no

simulation and realizes comprehensive analysis with less
time compared to HT detection through logic testing. This
method successfully detects HTs with a high accuracy rate
using the structural features that are manually extracted
from the Trust-HUB benchmark netlists [13], [14], which
suggests that structural features that would specifically
distinguish HTs from normal circuits exist. Following this
suggestion, several ML-based approaches have been pro-
posed [4], [5]. According to [5], one of the first ML-based
HT detection methods was proposed in [15], and it achieved
high recall but insufficient accuracy by employing support
vector machines and artificial neural networks to learn HT
features. Since then, new features and models have been
actively investigated [16], [17], [18]. In the past five years,
HT detection methods using ML have achieved 90% or
more accuracy. The weakness of the feature-based method
is that it requires continuous feature updating. It has been
reported that a powerful feature-based method, the COTD
detection method [26], would not be adequate in certain
applications [19], which suggests that HT-specific features
should be searched when a new HT is discovered. It is
necessary to automate the feature discovery process for real-
world problems.
GL-based HT detection. Graph learning is now becoming
an active research area in ML [20]. Since a netlist can be
represented as a graph structure by translating an element
of a circuit into a node and a wire into an edge, GL-based
HT detection is a promising approach for overcoming the
impasse of endless feature engineering. Ref. [9] effectively
detects HTs from netlists using GL, and GL-based HT
detection no longer requires feature engineering. Features
are automatically extracted during the learning process. As
reported in [7], simple GL-based HT detection methods
have a weakness in that they do not point out where HTs
exist but only identify whether the design is compromised
or not. For practical use, detected HTs should be presented
with evidence so that the user can trust the detection
result. The only solution to this problem would involve
explaining the GL model to those who are not well-versed
in HTs. In [9], only the trigger part is detected, leaving
its critical payload part unnoticed. That is, a trigger-based
approach cannot detect some HTs effectively, including
always-on type HTs. Additionally, their proposed inverse
node fanins (INF) contain several normal gates, which may
hurt the generalization performance. Therefore, different
embedding approaches, such as optimizing node features
based on the representation capability of the GL model,
should be considered.

3 PRELIMINARIES

General model. The general NHTD-GL model is the graph
neural network (GNN), which was introduced in [21] and is
now employed in a variety of fields [20].

The MPNN model [22] proposed a unified framework
for graph convolution operations, and many models can
be considered with this framework. Let G = (V,E) be a
graph with a set V of nodes and a set E of edges. A feature
vector xv is assigned for v ∈ V , which is referred to as an
initial feature vector that represents the property of a node
v. Additionally, a label yv ∈ R represents the class of the
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node v. In general, the GNN employs the neighborhood ag-
gregation (a.k.a. message passing) mechanism in which node
feature vectors are exchanged between nodes; these vectors
are updated (or combined) using an updating function. This
mechanism is expressed as follows [23]:

m(l)
v = AGGREGATE(l)

({
h(l)
u : ∀u ∈ N (v)

})
(1)

h(l+1)
v = COMBINE(l)

(
h(l)
v ,m

(l)
v

)
, (2)

where N (v) represents a set of nodes adjacent to a node
v, and AGGREGATE(l)(·) (resp. COMBINE(l)(·)) represents
the message function (resp. the update function) at the l-
th layer. Such a layer is referred to as a GNN layer in this
paper. h

(l)
v is a hidden feature vector of v initialized by

the initial feature vector as h
(0)
v = xv , and m

(l)
v denotes

the message exchanged between nodes. In (1), the message
function AGGREGATE(l)(·) aggregates the feature vectors of
the nodes adjacent to v and generates the message vector
m

(l)
v . Then, in (2), the update function COMBINE(l)(·),

which is a learnable function, combines the node feature
vector h

(l)
v and the message vector m

(l)
v . Finally, the node

feature vector h(l)
v for each node at the l-th GNN layer is up-

dated. The functions AGGREGATE(l)(·) and COMBINE(l)(·)
are different from model to model, which results in its ability
to represent a node.

Let zv = h
(L)
v be the final output for the node feature

vector of v, where L is the number of GNN layers. In task-
specific processing, the ML model for graphs can be divided
into a graph encoder part and a prediction part. Let fenc
and fpred be a graph encoder model and prediction model,
respectively. The graph encoder model can be expressed as
fenc(xv) = zv , which implies (1) and (2). The prediction
model can be expressed as fpred(zv) = yv . For example, the
optimization problem for binary classification is expressed
as follows:

minL (yv, fpred(zv)) , (3)

where L is a loss function, and fpred is a classification model,
such as a fully-connected neural network.

4 MOTIVATIONS

Threat model. As illustrated in Fig. 1, there are many
opportunities for attackers to be involved in the hardware
supply chain, such as providing malicious 3PIP cores or
invading as untrusted offshore fabs. In particular, there are
more opportunities for attackers to insert HTs during the
design phase as addressed by our threat model. Specifically,
attackers may insert HTs into the 3PIP cores and provide
them to the primary vendor. Attackers may also invade
the design house and directly insert HTs with malicious
intent. This scenario, which is common in recent hardware
supply chains, involves many employees, partners, 3PIPs,
and off-the-shore design houses. Henceforth, the supply
chain becomes insecure, providing loopholes for malicious
attackers to gain entry.

Our motivations. There are three motivations in this paper,
and this section clarifies them from the following perspec-
tives:

• Motivation 1 describes why we target netlists and
node-wise HT detection (Section 4.1).

• Motivation 2 describes why we employ graph learn-
ing for HT detection (Section 4.2).

• Motivation 3 describes why we introduce domain
knowledge for graph learning (Section 4.3).

