IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 7, JULY 2024

1711

vKernel: Enhancing Container Isolation
via Private Code and Data

Hang Huang *“, Honglei Wang ¥, Jia Rao
Chen Yu'®, Member, IEEE, Hai Jin

Abstract—Container technology is increasingly adopted in
cloud environments. However, the lack of isolation in the shared
kernel becomes a significant barrier to the wide adoption of con-
tainers. The challenges lie in how to simultaneously attain high
performance and isolation. On the one hand, kernel-level isolation
mechanisms, such as seccomp, capabilities, and apparmor, achieve
good performance without much overhead, but lack the support
for per-container customization. On the other hand, user-level
and VM-based isolation offer superior security guarantees and
allow for customization, since a container is assigned a dedicated
kernel, but at the cost of high overhead. We present vKernel,
a kernel isolation framework. It maintains a minimal set of
code and data that are either sensitive or prone to interference
in a vKernel Instance (vKI). vKernel relies on inline hooks to
intercept and redirect requests sent to the host kernel to a vKI,
where container-specific security rules, functions, and data are
implemented. Through case studies, we demonstrate that under
vKernel user-defined data isolation and kernel customization can
be supported with a reasonable engineering effort. An evaluation
of vKernel with micro-benchmarks, cloud services, real-world
applications show that vKernel achieves good security guarantees,
but with much less overhead.

Index Terms—Container, kernel, isolation, performance.

Manuscript received 17 July 2023; revised 24 January 2024; accepted
9 March 2024. Date of publication 8 April 2024; date of current version
11 June 2024. This work was supported in part by the National Key Research
and Development Program of China under Grant 2022YFB4502001 and in
part by the National Science Foundation of China under Grant 62032008,
Grant 62232012, and Grant 62232011. Recommended for acceptance by
S. Guo. (Corresponding authors: Jia Rao; Hao Fan.)

Hang Huang, Honglei Wang, Chen Yu, and Lisong Pan are with the National
Engineering Research Center for Big Data Technology and System, Services
Computing Technology and System Lab, Cluster and Grid Computing Lab,
School of Computer Science and Technology, Huazhong University of Science
and Technology, Wuhan 430074, China.

Jia Rao is with the Department of Computer Science, University of Texas,
Arlington, TX 76019 USA (e-mail: jia.rao@uta.edu).

Song Wu, Hao Fan, and Hai Jin are with the National Engineering Research
Center for Big Data Technology and System, Services Computing Technology
and System Lab, Cluster and Grid Computing Lab, School of Computer
Science and Technology, Huazhong University of Science and Technology,
China, and also with Jinyinhu Laboratory, Wuhan 430040, China (e-mail:
haofan @hust.edu.cn).

Kun Suo is with the Department of Computer Science, Kennesaw State
University, Kennesaw, GA 30144 USA.

Digital Object Identifier 10.1109/TC.2024.3383988

, Member, IEEE, Song Wu
, Fellow, IEEE, Kun Suo

, Member, IEEE, Hao Fan ",
, Member, IEEE, and Lisong Pan

(gVisor container (Kata container [Runc] [Ruqc]
[User-level Kernel)| [Guest Kernel] container container
\, \
e (_cgroup) | namespace |
l kvm/ptrace I VMM m [W]
L Host Kernel Host Kernel
(a) Kernel separation (b) Resource segregation &
access control
Runvk Runvk
container container
| [
:
Private code Private code
& data & data
[Host Kernel]
(c) vKernel
Fig. 1. The comparison of kernel isolation approaches.

1. INTRODUCTION

ONTAINERS, also known as Operating System (OS)-

level virtualization, are increasingly adopted in data cen-
ter management due to their high performance compared to
hypervisor-based virtualization, i.e., Virtual Machines (VMs)
[1]. While OS-level virtualization offers near-native perfor-
mance, it does not provide adequate isolation between contain-
ers since all on one host share the same OS kernel [2]. The
weak isolation has been shown to affect both the security and
performance of containers in shared environments [3]. On the
one hand, the ability of containers to directly access the shared
kernel opens up opportunities for attackers to cause information
leakage [4], privilege escalation [5], and denial of services [6].
On the other hand, sharing the host kernel not only leads to
contentions on shared data structures that cause performance
interference but also disallows application-specific customiza-
tions or optimizations to the kernel [7]. The lack of isolation in
the shared kernel has become a barrier for container adoption
in new computing paradigms [8], such as serverless [9].

