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Abstract—Container technology is getting popular in cloud
environments due to its lightweight feature and convenient de-
ployment. The container registry plays a critical role in container-
based clouds, as many container startups involve downloading
layer-structured container images from a container registry.
However, the container registry is struggling to efficiently manage
images (i.e., transfer and store) with the emergence of diverse
services and new image formats. The reason is that the container
registry manages images uniformly at layer granularity. On the
one hand, such uniform layer-level management probably cannot
fit the various requirements of different kinds of containerized
services well. On the other hand, new image formats organizing
data in blocks or files cannot benefit from such uniform layer-
level image management. In this paper, we perform the first
analysis of image traces at multiple granularities (i.e., image-,
layer-, and file-level) for various services and provide an in-depth
comparison of different image formats. The traces are collected
from a production-level container registry, amounting to 24
million requests and involving more than 184 TB of transferred
data. We provide a number of valuable insights, including request
patterns of services, file-level access patterns, and bottlenecks
associated with different image formats. Based on these insights,
we also propose two optimizations to improve image transfer and
application deployment.

Index Terms—Container image, on-demand image, cache,
prefetch.
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I. INTRODUCTION

L IGHTWEIGHT containers have emerged as a crucial tech-
nology for cloud platforms. Images serve as the delivery

mechanism for containerized services and are integral to the
entire life-cycle of these services. As shown in Fig. 1, devel-
opers release their services by building a layered image that
includes system files, packages, and service contents. Once
built, the image is uploaded to a container registry. Users can
easily download the image from a container registry and de-
ploy a container from the image on servers, regardless of the
underlying architecture and environment.

Efficient image management, including transfer and storage,
is essential for establishing a container cloud platform with
rapid response and efficient operation and maintenance [1].
However, for the traditional image format proposed by Docker
[2], the complete image needs to be downloaded when de-
ploying a container, which can account for up to 76% of the
container deployment time [3]. To accelerate image transfer,
researchers propose a series of optimization strategies, such as
cache [4], prefetch [5], [6], and Peer-to-Peer (P2P) [7], [8].
They also propose novel on-demand image formats [3], [9],
[10], [11], which only download a small portion of data on
demand when starting a container, enabling fast deployment.

Nevertheless, with the dramatic development of container-
based platforms, new problems arise in managing images within
a container registry, even if the mentioned optimizations are
applied [5], [6], [12], [13]. Firstly, managing image data uni-
formly at layer granularity is not enough [14], [15], [16]. Both
image- and file-level information are desired to enable further
optimization. For example, file-level prefetching is required
to optimize on-demand images. Secondly, different kinds of
containerized services need their corresponding optimal image
formats. The performance of on-demand image format is not
always better than that of traditional image format [3], [6], [9].
For example, on-demand images need to be converted from
traditional images in a container registry, which makes on-
demand images unavailable before the conversion finishes [9].
Our container-based cloud platform covers a diverse set of
users with various services. These services are developed in
different paradigms, maintained in different deployment modes,
and deployed in nodes with different performances. We need
to understand how these factors affect image data transfer and
existing acceleration solutions.
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Fig. 1. Images and containerized services.

Accordingly, we perform comprehensive analysis on the
data transfer behaviors of a variety of deployed services with
different request granularities and image formats, including
analytics, Internet of Things (IoT), Machine Learning (ML),
web, and platform workloads. These have different comput-
ing paradigms (e.g., monolithic, or decoupling), development
modes (e.g., traditional mode, or DevOps mode), and node per-
formances (e.g., network, or storage space). We design a toolkit,
named mTracer to capture operational traces in three granular-
ities: image-level, layer-level, and file-level. Image traces are
collected from a container registry of one of the leading cloud
service providers. The traces cover 30 days, total over 24 mil-
lion requests, and involve over 184 TB of data transferred. We
have open sourced mTracer at: git@github.com:CGCL-
codes/Multi-grained.git, and the traces will be avail-
able for public use upon obtaining the authorization to facilitate
further research.

We obtain several insightful observations. For example, im-
age traces of different services exhibit different characteristics
(e.g., image size, pull interval) due to the changes in computing
paradigms, development modes, and node performance. For ex-
ample, it inspires us to design a lifetime-based eviction strategy
for the container registry cache based on the observation that
over 70% of images stay active in less than 3 hours for web
services due to decoupling and DevOps, and most images of
other services usually stay active for more than 11 days. In terms
of image-level requests, we find that many images tend to be
pulled in pairs even if they are on different servers from the
view of the container registry. This motivates us to design an
image-level prefetching mechanism. On-demand images, which
are replacing traditional images, are not always the best choice.
The on-demand images are converted from traditional images.
Pull requests directly after uploads, which are quite common
(over 80% of the first pull is within 1 second after an upload),
cannot be served during the conversion.

We present two optimizations to clarify the practicality of
our observations. First, Lifetime and Association-based Cache
(LACache), is a layer-level cache strategy in the container reg-
istry. LACache evicts layers based on services and prefetches
images based on their associations. LACache can reduce 57%
layer provisioning latency for the container registry com-
pared to the state-of-the-art works. Second, IFRecommender,
employs a neural network to recommend image formats for
services based on request interval, conversion overhead, and
bandwidth. IFRecommender can reduce 42% the deployment
latency of containers compared to the situation when all ser-
vices use on-demand images.

Fig. 2. Overview of the container registry.

II. BACKGROUND AND MOTIVATION

In this section, we introduce the structure and management
of images and explain the motivation for our analyses.

A. Organization and Storage of Images

Currently, the most widely deployed image is proposed by
Docker and promoted by Open Container Initiative (OCI) [17].
The traditional image is designed as a layered structure which
brings two benefits. The first is the convenient building. For
a container, a developer creates a directory, named layer, to
hold data generated by each step and commits to confirm the
step. The developer can build a new layer upon any of the
earlier committed layers. The second is the data sharing. For
two layers, if their direct lower layers and their own fingerprints
(e.g., SHA256) are identical separately, they can be shared.