4.1 Motivation 1: Gate-Level Netlists and Node-Wise HT
Detection

HT detection in netlists. As illustrated in Fig. 1, the de-
sign phase is roughly broken into four levels: specification,
behavior level, gate level, and layout level. Any IC design
must pass through the gate level. Even if some 3PIPs are pro-
vided at the behavior-level description, they are synthesized
to the gate-level description. This process is also performed
for the layout level. However, it includes location informa-
tion, which is not needed for behavior analysis. Netlists at
the gate level are common and useful during the IC design
phase. As a real-world example, an HT detection service
for gate-level netlists has been released [24]. Therefore, this
paper focuses on HT detection in netlists.
Node-wise detection. There are two approaches to HT
detection in netlists: circuit-wise and node-wise detection.
The circuit-wise detection identifies whether the IC design
includes an HT or not. Alternatively, node-wise detection
identifies which node is part of an HT. If a circuit-wise
HT detection system finds that an HT may exist in the
IC design, the user may doubt such an alert. The user
must determine whether the product should be redesigned
based on the result of the detection system. Additionally,
the cause of HT insertion should be carefully analyzed if an
HT actually exists. Node-wise detection solves this problem.
The results show which node could be a part of an HT.
If a node-wise detection method achieves an acceptable
rate in terms of detection accuracy, its result must support
further analysis and decision-making. Therefore, node-wise
detection is more helpful for practical use.

4.2 Motivation 2: Graph Learning

As mentioned in Section 3, GNNs are expected to capture
the generalized features of graph-structured data. Since
many engineers are now joining the hardware design com-
munity due to the spread of open-source projects such as
RISC-V [25], HT detection that does not require special
knowledge of HTs is needed. Additionally, the HT structure
can be easily transformed. For example, the transduction
method [26] transforms a logic design into a different struc-
ture while maintaining the original functionality. If a circuit
can be represented with a generalized form, circuits with the
same functionality could be embedded into similar latent
spaces. The effect of this embedding by automatic feature
extraction is significant.

To study the features of HTs, we can collect many HTs
by using the automatic HT generation tools [27], [28] that
were proposed very recently. However, even if many types
of HTs could be collected, it is too difficult to extract a set
of comprehensive HT features. GL-based HT detection is
expected to automatically extract the features included in
the training dataset.
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4.3 Motivation 3: Domain Knowledge

To make the HT detection system reliable, evidence and
theoretical background information should be made clear.
Although feature engineering may not be required in GL,
knowledge of HT features is vital. Existing studies have
demonstrated that their proposed features are useful for
HT detection, and work effectively for a certain set of HTs.
Therefore, knowledge of HTs still aids in GL-based HT
detection.

Introducing domain knowledge is different from au-
tomatic feature extraction. Automatic feature extraction,
which can be performed by GL, is a process of choosing
a set of efficient features from a set of initial features of
nodes in a given training dataset. If sufficient initial features
are not provided to the initial feature vector of a graph,
the GL performance may saturate at an insufficient level.
The role of domain knowledge is the selection of a set of
sufficient initial features that represent the nodes in a netlist.
By selecting common features that can be observed in a
wide variety of HTs as initial features based on domain
knowledge, feature extraction by GL is expected to work
effectively.

Optimizing initial feature vectors based on domain
knowledge is helpful. As described in Section 3, the hidden
feature vector for a node v is initialized as h

(0)
v = xv .

Although GL can automatically learn the representation of
nodes in a graph, the node features that are provided as an
initial feature vector significantly affect the performance of
the subsequent task. In [29], it was demonstrated through
experiments that GNNs work well if there is a strong
correlation between node feature vectors and node labels.
Thus, the node features are introduced to sufficiently rep-
resent known HT features and HT-related circuit features.
This paper aims to find efficient features that represent the
characteristics of a node for GL-based HT detection.

5 HT FEATURES

5.1 HT Features at Gate-Level Netlists

In this subsection, we refer to several structural feature-
based HT detection methods and categorize what they learn
from the perspective of graph-structured data. According to
[2], there are several approaches for HT detection in netlists
using a variety of features. Hereafter, we refer to the three
references [30], [31], and [32] to introduce the representative
features based on the studies above.

In [30], 36 structural features are employed for HT
detection in total. Some of the features are introduced in
some of the earliest studies [15], [16] that were inspired
by [3]. They extract feature values from each net in a
netlist from the viewpoint of fan-ins, neighbor circuit el-
ements, and the minimum distance to the specific circuit
elements. Ref. [30] further introduced pyramidal structure-
based features called fan in uxdy, which improve detection
performance. Table 1 shows the 36 features presented in
[30]. The ‘category’ column is introduced later. The features
mainly focus on the structural features of a netlist, that is,
the topological features of a graph.

In [31], 15 features are employed, and they are shown
in Table 2. Different from [30], the features mainly focus

TABLE 1: HT features employed in [30].

No. Feature Category
1–2 No. of fan-ins up to 4 and 5-

level away from the input side
 1 Degree

3 No. of flip-flops up to 4-level
away from the input side

 2 Neighboring node

4–5 No. of flip-flops up to 3 and 4-
level away from the output side

 2 Neighboring node

6–7 No. of loops up to 4 and 5-level
on the input side

 3 Relative position

8 Min. level to any primary input  3 Relative position
9 Min. level to any primary out-

put
 3 Relative position

10 Min. level to any flip-flops from
the output side

 3 Relative position

11 Min. level to any multiplexer
from the output side

 3 Relative position

12–36 Pyramidal structure-based fea-
ture within 4 levels

 4 Surrounding structure

TABLE 2: HT features employed in [31].

No. Feature Category
1–2 No. of immediate fan-ins and

fan-outs
 1 Degrees

3 Cell type driving the net  2 Neighboring node
4–5 Min. distances from PI and PO  3 Relative position
6 Static probability  5 Functional behavior
7 Signal rate  5 Functional behavior
8 Toggle rate  5 Functional behavior
9 Min. toggle rate of the fan-outs  5 Functional behavior
10 Entropy of the driver function  5 Functional behavior

11–15 Lowest, highest, average, and
std. dev. of controllability

 5 Functional behavior

on functional behavior such as the static probability and
signal rate (No. 6–15 in Table 2). The functional behavior-
based features reflect the functionality of a netlist, such as
rare or frequent signal transitions. Although the structural
features can capture the structure of a set of nodes, they do
not explicitly capture the behavior of the circuit. Functional
behavior-based features solve the problem, and they capture
the behavior of the circuit explicitly.

In [32], six testability metrics-based features are em-
ployed. Table 3 shows the six features presented in [32].
These features are known as SCOAP values, and they are
inherently utilized to evaluate the testability of a circuit [33].
The SCOAP values were first introduced into HT detection
by a recent study [17] and are often employed. Since an
HT is hard to observe and easy to control from outside the
circuit, the SCOAP values are reasonable for HT detection.