As shown in Fig. 1, there exist several mechanisms for
inter-container kernel isolation. One approach is to deploy a
dedicated kernel different from the host kernel in each con-
tainer. Since containers share nothing with the host kernel or
other containers, kernel separation offers superior isolation.

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0009-0001-2107-7686
https://orcid.org/0009-0005-2320-182X
https://orcid.org/0000-0002-2133-4363
https://orcid.org/0000-0001-8690-127X
https://orcid.org/0000-0002-6741-0448
https://orcid.org/0000-0002-4173-0822
https://orcid.org/0000-0002-3934-7605
https://orcid.org/0000-0001-8562-0492
https://orcid.org/0009-0008-0720-2867
mailto:jia.rao@uta.edu
mailto:haofan@hust.edu.cn
https://creativecommons.org/licenses/by-nc-nd/4.0/

1712

VM-based kernel separation deploys each container to a sepa-
rate VM running a full-fledged guest kernel. While VM-based
isolation provides strong protection and compatibility to legacy
applications, it requires a Virtual Machine Monitor (VMM)
to expose virtualized hardware to guest kernels, resulting in
a larger per-container resource footprint and slower startup
times. Lightweight VMs, such as Kata [10] and Firecracker
[11] devise a minimal guest kernel and VMM to reduce the
memory footprint of containers but still incur non-negligible
overhead compared to native containers due to the additional
layer of indirection at the VMM. Application or user-level
kernels, such as gVisor [12], [13], intercept application system
calls to create a system interface similar to the host kernel
without the need for hardware virtualization. However, request
interception inevitably causes excessive context switches and
hence substantial overhead.

Another approach to kernel isolation is to leverage existing
resource management and security mechanisms in the OS ker-
nel, such as cgroups, namespaces, capabilities [14], seccomp
[15], and apparmor [16], to provide containers with segre-
gated views of system resources and restrict their accesses to
system calls, privileged functions, and sensitive files. While
this approach achieves near-native performance due to its tight
coupling with the host kernel, it does not provide adequate
isolation or allow applications to customize kernel configura-
tions or policies. To avoid the cost of request indirection, such
as context switches, unikernels [17], [18], [19] are proposed
to run a container and the guest kernel in the same address
space. Although this approach helps mitigate the overhead, it re-
quires significant engineering efforts to port legacy applications
to unikernels.

This paper proposes, vKernel, a kernel isolation framework
for containers. Unlike the existing approaches that main sep-
arate kernels for a container and the host, vKernel maintains
a minimal set of private code and data for each container that
is necessary for isolation while sharing the remaining with the
host kernel. The private code and data include that involved in
the existing kernel security checks, such as system calls, as well
as functions and data that cause interference between contain-
ers. At heart, vKernel relies on inline hooks to intercept and
redirect requests sent to the host kernel to a vKernel Instance
(vKI), a Rust-based kernel module where a container-specific
system call table, capabilities, file permission lists, and other
user-defined functions and data are implemented and stored.
The vKI can be dynamically loaded and updated as a kernel
module and is independent from the host kernel. We demon-
strate that vKernel supports the same types of security checks
the existing kernel security mechanisms offer but with less
overhead. We further showcase how users can customize vK-
ernel to improve data isolation in the commonly-used futex
system call, enable different configurations of shared kernel
parameters, and support customized scheduling that only takes
effect in a particular container. vKernel is open sourced https://
github.com/CGCL-codes/vKernel.git

This paper makes the following contributions:

o A comprehensive study of the existing kernel isolation ap-

proaches and identification of their limitations on usability,
performance, and specialization.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 7, JULY 2024

« A novel kernel isolation framework that allows individual
containers to maintain private code and data for stronger,
customizable, and more efficient isolation.

¢ An evaluation of vKernel with micro-benchmarks, cloud
services, real-world applications, case studies on user-
defined isolation and customization, and several recently
reported vulnerabilities shows the effectiveness and effi-
ciency of vKernel.