Container registries, such as Docker Hub [1] and IBM Cloud
Container Registry [5], acts as a storage and content delivery
system for container images. As shown in Fig. 2, in our con-
tainer registry, images of various services are put into different
namespaces. In each namespace, users can create repositories,
which hold images for a particular service. Images can have
different versions, called tags. For an image, the container
registry stores two parts: compressed tarballs of layers and
manifests that record which layers make up the image. Layers
of different images are stored together in the object storage for
sharing.

B. Data Transfer of Images

For traditional images, an intact image must be pulled before
starting a container. Specifically, the client sends a “PULL()”
command to the local daemon. The daemon then requests the
manifest of the image by issuing a “GET()” request to the
container registry. Based on the manifest, the daemon down-
loads layers that are not present in the client. An absent layer
can be searched and pulled by issuing a “HEAD()” request
and “GET()” request to the container registry, respectively.
The container registry can redirect layer requests to a different
URL, e.g. to an object store, which stores the actual layer.
The client can upload an image by sending “PUSH()” to the
local daemon. In contrast to “PULL()”, “PUSH()” works in
reverse order.

On-demand Image. As not all image data are accessed when
running a container [3], researchers design on-demand images
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[2], [9], [10], [18] that only download necessary files or blocks
during the container’s run. Traditional images do not support
on-demand downloads, as the layers are compressed in the
container registry and cannot be accessed randomly. Therefore,
data in on-demand images are reorganized. For example, DADI
[2] organizes image data in the granularity of blocks and locates
blocks with a virtual block device. Slacker [3] organizes and
locates image files through network file systems. Note that
as most clients cannot directly build on-demand images, on-
demand images are converted from traditional images in the
container registry, which costs extra time and resources.

C. Image Characterizations

With the diversification of services and the emergence of new
image formats, the request patterns of images require further
characterization for efficient image management.

Characteristics of Different Services. Due to differences
in computing paradigms, development modes, and node per-
formance, images of services exhibit different request patterns.
However, existing analyses are for the general features of the
whole container registry, lacking the characterizations on differ-
ent categories of services [5], [12]. For example, most images
of traditional analytic services are widely distributed, which
means P2P is suitable. In contrast, only a fraction of images
on serverless web services are frequently pulled. Therefore,
we need to analyze images based on the computing paradigm,
development mode, and node performance of services.

Request Characteristics in Different Granularities. As
images are pulled in the granularity of layer, existing analyses
mainly character request patterns at the layer level [6], [14],
[15]. On the one hand, a complete image is required when de-
ploying a container based on the traditional image. The image-
level analysis is required to observe the impact of image pulling
on deployment and reveal relationships between images. On the
other hand, on-demand images manage data at the granularity of
blocks or files. File-level pattern analysis is required to optimize
on-demand images.

Comparison of Different Image Formats. The perfor-
mances of traditional and on-demand images vary depending on
image size, data usage, and network. For example, when images
are tiny, which is common in platform, deploying containers
based on traditional images is sometimes faster than on-demand
images. However, cloud users often replace on-demand images
with traditional images regardless of the service. This delays the
deployment of some services and even causes some of the users
to roll back to traditional images. A comprehensive comparison
between traditional images and on-demand images is required
to guide the users in choosing appropriate image formats.

III. METHODOLOGY

In this section, we introduce selected services and explain
how to obtain image-level and file-level traces.

A. Traces of Different Categories of Services

To facilitate a comprehensive analysis of container image
usage, we collect a huge number of image traces from a cloud

TABLE I
THE DESCRIPTION OF DIFFERENT CATEGORIES OF SERVICES

Level of Decoupling Representative Services

Cloud
Service

monolitic
analytics

IoT
lightly decoupled ML

highly decoupled
web

platform

provider. The deployment of containerized applications is af-
fected by factors such as image size, bandwidth, and update
frequency. These factors are impacted by the degree of decou-
pling, deployment location, and development mode. Therefore,
we have selected services with varying degrees of decoupling,
deployment locations, and development modes for observation.
Additionally, these services represent the most commonly used
ones in our business.

For high scalability and high resource utilization, an impor-
tant trend of cloud containerized applications is to be decou-
pled into some inter-linked execution units [19]. We classify
the container-based services into three categories according
to the degree of decoupling, i.e., monolithic services, lightly
decoupled services, and highly decoupled services, as shown
in Table I. For monolithic applications, a category of services
in the data center and a category of services outside the data
center are selected. The decoupled application is mainly de-
ployed in the data center. A lightly decoupled service simply
decouples the data from the functions, while a highly decoupled
service separates the functions. For decoupled applications, a
new development mode, DevOps mode1, is becoming increas-
ingly popular. We select web services and platform services that
utilize DevOps and traditional development modes for obser-
vation, respectively. It is noted that the services we chose also
appear in the typical cases of leading cloud service providers
[20], [21], [22]. The details of each category are as follows:

Monolithic Services. This kind of service is usually con-
tainerized in a straightforward way. All required data of an
application are put in a single image.

The analytics services are the first to be deployed in container
cloud platforms, like MapReduce [15]. Due to a lack of practical
experience with containers, these containerized services are
monolithic. The use of only one image for a service inevitably
results in a large image.The key feature of IoT services is that
their resources are physically limited [23], and thus images for
IoT are tailored and simplified.

Lightly Decoupled Services. ML services are newly
emerged on the cloud for both research and engineering. ML
services are roughly decoupled into datasets and models some-
times. Due to the large size of data involved (e.g., oversized
models and training datasets), images of ML probably exhibit
different features.