Toward GL. Based on the observation of several existing HT
detection methods, we analyze the features and categorize
them from the viewpoint of GL.

•  1 Degree indicates the degree of a node in a graph,
which is related to the number of edges connected to
the node.

•  2 Neighboring node indicates the types of nodes
neighboring a target node.

•  3 Relative position indicates the relative position to
the specific sets of nodes.

•  4 Surrounding structure indicates the surrounding
structure from a target node.

•  5 Functional behavior indicates the functional behav-
ior of a node, i.e., it characterizes the behavior of a set
of nodes. An example is static probability. Typically,
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TABLE 3: HT features employed in [32].

No. Feature Category
1–2 Controllability (CC0 and CC1)  5 Functional behavior

3 Observability (CO)  5 Functional behavior
4–5 Sequential controllability (SC0

and SC1)
 5 Functional behavior

6 Sequential observability (SO)  5 Functional behavior

the trigger circuit of an HT rarely activates the trigger
signal. The node that outputs the trigger signal is
rarely activated. Such behavior cannot be observed
by simply analyzing structural features.

Section 5.2 analyzes the representation capability of
graph encoding models from the perspective of the cate-
gories 1 – 5 .

5.2 Representing HT Features with GL
Here we bridge the gap between the known HT features and
GL. As described in the previous section, the HT features
are classified into five categories. We demonstrate how GL
captures these features in a formal manner.
 1 Degree: Fan-ins and fan-outs of a node are useful in-
formation for HT detection. For example, a trigger circuit
composed of a combinatorial circuit often has many fan-
ins at two or three levels from the trigger signal wire to
implement rare conditions. The node degrees can be directly
assigned to the initial feature vector to clearly make the
graph encoder model identify node degrees.
 2 Neighboring node: Information about the types of nodes
neighboring a target node is helpful for HT detection. To
utilize the information with GL, a node type is assigned to
the initial feature vector.

The node types are the most fundamental features for
representing the characteristics of nodes in a netlist, as
demonstrated in [8] and [9]. In this paper, the node types
are used as the features of a baseline, the details of which
are presented later.
 3 Relative position: When the surrounding structures
of two subgraphs are identical, the graph encoder model
that considers only the feature categories  1 and/or  2
cannot identify the subgraphs. According to (2), the final
node feature vector of v is expressed as zv = h(L) =

COMBINE(L)
(
h

(L−1)
v ,m

(L−1)
v

)
. When h

(L−1)
v = h

(L−1)
u

and m
(L−1)
v = m

(L−1)
u for two nodes v and u, the node

feature vectors of the two nodes are identical, i.e., zv = zu.
In a netlist, such a case can appear in a ring oscillator that is
composed of multiple inverter gates to form a loop structure
or a multi-bit counter that is composed of several 1-bit
counters. These circuits can be used as a payload circuit or
a sequential trigger circuit of an HT.

To overcome the limitation of GNNs, a position-aware
GNN model was proposed in [34]. In the method, a random
subset of k nodes are chosen as anchor-sets and their node
feature vectors are included in the target node feature vector.
Inspired by [34], we state the following proposition:

Proposition 1. Let Ganchor be a graph where an initial feature
vector xv that includes information on anchor-sets is assigned to
each node v. Let φ : Rd → Rd be a GNN layer, and letFenc denote

TABLE 4: GL-based methods for netlists.

Graph Methods
Undirected graph GNN-RE [8], GATE-Net [9]
Directed graph [35], GNN4TJ [7]

Target

d  Neighbor level

a  

Input side

c  Edge direction

b 

Output side

Fig. 2: Example of graph-related features for a netlist.

a set of GNN models, where those models consist of more than
one layer φ and are injective. There exists a graph encoder model
fenc ∈ Fenc that accepts Ganchor as an input and identifies the
difference between two nodes in Ganchor in terms of their position
in a graph.

The proof of Proposition 1 is shown in Appendix A.
According to [34], choosing a set of anchor nodes is a
difficult problem for an inductive learning task. From the
viewpoint of netlists, primary inputs and outputs are rea-
sonable candidates for anchor-sets making them useful for
HT detection. Therefore, a graph encoder model can best
identify the positional feature of a node by employing
minimum distances to any primary inputs and outputs as
initial feature values.

 4 Surrounding structure: How a netlist is represented as
a graph structure is one of the most problematic issues
in GL. There are two methods for representing a netlist:
undirected graphs and directed graphs. An edge between
two nodes in a graph is directional in a directed graph,
whereas this is not the case in an undirected graph. The
signal wires in a netlist are inherently directional, and thus, a
directed graph seems to be suitable for representing a netlist.
However, a directed graph cannot sufficiently represent a
netlist for graph encoder models. With a directed graph,
the aggregation function gathers only one direction of each
edge, and thus, the nodes connected to the opposite side
are ignored. Table 4 shows the graph models employed in
recent processing methods using GNNs. According to [8],
which aims to represent netlists for multiple downstream
tasks, representing a netlist as an undirected graph is more
efficient than representing it as a directed graph. It should
be noted that GNN4TJ [7], which employs directed graphs,
mainly focuses on HTs written in RTL. Therefore, a directed
graph may be inefficient for netlists.

The representation capability of directed and undirected
graphs is broken down, and a new model for representing
a netlist is proposed. The four points of the graph-related
features for a netlist are as follows:

• #a Input side: The structure of the input side from
target node v.
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TABLE 5: Graph structure and its representation capability
in a graph encoder model.

#a #b #c #d
Graph type Input Output Edge Neighbor

side side direction level
Directed X X
Undirected X X X
Undirected

X X X X
(with directional edge attribute)

• #b Output side: The structure of the output side from
target node v.

• #c Edge direction: The direction of an edge. Namely,
the direction of a wire in a netlist.

• #d Neighbor level: The structure of the neighbor
level from target node v.

Fig. 2 illustrates an example of the graph-related features
using a circuit. In this figure, we focus on the ‘target’ node
colored in red.#a Input side corresponds to the area shaded
in light blue. The nodes in this area are connected to the
input side of the target gate.#b Output side corresponds to
the area shaded in light green. The nodes in this area are
connected to the output side of the target gate. #c Edge
direction shows whether the edge direction is preserved
in the modeled graph. #d Neighbor level corresponds to
the area shaded in orange. The neighbor-level area can be
reached by traversing some hops toward the output side
and then some hops backward from the input side or vice
versa.