II. BACKGROUND AND MOTIVATION

Container isolation has recently attracted much attention in
industry and academia due to not only security, but also a grow-
ing concern of performance interference among containers. An
analysis of the Alibaba cloud trace [20] found that only 1.63%
of the servers run one container per node while more than
80% of the servers run more than 6 containers. The lack of
isolation in native containers, such as Docker, impedes high-
density container deployment due to inter-container interfer-
ence on the shared host kernel. In what follows, we discuss
the limitations of user-level kernels, VM-based kernel isolation,
and the existing isolation in the Linux kernel.

A. User-Level Kernel Isolation

Kernel isolation at the user-level redirects the requests to
the host kernel to the application-specific kernel implemented
at the user-level. The key to redirecting user-level requests
and the major source of overhead is to intercept requests to
the host kernel. Among a variety of mechanisms for request
interception, ptrace is a tracing technique widely used to
implement user-level OS kernels. In ptrace, one process
(the “tracer”) observes and controls the execution of another
process (the “tracee”). A tracer can emulate an entire foreign
kernel with mutated system calls. The popular user-level kernel
framework gVisor uses a sentry process to trace application
processes. System calls issued by application processes are in-
tercepted by PTRACE_SYSEMU and handled by the sentry pro-
cess. Sentry emulates most system calls and replaces the native
system call with a user-level implementation. It also redirects
I/O operations to a file proxy and implements task scheduling
using Go.

While user-level kernel isolation achieves strong data iso-
lation, it suffers from high context switch and user-kernel
mode switch overhead. Ptrace requires multiple context
switches between the tracer and the tracee and gVisor may
incur additional context switches due to I/O redirection and
task scheduling.

B. VM-Based Kernel Isolation

An alternative way to kernel isolation is to host containers in
separate VMs, each running a dedicated guest kernel. VM-level
kernel isolation offers strong protection between containers as
it is difficult for malicious users to escape the guest kernel and
compromise the host kernel or the hypervisor. Although there
have been significant efforts dedicated to optimizing VMs to re-
duce virtualization overhead and memory footprint, lightweight
VMs, such as those employed in Kata [10] and Firecracker [11],

https://github.com/CGCL-codes/vKernel.git
https://github.com/CGCL-codes/vKernel.git

HUANG et al.: VKERNEL: ENHANCING CONTAINER ISOLATION VIA PRIVATE CODE AND DATA

still incur non-negligible overhead compared to native contain-
ers. X-container [21] uses a unikernel as a guest kernel to further
close the performance gap. However, it requires a significant
engineering effort to port legacy applications to unikernels, and
hence unikernel-based VM isolation is not readily available in
production systems.

C. Isolation Mechanisms in the Linux Kernel

The existing container isolation mechanisms in the Linux
kernel are based on isolated resource views and security checks.
Namespaces provide containers with isolated views of process
IDs, file systems, and network interfaces while cgroups impose
hard and soft limits on container resource allocation. Security
checks, which are often based on a user-provided security pro-
file, restrict container access to specific system calls, privileged
code, and sensitive files according to either a white or black
list. Neither the isolated resource view nor the access control
imposed by security checks can provide adequate performance
isolation between containers that make legitimate requests.
Seccomp is an eBPF-based system call filtering mechanism.
It implements fine-grained restrictions over dangerous system
calls before the actual system calls are invoked. Users define
a system call white-list through a seccomp profile, and the
container engine loads the seccomp filter generated based on
the profile to the host kernel. The seccomp filter applies to all
processes belonging to a container. Once the container invokes
a system call, the BPF interpreter intercepts the request and
executes the corresponding seccomp filter. The seccomp filter
checks whether the system call is in the white-list and if the
arguments for the call meet predefined requirements. The filters
return the signal KILL if the requested system call is excluded
from the white-list and return ERRNO (1) if the parameters are
invalid. Signal ALLOW lets the container invoke the requested
system call. With the help of seccomp, containers are restricted
to access a few predetermined system calls that are deemed safe.

However, seccomp has several limitations. First, BPF does
not support dynamic memory allocation in constructing the
filter, and hence seccomp has to statically write the rules for
system call check into an eBPF program. As the eBPF filter
is a generic program that is executed whenever a system call
is invoked, the filter program has to check the invoked system
call sequentially. The sequential check incurs an increasing
overhead to system calls that reside at the bottom of the pro-
file. To quantify the overhead, we write a micro-benchmark
that repeatedly invokes various system calls with different sys-
tem call IDs for 10 million times and measured their invo-
cation time with and without seccomp enabled. As shown in
Fig. 2, seccomp introduces non-negligible overhead to system
call invocations, and the performance slowdown ranges from
10% to 55.5%.