Highly Decoupled Services. This kind of service is de-
ployed with full consideration of characteristics of container

1DevOps mode: Developers and operations work in close collaboration to
enable rapid releases of new software features.
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TABLE II
THE DESCRIPTION OF THE REAL-WORLD TRACES

Category
Request
Number

Image
Number

Node
Number1

Image
Pulled

Size
(GB)

Image
Average

Size
(MB)

RPG2

Analytics 1,200,000 20 5,000 100,000 4,150 1:1,122
IoT 66,000 300 100 20 100 1:123
ML 330,000 300 500 50 300 1:76
Web 2,700,000 34,000 42,000 5,000 500 1:20

Platform 19,900,000 5,200 250,000 78,500 14 1:7,746
Total 24,196,000 39,820 297,600 183,570 434 -

1The node refers to the request source which can be a virtual
machine, a proxy, or a switch, etc.

2RPG means that the Ratio of PUTs to GET.

cloud platforms (e.g., easy scaling and high resource uti-
lization), meaning that a service is decoupled into numerous
containerized execution units. Combining with real-world sce-
narios, we select two representative services.

Serverless computing is an increasingly popular comput-
ing paradigm. Web services are pioneer and typical services
migrated to serverless platforms [19]. These services are de-
coupled into numerous fine-grained handling units, called func-
tions, to make it easy to scale rapidly. With the use of DevOps
mode, images are updated frequently.

Apart from services that are highly decoupled by users, the
cloud provider will help users accomplish the deployment of
basic environments, such as kubernetes and prometheus. Such
services are also highly decoupled into multiple components
and account for a high percentage of image pulling because of
their wide use.

The traces are derived from the logs of the container registry.
All the traces have been anonymized and our trace-based analy-
sis is conducted in a secure environment with the authorization
of the trace provider. Table II shows the basic characteristics
of each collected category of services. Note that the nodes of
ML and IoT are fewer than other categories, because there are
proxy nodes that will store cache images and only the uncached
images will be pulled from the container registry. Proxy nodes
also results in a decreased frequency of pulls and distribution
of nodes for layers. As we can only collect requests from the
container registry, we only observe the pull behavior directly
related to the container registry. Each request of the traces
involves multiple fields as shown in Table III. The traces cover
30 days in the third quarter of 2021. The total amount of traces
is over 12 GB including over 24 million requests, involving over
39 thousand images whose size exceeds 183 TB. These requests
are from about 298 thousand nodes. And we also classify all
requests that are related to the pushing and pulling operations
of images. To promote future research, all traces will be open-
sourced after the authorization progresses.

B. Deriving Multi-Grained Traces

The layer-level traces are collected by capturing HTTP re-
quests from the container registry. As layer-level traces are
collected from the container registry, the details of the user
are lacking, and the pull served by cache outside the container

TABLE III
THE COLLECTED FIELDS IN IMAGE TRACES

Tag Description
Image: namespace name of the namespace
Image: repo name of the repository
Image: tag image version
Layer: digest_id digest id of the layer
Layer: size size of the object
Request: method HTTP method
Request: timestamp the time received by the server
Request: ip IP address
Request: user_agent header of the HTTP request
Request: api the request type
Request: network_type network type
Response: body_length size of the HTTP response body
Response: response_time HTTP response time
I/O: timestamp1 timestamp of the the I/O operation
I/O: container_id1 container id of the I/O operation
I/O: inode1 inode number of the accessed file
I/O: data_size1 size of I/O data
I/O: image_layer1 the accessed image layer

1Tag “I/O”s are collected from the client side and others are from
the container registry.

registry cannot be collected. There are some challenges in per-
forming image- and file-level analysis: (1) the container registry
can only capture layer-level traces. As layers can be shared by
images, layer requests do not have a label recording to which
one image they belong. This prevents the container registry
from directly detecting which layer requests belong to the same
image while serving a large number of layer requests; (2) in the
view of the host, retrieving detailed information of file requests
from a container is challenging. On the one hand, requests from
containers are mixed with regular process requests in the host.
We need to distinguish container requests from all host requests.
On the other hand, the information carried in the request only
contains the logical view path of the file in the container, which
lacks knowledge of the image layer. We still need to find which
layers the files belong to.

Image-level Analysis. We propose an aggregation approach
that runs offline based on the layer-level traces. Specifically,
we regard requests with time intervals less than a specified
threshold (empirically set to 5 minutes) and with the same
address (i.e., the IP, port number, and repository name of the
request) as requests for different layers of the same image.
An exception only occurs when requests with the same IP and
port pull more than one image in the same repository within
a time interval. In response to this, we will further rectify
the aggregated image information by reviewing the subsequent
pull traces. We compare the exact log information obtained
from the clients in our business with the results aggregated
in the container registry. The result shows that all the tested
logs (i.e., over 20,000 logs) are aggregated correctly. Because
the aggregation is an offline operation, the overhead does not
affect system operations. Given the importance of image-level
information and the complexity of recovering it, we also submit
a proposal to the official container community to add a related
field to the future version of the container image specification.

File-level Analysis. First, eBPF technique [24] is used to
capture I/O requests in virtual file system and filters con-
tainer I/O requests based on cgroup id. As listed in Table III,
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TABLE IV
THE COMPARISON OF CONTAINER IMAGE ANALYSIS TOOLS

Tool Image Analysis Data Access
Layer
Level

Image
Level

File
Level

Startup
I/O

Runtime
I/O

Duphunter [7] ✔
Crawler [8] ✔

Hellobench [10] ✔ ✔
DADI [25] ✔ ✔ ✔
Tracee [4] ✔

Replayer [15] ✔
mTracer ✔ ✔ ✔ ✔ ✔

the fields collected from an I/O request are timestamp,
container_id, inode, and data_size. The traces are
merged in memory and written to storage when the I/O burden
is low. Then, the logical path is switched to the physical path
by parsing the inode information offline to minimize overhead.
Finally, we find layer information in the physical path and add
it to each trace item. In particular, the size of the collected data
is 27MB while reading 1 GB of image data at the granularity of
4KB. In this paper, the file-level traces of an image are obtained
by deploying containers on a standalone server. Due to the state-
less nature of container images, image file access is constant
when the same containers are deployed. We deploy xwiki which
involves accessing about 200MB of image data and evaluating
the overhead introduced by mTracer. mTracer increases CPU
overhead by about 4% and memory usage by about 70MB. Most
of the overhead comes from running eBPF and recording traces.
As we use data aggregation and regular write-back to reduce
overhead, the image deployment time varies by less than 5%
(ranging from 39s to 41s). We integrate the above solutions
into a multi-grained tracing toolkit, named mTracer. Table IV
compares mTracer with existing tracing tools.