Next, we summarize the representation capability of
graph models. Table 5 shows the graph structures and
their representation capability in a graph encoder model.
A directed graph can represent the input side and the
edge direction of a netlist when a graph encoder model
aggregates the nodes of the input side. However, the nodes
of the output side are not aggregated in this situation.
Similarly, the neighbor levels are not considered unless there
is a loop structure. Conversely, an undirected graph can
represent both the input and output sides. Due to both-
side aggregation, it can also represent the nodes in neighbor
levels. However, it lacks directional information.

Next, we propose the directional edge attribute for undi-
rected graphs, which are called edge-attributed undirected
graphs (EAUGs).

Definition 1 (Edge-attributed undirected graph). An edge-
attributed undirected graph (EAUG) is a graph GEAUG =
(V,E,X,D) that represents a netlist with a set of initial node
vectors X = {xv : v ∈ V } and a set of edge attribute vectors
D = {du→v : u, v ∈ V }.

The EAUG overcomes the shortcoming of the undirected
graph. Let eu→v denote an edge from a node u to another
node v. du→v ∈ Rd is an edge attribute vector assigned
to eu→v . In a typical undirected graph, the edges eu→v
and ev→u are not distinguished. Furthermore, when feature
vectors are assigned to the edges of an undirected graph,
du→v and dv→u are usually the same. In the EAUG, we
distinguish two edges eu→v and ev→u by assigning different
edge attributes as du→v 6= dv→u Then, we can state the
following proposition.

(a) Truth table of a two-input AND gate.

IN1 IN2 OUT

0 0 0

0 1 0

1 0 0

1 1 1Τ1 4 = 0.25
Node behavior

0.25

0.25

0.25

0.25

0.0625

0.0625

0.0039…
(= 0.254)

(b) HT trigger circuit (Subgraph of 𝐺).

Node behavior

Functional 

behavior

Target node

Fig. 3: Example of node behavior and functional behavior.

Proposition 2. There exists a graph encoder model fenc ∈ Fenc

that accepts an edge-attributed undirected graph GEAUG as input
and represents all the graph-related features #a –#d .

The proof of Proposition 2 is shown in Appendix B. For
example, for a given netlist, we assign a vector (1, 0) to a
forward direction edge and (0, 1) to a backward direction
edge. Then, we can construct an EAUG for a given netlist.

 5 Functional behavior: In this section, we observe the
global behavior of a circuit. First, we consider the behavior
of each node. We call a function assigned to each node node
behavior, which is identified by only the node. However, we
can only observe the local behavior of each node by simply
considering the node behavior. To observe the global behavior
of a circuit, we need a new feature that accounts for the
node behavior of the neighboring nodes. Then, we introduce
the functional behavior, which characterizes the behavior of
a set of nodes. The functional behavior of a target node v
refers to a feature computed using an arbitrary function that
takes the node behaviors of v and its neighboring nodes
Nk(v), where Nk(·) is a set of neighboring nodes within
k hops from a node. In a netlist, there are several metrics
that characterize the behavior of a set of nodes by assigning
a function to each node, such as the static probability and
switching probability. We consider such metrics according
to the functional behavior.

Specifically, the static probability is an example of func-
tional behavior, which shows the probability that a signal
holds a logic value of 1 during a period. Fig. 3 illustrates an
example of an HT trigger circuit that consists of seven two-
input AND gates. First, we refer to the truth table to consider
the local behavior of a two-input AND gate. Here, we regard
the probability of outputting 1 as the node behavior. In this
case, the node behavior of a two-input AND gate is 0.25, as
shown in Fig. 3(a). Then, we consider the HT trigger circuit
depicted in Fig. 3(b). Starting from the node behavior values,
we can calculate the static probabilities of the target node.
We regard the static probability as the functional behavior,
which characterizes the functionality of a set of neighboring
nodes within two hops from the target node. As exemplified
above, a functional behavior also characterizes the functional-
ity of HTs well, especially HT triggers, as shown in Fig. 3(b).

To formulate the functional behavior, let type(v) be a node
type and nb(v) be the node behavior of node v. The functional
behavior fb(v) of a node v can be calculated as follows:

fb(v)← Γtype(v) (nb(v), {nb(u) : ∀u ∈ Nk(v)}) , (4)
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where Γtype(v) is an arbitrary function parameterized by
type(v). The following proposition states that a graph en-
coder model that represents such a functional behavior exists.

Proposition 3. Let G′ be a graph constructed as a GEAUG where
the node type and a feature value related to a functional behavior
is assigned to each node v. There exists a graph encoder model
fenc ∈ Fenc that accepts G′ as input and identifies the functional
behavior k hops away from each node v for a given k.

The proof of Proposition 3 is provided in Appendix C.

We consider the feature extraction model that extracts
the graph structure, initial feature vectors, and edge at-
tribute vectors for a given netlist. Let Λ be a feature ex-
traction model that accepts a netlist, which is denoted by
ϑ as input, and outputs a tuple (V,E,X,D) of a set of
nodes, set of edges, set of node feature vectors, and set
of edge attribute vectors. In some cases, X or D can be
an empty set. Let fenc;Λ(ϑ)(v) be a graph encoder model
with respect to Λ(ϑ) = (V,E,X,D) used to obtain the
node feature vector of node v during the calculation. fenc(v)
implicitly refers to the V , E, X , and D of a netlist ϑ. If
∃u, v ∈ V, u 6= v, fenc;Λ(ϑ)(u) 6= fenc;Λ(ϑ)(v), it means that
the combination of models Λ and fenc can distinguish the
two nodes u and v. Pϑ(Λ, fenc) denotes the representation
capability for the nodes in a given netlist ϑ when using Λ
as a feature extraction model and fenc as a graph encoder
model. Here, the representation capability for a netlist is
defined.