IV. REAL-WORLD WORKLOAD ANALYSIS

In order to provide bases for possible optimization methods,
such as caching and prefetching, we analyze the pull requests
and file access of images:

1. We analyze the characteristics of pull requests for various
services, including size, time interval, and association,
because image pulls directly affect the deployment effi-
ciency of containers.

2. We analyze the file access patterns of container deploy-
ment, including the type of files, redundancy, and distri-
bution across layers.

3. We compare the performance of traditional images with
that of on-demand images, evaluating container startup,
service startup, container run, and conversion time.

A. Pull Analysis of Different Services

Sizes of Pulls. Fig. 3(a) shows the cumulative distribution
functions (CDF) of pull request for layer size. It reveals similar
trends across all kinds of services. Specifically, approximately
40% of pulls are for layers that are smaller than 10 MB, while
about 20% are for layers that exceed 100 MB in size. Pulling
large layers is because deploying containers often involves

Fig. 3. CDF of pull requests for layer size and image size.

Fig. 4. CDF of layers and images for the number of pulls.

using several base layers that contain the dependencies and
environments. Existing work designs cache at the granularity of
layer and preferentially cache small layers, because most layers
are small and suitable for caching [5]. However, as we observed,
a substantial number of pull requests are for large layers. This
means that some large layers should also be preferentially and
cautiously cached as they are frequently pulled and may evict
many popular small layers.

Starting a service with a traditional image requires the entire
image to be downloaded, which means that image size deter-
mines the deployment efficiency. As shown in Fig. 3(b), we
observe the size of image data downloaded when deploying
services. For analytics services, over 80% of image pulls are
larger than 1GB, while for IoT services, web services, and ML
services, more than 80% of image pulls are between 100MB
and 400MB in size. As cloud technology advances, a service
is decoupled into micro-services or functions, and the content
of the image is simplified, making the image smaller. However,
currently, transferring images larger than 100MB is still time-
consuming in bandwidth-limited situations, highlighting the
need for image-level caching and prefetching.

Number of Pulls for an Image. Fig. 4 shows the CDF
of layer and image for the number of pulls, highlighting the
variation in the number of pulls. For services in anlytics, about
80% of the images are pulled over 400 times, indicating that
these images are used frequently. Images of analytics services,
which employ traditional paradigms, are stable and often used
for a long time. In contrast, for web, IoT, and ML services,
only about 20% of the layers or images are pulled over 100
times. Especially for web services, only 5% of the layers or
images are pulled over 100 times. Emerging services tend to
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Fig. 5. CDF of image and request for request intervals.

Fig. 6. CDF of layers and images for time intervals between the first pull
and the last pull.

be decoupled or simplified. When deploying a service, only
small images containing desired micro-services or functions
need to be pulled, making pulls highly centralized. This means
caching mechanisms can effectively accelerate image transfer
for emerging services.

Time Intervals of Pulls. We depict the time interval from
upload to the first pull of an image as shown in the Fig. 5(a).
We find that images are generally quickly pulled after being
uploaded. For example, for images of web services, over 90% of
images are pulled within 1 second after upload. We also observe
the average pull interval of images. As shown in Fig. 5(b), over
50% of images in ML, web, platform, and analytics services are
over 10 seconds, and 95% of images in IoT services are over
1000 seconds. This means that the time interval between sub-
sequent pulls of the image becomes longer. Notably, immediate
pulls right after uploads for on-demand images may experience
delays, because on-demand images are not available until they
are converted from traditional images. Additionally, as shown
in Table II, the impact of this conversion delay may be more
pronounced for emerging services that update quickly due to
DevOps, such as web services.

Active Duration of a Layer or an Image. Fig. 6 shows
time intervals between the first pull and the last pull request of
the same image. For analytics, IoT, platform, and ML services,
most images and layers are active for a long time (over 1
day). However, for serverless, more than 40% of images receive
requests within 16 minutes. This indicates that the versions
of these images are unstable and will be updated iteratively.
Serverless decouple its services and employs DevOps mode,
which leads to its images being frequently pulled but with a

Fig. 7. CDF of layers and images for the number of nodes that a certain
image or layer is deployed.

TABLE V
COMPARISON OF EXISTING STORAGE SYSTEMS

Distribution P2P 1% P2P 10% P2P 20% P2P 30% Registry
Time(s) 2.58 1.83 1.68 1.55 1.69

rapid decline in popularity. This results in the serverless images
changing quickly, and layers of serverless in the cache can be
quickly evicted.

Distribution of Pulls. Fig. 7 shows how many nodes will
pull a certain image or layer. First, analytics services that are
developed using the traditional development mode are stable.
Second, a analytics service is monolithic, and every node that
runs the service needs to pull the entire image. Therefore,
images of traditional services tend to be distributed widely (i.e.,
over 30% of images are deployed in 1000 nodes), which makes
P2P acceleration suitable for their deployment. In contrast, only
a few images from emerging services are widely distributed
(i.e., about 50% of the images are pulled from less than 10
nodes). After services are tailored or decoupled, each node
downloads only require small images. As a result, only a small
fraction of stable images are widely distributed and suitable for
P2P acceleration.

To confirm that images deployed on only a few nodes are
not suitable for P2P acceleration, we perform a simulation
experiment with NS3 [25]. We simulate a cluster of 100 nodes,
randomly connected. The latency between adjacent nodes is
20ms, and the latency from nodes to the container registry is
150ms. As shown in Table V, the time it takes for a node to
pull a 10MB layer at a bandwidth of 10MB/s. When the layer
is only distributed in 1% of nodes, the pull time is 2.38 seconds,
due to the search procedure. Pulling directly from the container
registry takes 1.49 seconds.

Associations between Different Images. We further ob-
serve the association between the pulls of different images and
find that some images tend to appear in pairs. For an image
(image A) that is pulled more than 100 times, if another image
(image B) is pulled soon (within 60s) after more than α%
(empirically set to 50) of image A’s pulls, we consider the two
images are associated, that is, an image pair. However, image
pairs are not always pulled together, as one of the images may
have been pulled to the client while running other services.
Table VI shows the number of image pairs in each category.
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Fig. 8. Access pattern of files. The ratios are calculated based on file counts.

TABLE VI
COMPARISON OF EXISTING WORKLOADS

Web Platform ML IoT Analytics
Repositories >160 >250 >380 >50 >5

Pairs 286 412 50 0 0

We find 412 image pairs from 252 repositories. Because several
components should run in collaboration with each other. For
example, kubelet and proxy are usually deployed together. We
also find 286 image pairs from 167 repositories among web
services, which is likely because services are usually decoupled
into several functions. For example, nginx and zuul should be
deployed to run a Spring service. Additionally, ML services of-
ten separate models and datasets, generating some image pairs.
Note that detecting image pairs on the client side is difficult, as
image pairs sometimes are deployed on different nodes.

A service tends to be decoupled into several micro-services
or functions to enable fine-grained scheduling and billing. Un-
fortunately, this may delay the deployment of a service, be-
cause the container registry serves requests at the layer level,
and the images of micro-services or functions are pulled one
after another causing multiple network accesses. By letting the
container registry be aware of the image associations, the asso-
ciated images can be provided in advance, thereby accelerating
service deployment.

B. File-Level Access During Deployment

We further observe image file access (e.g., usage, type,
location, and duplication) of container deployment to guide
the optimization of on-demand images. We select the top-100
downloaded images2 and replay their latest version locally to
observe file access.

Fig. 8(a) shows the usage of image files until the service is
ready. On average, about 4.3% of the image files are accessed
to start a service, and 90% of the images only access less than
10% of files. We also categorize the accessed files of all the
images. Fig. 8(b) shows the layers in which the accessed files
are located. It is observed that most of the accessed files are

2Top-100 downloaded images: We are not authorized to carry out file-level
analysis on images from production environments that need to invade into
these images, so we get the names of the top-100 downloaded repositories
from the cloud provider and get their corresponding latest images from the
public registry. File-level analysis and image format comparison are based on
these images.

Fig. 9. The latency of container startup and service response. The x-axis
represents that the sizes of traditional images sorted in ascending order. The
y-axis shows the latency of container startup or service response.

located in the top layers of images. We can accelerate on-
demand images by prefetching files in top layers of the image.
Fig. 8(c) shows CDF of all accessed files for sharing count.
Almost all of these files are unique (only about 1% of the
files are redundant). This means that a file-level or block-level
cache on the client cannot accelerate the access of on-demand
images when different kinds of services are deployed on a
single client. Furthermore, duplicated accesses occur mainly
within the same repository. Fig. 8(d) shows the redundancy of
accessed files within each repository (two versions of images
in each repository). The redundancy of accessed files between
two versions of the same service reaches 70%. This implies
that different versions of the same service exhibit similar I/O
patterns. It is easy to accelerate the deployment of on-demand
images by recording file access of a repository and prefetching
files for clients that pull other images from the repository.

C. Traditional Image v.s. On-Demand Image

We select the top 100 downloaded images to compare the
performance of traditional images and on-demand images. The
working of images can be into four phases, i.e., container
startup, service response, container running, and image con-
version. For the on-demand image format, we choose DADI
[2] as the evaluated subject. DADI is an open-sourced project
promoted by container community [17], which is increasingly
popular on commercial platforms.

Container Startup. This phase starts when a pull request
is sent and ends with the container creation. We evaluate the
container startup of two image formats under different net-
work bandwidths. As shown in Fig. 9(a), when the network
bandwidth is 5 MB/s, the latency of traditional images is
42 seconds for the image with a size of 200 MB, which is
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Fig. 10. The latency of accessing image data during container running. The
x-axis represents the ratio of the amount of distinct accessed blocks relative
to the image size. The y-axis shows access latency.

9× higher than that of the on-demand image. When the band-
width is 100 MB/s, the gap in startup latency between these
two image formats is slight. Thus, as the bandwidth in cloud
platforms gets larger, the advantage introduced by on-demand
images is gradually decreasing. When the network bandwidth
is limited (e.g., IoT), using the on-demand images can signifi-
cantly improve deployment.

Service Response. This phase is from the time when service
inside the container boots up to the time when user requests are
responded to. During this phase, the data involving the startup of
the service will be fetched to memory. For on-demand images,
the data has to be retrieved from the container registry. As
shown in Fig. 9(b), for a 200 MB image, the service response
latency for the traditional image format is at least 5 milliseconds
at the 10 MB/s bandwidth, and the latency for on-demand is
17× to that of the traditional image. Compared to the traditional
image that reads data locally, remote retrieving causes a long
latency for on-demand images. For latency-sensitive services
(e.g., web service), such a remote image data access mode
inevitably compromises the performance of the function.

Container Running. This phase is from when the container
starts to handle the request until the container is terminated.
During the phase, the running service needs to access data in
the container image. We vary the ratio of the distinct accessed
blocks relative to the image size. As shown in Fig. 10, at a
5MB/s bandwidth, for a 140 MB image, the average access
latency for the on-demand image is 3.1 seconds, approximately
20x higher than that for the traditional image. In addition,
some data that the following requests will access is probably
available locally. Thus, the latency for the on-demand image
gradually decreases when a large amount of data has already
been accessed. For services with large image sizes (e.g., ML),
containing large amounts of data for training or inference, all
the image data is likely to be downloaded locally incrementally
as needed if the on-demand image is adopted.