Definition 2 (Representation capability for a netlist). Let
Λ1 and Λ2 be feature extraction models, and let f

(1)
enc and

f
(2)
enc denote graph encoder models. The representation capability
Pϑ(Λ1, f

(1)
enc ) is greater than Pϑ(Λ2, f

(2)
enc ) if and only if ∀u, v ∈

V, u 6= v, f
(2)
enc;Λ2(ϑ)(u) 6= f

(2)
enc;Λ2(ϑ)(v) =⇒ f

(1)
enc;Λ1(ϑ)(u) 6=

f
(1)
enc;Λ1(ϑ)(v), and the relationship between the two representation

capabilities is expressed as follows:

P(ϑ)(Λ1, f
(1)
enc ) � P(ϑ)(Λ2, f

(2)
enc ). (5)

In particular, Pϑ(Λ1, f
(1)
enc ) is strictly greater than

Pϑ(Λ2, f
(2)
enc ) if and only if P(ϑ)(Λ1, f

(1)
enc ) � P(ϑ)(Λ2, f

(2)
enc )

and ∃u, v ∈ V, u 6= v, f
(1)
enc;Λ1(ϑ)(u) 6= f

(1)
enc;Λ1(ϑ)(v) but

f
(2)
enc;Λ2(ϑ)(u) = f

(2)
enc;Λ2(ϑ)(v).

To compare the representation capability of graph en-
coder models, we introduce two feature extraction models
for a netlist: baseline and netlist feature extraction models.

Definition 3 (Baseline feature extraction model). A baseline
feature extraction model Λbaseline(ϑ) = (V,E,X,D) extracts a
set of node initial feature vectors X that indicates the node types
of each node v ∈ V and, no edge attributes are extracted, i.e.,
D = ∅.

The model that extracts the features belonging to the
feature category 2 is a baseline feature model.

Definition 4 (Netlist feature extraction model). A netlist
feature extraction model Λnetlist(ϑ) = (V,E,X,D) extracts a
set X of node initial feature vectors that indicate the node degrees,
node types, features of the relative position to the anchor-sets, and
the features of the functional behavior of each node v ∈ V and a

set D of edge attribute vectors that indicate the edge direction of
nodes u, v ∈ V .

The model that extracts the node features and edge
attributes belonging to the feature categories  1 – 5 is a
netlist feature model.

Now, we can state the following theorem:

Theorem 1. The representation capability of a netlist feature ex-
traction model is strictly greater than the representation capability
of a baseline extraction model.

Proof: Let f
(1)
enc and f

(2)
enc be graph encoder mod-

els that are assumed to be injective. Since the extracted
features from the netlist feature extraction model contain
the features from the baseline feature extraction model,
∀u, v ∈ V, u 6= v, fg2;Λbaseline(ϑ)(u) 6= fg2;Λbaseline(ϑ)(v) =⇒
fg1;Λnetlist(ϑ)(u) 6= fg1;Λnetlist(ϑ)(v). Thus, P(ϑ)(Λnetlist, f

(1)
enc ) �

P(ϑ)(Λbaseline, f
(2)
enc ). Furthermore, according to Propositions

1, 2, and 3, there exists a set of nodes that the netlist
feature extraction model can distinguish while the baseline
feature extraction model cannot. Thus, P(ϑ)(Λnetlist, f

(1)
enc ) �

P(ϑ)(Λbaseline, f
(2)
enc ). Therefore, Theorem 1 holds.

By Theorem 1, such a feature extraction model represents
the feature categories 1 – 5 .

It should be noted that the assumption that graph en-
coder models are injective is a realistic modeling approach
for theoretical analysis. For simplicity, we consider a neural
network model as a matrix product. In general, the weights
of the neural network model are initialized with Gaussian
random values. Since the weight matrices have full rank in
most cases, the matrix product becomes injective. A precise
analysis of the injectiveness will be discussed in future
work.

5.3 Summary of HT Features
This section presents the five feature categories for GL so
that they correspond to  1 – 5 and bridges the gap between
HT features and GL. As a result, this section clarifies what
HT features a graph encoder model captures through theo-
retical analysis.

In the existing HT detection methods such as those pre-
sented in [30] and [32], we must discover effective features
for HT detection. To consider the topology around each
node in a netlist, we should carefully analyze the rela-
tionship between a node and another node. Therefore, the
search space for feature engineering reaches O(|V | × |V |).
Alternatively, the proposed method automatically extracts
the structural features by using graph extraction models. It
is sufficient to define the initial feature vectors that represent
the characteristics of nodes well. To explore such features,
we analyze all nodes and extract representative features.
Therefore, the search space for feature engineering becomes
O(|V |). In Section 7, we will demonstrate through exper-
iments that a graph encoder model automatically extracts
HT features.

6 PROPOSED METHOD

6.1 Overview
Fig. 4 illustrates an overview of the proposed method, which
is called NHTD-GL. As shown in Fig. 4, an HDL design is
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Input: 𝐺EAUGHDL Code Gate-Level

Circuit Structure

Preprocessing (Section 6.2)

Parse Convert
Normal nodes

Trojan nodes

Trojan Sampling (Section 6.3)

1st mini-batch 𝑚-th mini-batch 1st GNN Layer 𝑛-th GNN Layer

Target nodes Aggregated nodes

Calculate loss /

Update weights

(for each mini-batch)

GNN Model Training (Section 6.4)

Trojan / Normal

(For each node)

Trojan / Normal

(For each node)

Trained model

Test

Testing

Train

Training

Algorithm 1 Algorithm 2

Fig. 4: Overview of NHTD-GL.

converted to a graph that represents the netlist, constructing
an EAUG, GEAUG. Training and/or testing of datasets are
based on the EAUGs.

During the preprocessing phase (see Section 6.2 in de-
tail), we prepare netlists to be trained with the GNN model.
First, we convert the netlists to EAUGs where each element
of the circuit is assigned to a node, and each wire is assigned
to an edge ( 4 ). Then, we assign the initial feature value that
covers the feature categories  1 – 3 and  5 to each node in
the graph. At the same time, we assign the edge attribute
that shows the direction of the edge. Finally, we construct
the dataset including multiple EAUGs.