It is important to note that during the deployment, we mainly
focused on the network impact, because the impact of disk IO
is slight. This is consistent with previous observations [3]. First,
the disk I/O bandwidth is higher than the network bandwidth
in real-world scenarios. Second, the disk write and download
processes overlap with each other. We test the deployment times
with HDD and SSD using xwiki, an image that involves a lot
of IO access during deployment (about 200MB of files are ac-
cessed). The network bandwidth is set to 100MB/s. Deploying
xwiki based on traditional images takes 45.2s and 43.8s for

Fig. 11. The simulation of image conversion.

Fig. 12. The time overhead, and I/O utilization of conversion. Utilization is
the ratio of the current bandwidth to the peak bandwidth. Average utilization
is the ratio of the average bandwidth during the conversion to the peak
bandwidth.

HDD and SSD, respectively. The time to deploy xwiki based
on the on-demand image is 35.5s and 33.9s, respectively.

Image Conversion. For an on-demand image, users have to
wait until the image is successfully converted from a traditional
image before it can be pulled. Accordingly, we conduct an
experiment to measure the overhead of updating an image (the
testbed is an instance with Intel Xeon Platinum 8369B, 16 GB
memory, and a 768 GB SSD with a throughput of 750 MB/s). As
shown in Fig. 11(a), the ratios of conversion overhead are 58%,
77%, and 93% for 5MB/s, 10MB/s, and 100MB/s, respectively.
Furthermore, the converted image would be expanded in size
compared to the traditional image. The converted on-demand
image is 116%-205% to the corresponding traditional image
(Fig. 11(b)).

Furthermore, a lot of system resources are consumed during
image conversion. As shown in Fig. 12(a), the conversion time
is influenced by the image size and the number of images to
be simultaneously converted. When only one image needs to
be converted, it takes about 7.0 seconds for a 100 MB image.
The conversion time is 121.7 seconds when 32 images are
converted together. As shown in Fig. 12(b), I/O utilization will
reach 100% when 8 images are converted simultaneously. The
machine’s I/O bandwidth becomes a bottleneck for conversion.
When it comes to DevOps mode that involves frequent uploads
and pulls, using on-demand images can result in a high conver-
sion overhead.

D. Key Observations and Implications

1. As computing paradigms and development modes evolve,
images change significantly in size, and frequency of use:
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• Due to decoupling and customization, layers for
emerging services (IoT, platform, and web services)
tend to be smaller compared to traditional analytics
services. For the existing container registry that man-
ages layers uniformly, caching a layer of analytics
may cause many small layers of other services to be
improperly evicted. Therefore, layers of different types
of services should be managed individually.

• For services using DevOps mode, most images get
cold rapidly, over 70% of such images staying active
for less than 3 hours due to frequent updates. On the
other hand, the images of services with traditional
development mode tend to receive pull requests for a
long period, with over 70% of them staying active for
more than 11 days. When designing a cache for the
container registry, we can make a quick eviction for
web images that get cold rapidly to save cache.

• For services that are decoupled or customized (IoT,
platform, and web services), only a small portion of
images are widely pulled. Therefore, P2P may not
effectively accelerate most images for these emerging
services. Even worse, the burden on the network may
be aggravated by P2P requests.

2. We get some observations in layer-, image-, and file-level:
• Although large layers are the minority, a large number

of requests are for them. About 40% and 20% of
requests are for layers larger than 10MB and 100MB,
respectively. Large layers, which are overlooked by
caching before, should be carefully cached as they take
up large space, and some of them are frequently pulled.

• Although the decoupling of services can provide
elastic resource scaling, it also results in multiple
discrete image pulls when deploying the service.
The ccontainer registry can accelerate the deploy-
ment of a service by detecting and prefetching these
associated images.

• The file access pattern of a containerized service is
related to the layer and image versions. For example,
we find that the accessed files of containers are mainly
distributed in upper layers, and services from the same
repository exhibit similar access patterns. By leverag-
ing this information, we can perform prefetching to
optimize the deployment of on-demand images.

3. On-demand images are increasingly replacing traditional
images, but they may not always be the optimal choice:
• Using on-demand images requires data to be down-

loaded after services are started, resulting in more than
20 × response latency compared to traditional images.
When image sizes are small, bandwidths are high,
and the ratio of the accessed data to the entire image
data is high, on-demand images may exhibit lower
performance than traditional images.

• On-demand images need to be converted from tra-
ditional images, and pull requests directly after up-
loads, which are quite common. Over 80% of the first
pull is within 1 second after an upload, which cannot
be served during the conversion. When deploying a

container, it is important to select an appropriate image
format according to service and network.

V. OPTIMIZATION AND EVALUATION

We propose an image caching strategy according to the life-
time and association of images, named LACache, to speed
up image provisioning. To select a suitable image format be-
tween the traditional and on-demand images for fast deploy-
ment, we design an image format recommend system, named
IFRecommender.

A. Lifetime and Association-Based Caching

In practice, the image layers are stored in the object stor-
age service, and the combined cache (e.g., memory+SSDs) is
widely used at container registries to hold frequently-accessed
layers [5]. The layers pulled from the remote object store would
be put in the cache to enable fast provisioning for subsequent
requests.

To use the cache efficiently, we propose two enhancements
based on previous observations. First, instead of caching small
layers preferentially, large layers are also cached. To provide
enough space, we categorize services and evict cached layers
based on their type of service and lifetimes. Second, we lever-
age image-level prefetching based on the correlations among
images to accelerate future pulls. Note that services are catego-
rized based on their computing paradigm, development mode,
and node performance, and are put into different namespaces.

Evicting Cached Layers Based on the Lifetime. Through
the previous observations, we find that the lifetimes of layers
vary significantly in different services. For example, the life-
time of web services goes to only 10 minutes, far below the
300 minutes of IoT/ML. Therefore, the cached data can be
evicted efficiently based on services. In particular, a service-
based threshold is set to evict layers from memory. When the
residency time of layers in memory exceeds the threshold of the
services, the layers are moved into SSD. In this way, the out-of-
date cached layers of each type of service can be cleaned out in
time, and the memory will store more valid layers. Furthermore,
if the long-lifetime data is incorrectly evicted, the high-capacity
SSDs will continue to cache them.