During the training phase (see Section 6.3 and Section 6.4
in detail), we start with Trojan sampling on the given
EAUGs to balance the normal and Trojan nodes in each
mini-batch. To train HTs, we have to address the problem
that HTs are quite tiny. Because of their stealth, they are
often constructed on a tiny scale. Therefore, the numbers
of genuine nodes and Trojan nodes are imbalanced in the
training dataset. To accurately perform node-wise classifi-
cation for HT detection, we should adequately deal with
this imbalance. To address this problem, we propose the
Trojan sampling method to train the imbalanced HT dataset
effectively. After that, we train the mini-batches to classify
each node in a graph as Trojan or normal.

During the testing phase, we classify each node in an
EAUG as either normal or Trojan using the trained model.

6.2 Initial Feature Vector of a Node

Based on the discussion in Section 5, we design the initial
feature vector to be assigned to each node.

Table 6 shows the initial feature vector assigned to each
node v in the proposed model. Features 1 and 2, which
are categorized as  1 , correspond to the in-degree and out-
degree of a node v, respectively. To effectively train the
features, the feature values are standardized. Features 3–
42, which are categorized as  2 , show the types of each
node v, e.g., a two-input AND gate or a flip-flop. Features
43 and 44 show the minimum distance to any primary

TABLE 6: Initial feature vector used in the proposed model a.

No. Feature Category
1 In-degree  1
2 Out-degree  1

3–42 Node types  2
43 Min. distance to any primary input  3
44 Min. distance to any primary output  3
45 Static probability (0) of logic gates  5
46 Static probability (1) of logic gates  5

a We construct an EAUG, which is categorized as 4 .

input and output, respectively. Primary inputs and outputs
are characteristic nodes for HT detection. We use them as
anchor-sets, and thus, the features are categorized as  3 .
Features 45 and 46 show the probability that a logic gate
outputs 0 and 1, respectively. We provide the standardized
feature values to the initial vector, and they are helpful for
calculating the functional behavior of a circuit and can be
categorized as 5 . In summary, the features cover the feature
categories 1 – 3 and 5 , which are described in Section 5.

6.3 Trojan Sampling

Since an HT is tiny compared to a normal circuit, the
numbers of normal nodes and Trojan nodes are significantly
imbalanced. This issue must be solved for HT detection us-
ing ML. In conventional ML models (not GL models), over-
sampling (or under-sampling) approaches can be adopted
to enhance the minority classes. SMOTE [36] is a well-
known method for over-sampling that synthetically gener-
ates minority class samples and enhances minority classes.
However, one cannot directly adopt this approach for
graph-structured data since a conventional over-sampling
method cannot consider the adjacent matrix. Although the
graph-version SMOTE method has been proposed very
recently [37], it is difficult to construct an accurate decoder
model. Therefore, in NHTD-GL, we first split normal nodes
into several subgraphs. Then, we construct mini-batches by
combining a Trojan subgraph with different normal sub-
graphs.
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Algorithm 1 Trojan Sampling Algorithm

Input: Sets of Trojan and normal nodes Vt ∪ Vn = V , the number of
mini-batches m

Output: Set of mini-batches B
1: B ← ∅
2: Split Vn intom subsets V (i)

n randomly, where i ∈ [m] and |V (i)
n | ≤

d|Vn|/me.
3: for i = 1 to m do
4: B(i) ← {V (i)

n , Vt}
5: B ← B ∪ {B(i)}
6: end for
7: return B

Algorithm 2 NHTD-GL: Training Algorithm

Input: Set of EAUGs GEAUG, set of labels Y , the number of mini-
batches m

Output: Trained model f
1: Initialize the model f .
2: repeat // Repeat one-epoch process
3: for all GEAUG = (V,E,X,D) ∈ GEAUG do
4: B ← TrojanSamplingAlgorithm(V,m)
5: for all B ∈ B do
6: Calculate the loss of the model f with xv , dN (v)→v , and

yv for all v ∈ B.
7: Update the weight of the model f .
8: end for
9: end for

10: until Training converges.
11: return f

Algorithm 1 shows the Trojan sampling algorithm. Let
Vt and Vn be a set of Trojan nodes and a set of normal
nodes, respectively. Given the number of mini-batches m,
we first split the set of normal nodes into m subsets so
that Vn = {V (1)

n , · · · , V (m)
n }. Note that |V (i)

n | ≤ d|Vn|/me,
where | · | shows the cardinality of a given set. Then, we
construct m mini-batches B = {B(1), · · · , B(m)}, where
B(i) = {V (i)

n , Vt}, i ∈ [m], and we train the mini-batches
represented by B during each iteration.

6.4 GNN Model
As described in Section 5, EAUG corresponds to the fea-
ture category  4 . According to (7), we aggregate the edge
attribute as well as the feature vectors of the nodes that are
adjacent to node v. We concatenate the edge attributes and
node feature vectors of u for each v in our implementation.

To classify each node v as normal or Trojan, we assign
a one-hot vector yv ∈ R2, where (1, 0) indicates a normal
node and (0, 1) indicates a Trojan. Then, we can set the
optimization problem using the loss function L as follows:

min
∑
∀v∈V

L (yv, f(xv)) , (6)

where f(xv) = fpred(fenc(xv)). We repeat the training for
each graph G in a training dataset.

Algorithm 2 describes the training algorithm. Let GEAUG
be a set of EAUGs that corresponds to a set of netlists that
need to be trained. Y is a set of labels yv assigned to each
node v. We draw mini-batches B from each EAUG GEAUG

and calculate the loss of the model f as in (6) using the

nodes in a mini-batch. Then, we update the weight of model
f to minimize the loss between the model’s outputs and the
labels yv, v ∈ B. We repeat the one-epoch process (ll. 3–9 in
Algorithm 2) several times until the training converges. In
other words, we end the training process when the number
of processed epochs reaches the limit, or the loss of the
model f no longer decreases.

7 EVALUATION

The evaluation in this section aims to answer the following
research questions through experiments:

• RQ1: Does the domain knowledge on HTs enhance
the detection performance? (Section 7.2.1)

• RQ2: Does the proposed method enhance the de-
tection performance for node-wise HT detection in
netlists? (Section 7.2.2)

• RQ3: Does GL automatically extract effective fea-
tures? (Section 7.3)

Each research question corresponds to the motivations
described in Section 4: RQ1 corresponds to Motivation 3,
RQ2 corresponds to Motivation 1, and RQ3 corresponds to
Motivation 2.