Note that the threshold value for each type of service will be
updated dynamically. Each type of service will be assigned a
default value based on our analysis. When the cache space is
insufficient, the image layer whose lifetime is greater than x and
has not been accessed for y seconds will be evicted one by one
according to the repositories’ hotness from lowest to highest.
When the available cache space continues to decrease, x and
y are decreased until the cache space is sufficient. When there
is a cache miss, it is checked if the image layer is incorrectly
evicted due to the corresponding x and y, which will be adjusted
respectively.

Prefetching Images Based on the Association. Consider-
ing that there are a large number of associated images, we can
make use of the correlations to prefetch images from the object
storage to the cache of the container registry to improve the hit
ratio. In particular, we create an association list to record the
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Fig. 13. Comparison between SLRU and LACache in terms of cache hit
ratio and the average latency for image pull.

image pairs. When an image is requested, its associated images
will be put into the SSD based on the correlation characteris-
tic. When the registry receives a pull request, the associations
based on the user and time interval rules will be re-calculated.
LACache ranks the image pairs based on their probabilities of
pulling in pairs and prefetches the images with high probabil-
ities of association. This design avoids triggering a chain of
association pulls that could saturate the cache. Furthermore,
The image pairs can be used to find complicated dependencies.
For example, an e-commerce website has a long path. We can
obtain this long path by finding three associated image pairs
and combining them. It is noted that monolithic services, such
as IoT and analytics, cannot be accelerated by this prefetch
strategy, because there are very few dependencies in terms of
function for these services.

Experiment Setup. The experiments are performed on a
machine with 64GB memory and 768GB SSD. The object
storage service is set on another node with the same config-
uration. The network bandwidth between nodes is 1000Mbps.
The experiment workload is a dataset of pull traces for seven
days, with 97394 requests tagged as web, or ML, or IoT. For
LACache, the threshold for web, ML, and IoT are initialized to
1600, 1000, and 3000 seconds based on our observations.

Result Analysis. We compare LACache with the state-of-
art work, SLRU [5]. SLRU puts the layers that are smaller than
a certain threshold (e.g., 100MB and 200MB) in memory, and
the large layers into SSD. And the replacement strategies in
memory and SSD both are LRU. Fig. 13(a) shows the hit ratio
of SLRU and LACache. Supposed that the size of memory is set
as 8 GB, our algorithm improves the cache hit ratio by 22% on
average. The hits of SLRU(100 MB, 20x) and LACache(20x)
are 73% and 89%, respectively. And if the memory size is
increased to 16GB, the hit ratio does not improve significantly.
A small increase in the cache does not yield a substantial gain
over large amounts of image data. SLRU(100 MB, 20x) and
SLRU(200 MB, 20x) show little difference. As more layers are
put into the memory, they are replaced more frequently. Thus,
the SLRU which is a LRU strategy based on the size of the layer
cannot effectively accelerate layer pulling.

Regarding the average latency of remote pull in all requests,
LACache brings a great enhancement. As shown in Fig. 13(b),
compared to SLRU(100 MB, 20x), SLRU(200 MB, 20x), the
average pull latency is decreased by 57% and 54% respectively.

Fig. 14. The architecture of IFRecommender.

The performance of 16 GB memory is similar to 8 GB. Com-
pared to the caching strategy based on size, more requests in
LACache will be pulled directly from the layered cache. At
the current scale, SSD, HDD, and a small DRAM can achieve
a high hit rate. When the scale of services further increases,
NVM can be used to cache evicted layers from DRAM, like
SSD. When utilizing NVM, the core concept of our design
remains unchanged: evicting layers based on service type and
prefetching images based on association.

B. Image Format Recommendation System

The deployment times of on-demand images are longer than
that of traditional images when a large portion of image data
are accessed and the pulls are immediately after the uploads
under high bandwidth. For an image, it is necessary to predict
its data access pattern and image conversion time based on
its service type and category. The transmission times of on-
demand images are determined based on the network and data
access pattern, which are related to the service type. This in-
formation cannot be acquired by heuristic methods. IFRecom-
mender collects relevant data in real-time and trains two neural
network models online to predict the conversion time, and the
amount of startup data for the on-demand image, respectively.
Then, IFRecommender combines the two neural network’s out-
puts and predicts a container image format with the shortest
startup time. The architecture of IFRecommender is shown
in Fig. 14.

Model Architecture. To achieve the model rapidly, we use
Neural Network Intelligence (NNI) toolkit [26] from Microsoft
to automate its architecture. Each model in IFRecommender
has three hidden layers, each with 64 neural nodes. For the
output, the argmax function is used for two-class decisions.
The prediction overhead is millisecond-level [26], which is
negligible for image pulling.

(a) Conversion Time Prediction Model. The conversion
time required for the on-demand image is a major concern.
From the previous analysis in Section IV-C, it is clear that the
converted time of an image differs significantly when the size
of the traditional image and the number of parallel converted
images varies. Thus, we take these two factors as input features
of the model. When a user requests an image, the model predicts
the image conversion time based on the number of images
currently being converted.

(b) On-demand Data Amount Prediction Model. For a
container based on the on-demand image, the major overhead of
startup is pulling the required data. From the previous analysis,
the size of the startup data of one image is related to the size of
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the image. Furthermore, given that the startup data for images
belonging to the same repository is similar, we also input the
repository’s name into the model to more accurately predict
the size of startup data. It is customary to use the service
name as the repository name for convenience. To prevent the
misleading name of the repository, we can consider adding a
feedback correction mechanism in the future. Also, we need to
use category tag. Because in some scenarios, we do not have
repository information, or the repository has few images. We
can use category tag to provide some basic information. Thus,
the model will predict the size of startup data for an on-demand
image based on the repository name, category tag, and the size
of the on-demand image.

(c) Image Format Selection Prediction Model. IFRecom-
mender first obtains user’s available network bandwidth. Then,
the results predicted by model a and model b will be used
as inputs to predict the time overhead of two different image
formats, as shown in Fig. 14. Accordingly, the image format
with the minimum time overhead is recommended to the user.
Note that, for an available on-demand image, its conversion
time is 0 and the startup data size can be obtained directly.

Collecting and Labeling Data. To collect data, we
practically evaluate the deployment times of 500 images in two
formats. Specifically, the images are tested under 50 different
bandwidths (ranging from 1Mbps to 100Mbps), and 5 different
conversion parallelisms (i.e., 1, 2, 4, 8, 16). Each example in
the dataset is represented by multiple fields, <image_size,
category_tag, repository_name, conversion_parallelism,
conversion_time, converted_size, net_bandwidth, start-
up_datasize, optimal_image_format>. If the performance
of the traditional image outperforms that of the on-demand,
optimal_image_format is set to 1. Otherwise, it is 0. Note
that 80%, 10%, and 10% of the dataset are used for training,
cross-validation, and testing, respectively. In the testing dataset,
IFRecommender’s accuracy reaches 97%.

Performance Evaluation. We replay all the traces to test
the image deployment latency for four deployment methods:
1) all images deployed in the traditional format; 2) all images
deployed in the on-demand format; 3) images deployed in the
format predicted by IFRecommender; 4) images deployed in
ideal format. We respond to each image pull by separately
pulling an on-demand image and a traditional image, and then
selecting the format with a shorter deployment time for each
request as the ideal format. Fig. 15 shows the results. We can
see that the latency of deploying with on-demand images is
less than that of traditional images, regardless of categories.
The on-demand image format has an evident advantage due to
the significant reduction of data pulling. Besides, deployment
latency via IFRecommender is lower than that of the other
two in all categories. Especially for web and platform services,
compared to the on-demand image, the deployment latency is
reduced by 39% and 42%, respectively. The reason is that there
are many images involving frequent DevOps operations and
lots of I/O of image data. In these cases, the performance of
the traditional image is better than that of on-demand images.
Our method shows 6.5%, 1.2%, 4.4%, 5.6%, and 3.8% longer
deployment time for analytics, IoT, ML, web, and platform

Fig. 15. Comparison of three deployment methods. Normalized average
startup time (NAST) refers to the ratio of the average startup time to that of
all services deployed by traditional images.

services, respectively, compared to the ideal situation. This
means that IFRecommender can make the right decisions in
most cases.

Note that the design of IFRecommender is straightforward
in terms of the inputs and the model architecture. Further-
more, IFRecommender is deployed in the container registry,
and the memory and performance information of the client side
is unavailable. Naturally, researchers can further optimize the
models by further analyzing the image traces or moving it to
the client side.

VI. RELATED WORKS

Analysis of Container Image Request. In terms of layer
request analysis, Anwar et al. [5] find that most pull re-
quests mainly concentrate on a small portion of layers. Albahar
et al. [6] analyze layer requests from the perspective of users
and find that a user usually downloads an image only once
or repeatedly. Ahmed et al. [27] analyze the influence of the
parallelism of image transfer and decompression when down-
loading images. Zhao et al. [13] find that network bandwidth
is the bottleneck for smaller layers. In terms of file access
analysis, Harter et al. [3] observe file access amount in the
process of deploying containers. Gkikopoulos et al. [28] analyze
the dependency between image files when special hardware is
used. Xu et al. [29] observe the performance of different storage
and storage drivers. Wu et al. [30] analyze the latency and
contention in storage drivers. Existing works mainly analyze
the content of traditional images and lack analysis of different
types of services.

Analysis of Image Content. For layers of images, Sharma
et al. [31] find that container images have smaller sizes com-
pared to VM images. Funari et al. [4] observe the distribution
of images in clusters and find that as the number of nodes
increases, the effectiveness of layer-level sharing decreases.
Zhao et al. [12] analyze the layer redundant in the registry and
find that images share numerous small-sized layers. For files
inside layers, Gholami et al. [14] find that updating software
packages in image layers directly may cause stability issues.
File access patterns during containers’ run are essential.

Optimizations on Image Transfer. There are three main
ways to optimize data transfer: 1) On-demand image. Slacker
[3] is the first on-demand image based on NFS. DADI [2] orga-
nizes and transmits image data in the granularity of block. Fog-
Docker [18] analyzes required files when running a container
based on Dockerfile and builds a small image for deployment.
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Gear [9] and Nydus [10] realize index-based on-demand file
download; 2) P2P transfer. Dragonfly [7] is a P2P-based layer
transfer method that dynamically divides and compresses layers
based on bandwidth. FaaSNet [8] design a self-balancing binary
tree topology to achieve efficient P2P image download while
reducing network congestion; 3) Data sharing. To reduce the
amount of data to be downloaded, Wharf [32] and Cider [33]
realize layer-level sharing within clusters. ADAL [34] tries to
find nodes with the most shared layers to deploy containers.
Cntr [35] redivides the image so that containers can be launched
as soon as possible. FastBuild [36] builds a local cache to reduce
repeated data downloads when building images.

Container Registry. Bolt [37] realizes efficient image layer
distribution and searches in the registry cluster based on hash
strategies. Anwar et al. [5] design a hotness-based layer cache.
Albahar et al. [6] design a prefetch strategy based on the de-
pendency of layers for fast layer provision.

VII. CONCLUSION

Efficient image management is critical to the rapid response
and efficient maintenance of container cloud platforms. To
better understand the characteristics of container images, we
design a toolkit, named mTracer, which can capture operational
traces at different granularities. With mTracer, we collect real-
world traces and analyze the characteristics of images in differ-
ent types of services (i.e., analytics, IoT, ML, web, and platform
services). We obtain some different and fresh observations.
Based on our observations, we propose two optimizations to
clarify the practicality of our observations. The lifetime and
association-based caching strategy can reduce layer pull latency
by up to 57%, and the neural network-based image format
recommendation system can reduce image deployment latency
by up to 42%.
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