7.1 Setup
Datasets. For the dataset, we used 24 netlists from Trust-
HUB [13], [14] (the details are presented in Appendix D). In
the Trust-HUB benchmarks, HTs with various structures are
embedded into several types of netlists, and the insertion
points are indicated by comments in the source code. The
total number of nodes in the dataset is 621140, and the
number of Trojan nodes is 1262. These numbers mean that
Trojan nodes are only 0.2% of the total data. The Trojan
Sampling Algorithm described in Section 6.3 is applied to
better learn the imbalanced training data.

Furthermore, randomly generated samples are em-
ployed in Section 7.3, and the details are presented in this
section.
Models. We trained and identified the dataset with the
graph structure described in the Datasets section. We used
GAT [38], MPNN [22], and GIN [23] as the GNN mod-
els for the evaluation. The graph encoder models for the
EAUGs are described in Appendix E. We set the following
parameters for all the models: The maximum number of
epochs was 1000, and early stopping [39] was applied,
which completed the training process when the loss did
not decrease for 50 epochs. The learning rate was 0.1, the
optimization algorithm was Adam, the activation function
was an exponential linear unit (ELU) function, and binary
cross-entropy was used as the loss function.

Since the best parameters for the number of mini-
batches (#batches), the number of GNN layers (#layers),
and the number of dimensions of the feature vectors after
the graph convolution (#units) depend on the GNN model,
we searched for them using a grid search. We explain the
details of this search in Appendix F. Table 7 shows the best
parameters in each model for the proposed method and the
baseline method described in Section 7.2.
Evaluation metrics. To evaluate the performance, we per-
formed a leave-one-out cross-validation. For each of the 24
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TABLE 7: Best parameters for each model.

Method Model #batches #layers #units

Proposed
GAT 20 3 16

MPNN 15 2 32
GIN 20 2 16

Baseline
GAT 5 3 32

MPNN 15 3 32
GIN 20 2 32

netlists described in the Datasets section, we used one as
a test sample and the remaining 23 as training samples. We
performed this validation on all of the netlists and evaluated
the average of the 24 classification results. The evaluation
metrics are recall, precision, F1-score, and accuracy, in which
a Trojan net is regarded as a positive sample. In addition, the
training and test times are reported in Appendix G.

7.2 Performance Evaluation of Trust-HUB Benchmarks
Compared with Baseline and State-of-the-Art Methods
7.2.1 Comparison with the baseline method (RQ1)
In this experiment, the performance with and without do-
main knowledge in the features was evaluated. As men-
tioned in Section 4.3, feature selection based on domain
knowledge is effective in GNNs. To confirm this assump-
tion, we compared the features of the proposed method as
mentioned in Table 6 with the features consisting only of
node types. In general, the node type is the most primitive
feature when representing the information in a graph format
[9]. Therefore, we selected features 3–42, which are catego-
rized as  2 as shown in Table 6. We define them as baseline
node features that do not contain domain knowledge and
GL based on these features is considered to be the baseline
method.

To fairly compare the results, we searched for the best
parameters for the baseline method by using a grid search
as in the proposed method. The details are included in
Appendix F.
Detection results. Table 8 shows the detection results of
this experiment (the detailed results are shown in Ap-
pendix H). The boldfaced font indicates the highest rate in
each method. As shown in Table 8, the proposed method
performed as well or better than the baseline method on
all evaluation metrics. In particular, the GAT model outper-
formed the other models on all metrics. Therefore, GAT is
the best GNN model for HT detection in Trust-HUB. Essen-
tially, the baseline in which the features in category  2 are
used obtains sufficient detection results. Adding the features
in categories  1 ,  3 ,  4 , and  5 is expected to improve the
detection performance, as shown in Theorem 1. According
to the results listed in Tables 16–21 in Appendix H, the
detection performance of several netlists is improved. For
example, the proposed method with the GAT or MPNN
model improves the recall and F1-score for s35932-T300,
whose payload is a ring oscillator. In addition, the standard
deviations of the F1-scores for the GAT and MPNN models
are decreased by the proposed method. Thus, the proposed
method contributes to enhancing the detection performance.

This result means that we can say “YES” to RQ1, which
corresponds to Motivation 3. By eliminating the feature cat-
egories  1 ,  3 ,  4 , and  5 , which are based on HT domain

TABLE 8: Detection results of Trust-HUB for the proposed
method and the baseline method.

Method Model Recall Precision F1-score Accuracy

Proposed
GAT 0.890 0.978 0.921 0.998

MPNN 0.865 0.933 0.887 0.998
GIN 0.585 0.616 0.498 0.988

Baseline
GAT 0.880 0.976 0.915 0.998

MPNN 0.879 0.900 0.871 0.998
GIN 0.237 0.392 0.240 0.986

TABLE 9: Comparison with existing methods.

Method Model Recall Precision F1-score Accuracy
Proposed GAT 0.890 0.978 0.921 0.998

[30] RF 0.636 0.957 0.667 0.994
[32] BT 0.825 0.866 0.827 0.983

knowledge, the recall, precision and F1-score are decreased.
The accuracy is the same as the baseline method because the
Trojan nodes make up only 0.2% of the whole training data,
and the accuracy score is greatly affected by true negatives.
For example, if the classifier determines all nodes as normal
nets (i.e., negative), the accuracy would be 99.8%. Therefore,
there is no difference in accuracy among the methods, but
it is clear that the proposed method can identify the Trojan
nodes better than the baseline method because the recall,
precision, and F1-score are higher. This result confirms that
the features based on knowledge of HT features are essential
for node-wise HT detection.

Note that, adding initial features requires additional
costs such as an increase in computational time and re-
sources for training a model. Therefore, covering feature
categories 1 – 5 should be sufficient.

7.2.2 Comparison with state-of-the-art methods (RQ2)
In this experiment, we compared the proposed method with
the two state-of-the-art methods [30], [32] mentioned in
Section 5.1.

The method described in [30] extracts 36 features that
represent the HT structure well and identifies HT wires by
using random forest (RF). Since the number of false posi-
tives is very small, this method is less likely to misidentify
normal circuits. The method described in [32] is based on
testability measures, which are effective features for HT
detection, and it employs the adaptive synthetic (ADASYN)
sampling approach to better learn imbalanced training data.
They validated it with four supervised algorithms, and
the highest metrics were employed when using bagged
trees (BT). Both methods [30], [32] have been reported to
perform well on the Trust-HUB dataset based on effective
feature engineering.
Detection results. Table 9 shows the comparison results
with existing methods. We adopted the GAT model, which
demonstrates the highest classification performance, as
shown in Table 8, as the proposed method for the compari-
son. As shown in Table 9, the proposed method outperforms
the two methods [30], [32] on all evaluation metrics.

We compared the proposed method with the state-
of-the-art GNN-based methods proposed in [40] and [9].
Table 10 shows the comparison with [40]. Although the
datasets are different in terms of the two methods, the
results are obtained citing [40] based on the average scores
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TABLE 10: Comparison with [40].

Method Model Recall Precision F1-score
Proposed GAT 0.890 0.978 0.921

[40] SGCN 0.841 0.912 0.860

TABLE 11: Comparison with [9].

Trigger type Method Recall Precision F1-score

Combinatorial Proposed 0.850 0.968 0.889
[9] 0.90 0.95 0.87

Sequential Proposed 0.947 0.990 0.965
[9] 0.92 1.00 0.96

of the datasets containing several different base circuits. As
shown in the table, the proposed method outperforms the
method in [40] on all of the metrics. The major difference is
that the method in [40] uses only the node types, which are
categorized as 2 . Therefore, using a set of features that cov-
ers categories  1 – 5 contributes to enhancing the detection
performance. Table 11 shows the comparison with [9]. In
the comparison, we summarize the results of the proposed
method based on the trigger types, as in [9]. Although the
results are almost comparable, the proposed method obtains
higher F1-scores than [9] in both trigger types. One of the
reasons for this result is the proposed method’s ability to
capture the features of payload parts. As shown in Table 16
in Appendix H, the proposed method can detect most HT
parts of s35932-T300, which has a characteristic payload
part, a ring oscillator. That is, the proposed method captures
the features of HTs, including both the trigger and payload
parts, based on the Trojan labels in the training datasets.

This result means that we can say “YES” to RQ2, which
corresponds to Motivation 1. To the best of our knowledge,
there is no other gate-level and node-wise HT detection
method that achieves 0.890 recall and 0.978 precision. Since
we can accurately identify the HT’s insertion point, we can
obtain evidence for further analysis. Moreover, because of
the high accuracy, we can carefully analyze or refine the sus-
picious circuit using other verification techniques based on
the proposed method’s classification results. Therefore, the
proposed method solves the problem in practical scenarios.

7.3 Performance Evaluation for HTs with Unknown Fea-
tures (RQ3)

With this experiment, we evaluate the proposed method
for HTs with unknown features using randomly generated
samples. As mentioned in Section 4.2, GNN models are
expected to automatically extract the features that repre-
sent HTs well. Although conventional ML-based methods
require feature engineering to effectively perform HT de-
tection, GNNs overcome this limitation. To confirm this as-
sumption, we randomly generate HT-infested samples and
attempt to detect HTs from the generated samples without
feature engineering the HTs. For comparison, we adopted
the baseline method and the method described in [30] in this
experiment.
Random HT-infested circuit generation. Inspired by the
methodology in [27], HT-infested circuits were randomly
generated for the evaluation. The method used to randomly
generate these HT circuits is described in Appendix I.

TABLE 12: Detection results of unknown HTs.

Method Model Recall Precision F1-score Accuracy

Proposed
GAT 0.773 0.843 0.788 0.995

MPNN 0.868 0.993 0.905 0.997
GIN 0.783 0.847 0.800 0.995

Baseline
GAT 0.756 0.889 0.781 0.995

MPNN 0.854 0.936 0.881 0.996
GIN 0.863 0.965 0.897 0.997

[30] RF 0.681 0.749 0.706 0.996

We randomly generated 20 training samples, including
79155 normal nodes and 2227 Trojan nodes, and 100 test
samples, including 396103 normal nodes and 9961 Trojan
nodes. The training and test samples were generated sep-
arately. That is, the test samples were not included in the
training dataset. In the generated HTs, most Trojan nodes
are less than 5% of the total number of nodes, and the
generated HTs are relatively small compared to normal
circuits. For evaluation, we trained the 20 training samples
and constructed a trained model. Then, we classified 100
test samples and calculated the average scores of all of the
samples in terms of recall, precision, F1-score, and accuracy.

In this experiment, we used the same model as that in the
previous section. Specifically, we used the same parameters
as those in the previous section to evaluate the proposed
method and the baseline method. We implemented the
method described in [30] for comparison with a state-of-
the-art HT detection method; it considers feature categories
 1 – 4 and is designed based on the features that appear in
the Trust-HUB benchmark netlists.
Detection results. Table 12 shows the detection results for
this experiment. The boldfaced font indicates the highest
rate for each method. As shown in Table 12, the GNN-based
methods (the proposed method and the baseline method)
outperformed the method described in [30] on all evaluation
metrics. Although the precision of [30] was higher than that
of the proposed method in Table 9, it was not as high in
this experiment. Instead, all of the metrics were quite low
compared to the results of the GNN models because the fea-
tures in [30] are designed for only the Trust-HUB benchmark
netlists, and thus this method fails to capture the features of
randomly generated HTs (i.e., HTs with unknown features).
On the other hand, the GNN-based methods successfully
captured the node features of HTs and achieved a higher
detection performance. From the results, we can state that
GNN-based HT detection successfully extracts HT features
without tedious feature engineering even when the datasets
are not involved in a specific benchmark suite. This result
means that we can say “YES” to RQ3, which corresponds to
Motivation 2.

8 CONCLUSION

In this paper, a novel HT detection method for netlists using
GL called NHTD-GL was proposed. NHTD-GL applies node-
wise detection to netlists, GL, and HT domain knowledge
for practical use. Thus, this paper theoretically supports
the relationship between GL and HT detection and clarifies
what HT features GL captures. Based on the theoretical anal-
ysis described in Section 5, it is established that NHTD-GL
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effectively captures the HT features. The experimental re-
sults demonstrate that NHTD-GL successfully outperforms
the existing HT detection methods and extracts HT features
without tedious feature engineering.
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