Capability is a permission check mechanism for privileged
functions in the Linux kernel. Capability works at a per-process
level and compares the capabilities of a process with the priv-
ilege level of the functions it intends to invoke. A process may
have multiple capabilities, but the effective capability is the
one that takes effect. Upon a function call, the Linux kernel

1713

Execution Time (s)

o N A O @

! [without seccomp mm with seccomp

8)) R
s\a‘@ ge@d\w (\me\rloc\ ge\o‘)“@ e‘so“'a\m
9

System Calls

Fig. 2. The performance of system calls w and w/o seccomp. The number
in parentheses is the system call ID.

performs the permission check by invoking capable () to
check the permission bits in the effective of a process capability
against the function. Since capability check is a bit operation,
it does not cause noticeable overhead.

However, capability works at the process-level based on

inheritance rather than at the container-level. Therefore, if a
process escapes the permission check by tampering with its
effective capability, it can bypass the security checks imposed
by its host container. For example, a possible way to escape
is to invoke commit_creds() in the kernel, which rewrites the
effective capability of the process [22], [23]. Once the process
obtains full capabilities, the isolation enforced by the capability
mechanism fails.
Apparmor restricts the access of programs to sensitive files
based on a path-based access check. Only the matched paths in
a white-list are allowed to be accessed. An example apparmor
profile (black list) may deny any write access to files in folders
/proc and /sys as those operations could alter system-wide
configurations affecting other containers. At container startup,
the container engine loads the profile, and apparmor analyses
the profile and generates a deterministic finite automation en-
gine, which verifies on every file access whether the request
violates the paths denied in the profile.

Compared to seccomp and capability that use white lists
for security and permission checks, apparmor uses a black-
list to check file access. Since apparmor lacks the awareness
of containers and files associated with them, every file access,
including those to sensitive and non-sensitive files, needs to go
through apparmor check. This inevitably introduces slowdowns
to overall file system performance. We use a micro-benchmark
to resolve 10 million file paths and tested the completion time
with and without apparmor enabled. Results show that appar-
mor incurs a consistent overhead ranging from 11.5% to 22.2%
on all file accesses.

Strengths and weaknesses. The three discussed security mech-
anisms are executed in the host kernel whenever a container
enters the kernel mode and hence do not suffer from the request
interception and redirection overhead as do in user-level kernels
and VM-based isolation. However, they share some common
weaknesses: 1) Whitelisting and blacklisting-based kernel-level
isolation are not as strong or flexible as approaches that main-
tain separate kernels for containers. Whitelisting can be overly
restrictive, and blacklisting is not effective against unknown
threats. Most importantly, except for the security check, there

1714

TABLE I
SHARED KERNEL DATA STRUCTURES AND PARAMETERS

Data structures syscalls Kernel parameters syscalls
dentry_hashtable 79 overcommit_memory 45
mount_hashtable 67 tainted 34
mm_percpu_wq 7 nr_open 19

system_unbound_wq 7 max_map_count 14
kblockd_workqueue 5 vfs_cache_pressure 13
system_power_efficient_wq 3 wmem_default 8
idents_hash 2 rmem_default 7
mountpoint_hashtable 2 protected_symlinks 5
futex_queues 1 protected_fifos 4

is no physical isolation between containers, which may lead to
evasion of the permission check. 2) The existing security mech-
anisms do not support container-specific kernel customization
or 3) data isolation among containers.

Lack of data isolation. Many kernel data structures are allo-
cated at kernel initialization and globally shared in the kernel
space. This allows for fast memory allocation and deallocation
as well as facilitating data reuse. Typically, these data structures
are allocated from fixed-sized memory blocks that cannot be
expanded after kernel boot. Performance interference due to
such shared data structures can manifest in two ways. First,
concurrent updates to shared data can lead to severe contentions
on locking, which can lead to drastic performance degradation.
Second, containers may unintentionally or intentionally exhaust
the fixed memory blocks needed for shared data and cause
denial of services or out-of-memory errors. We use the Linux
system called the fuzzer system [24] to monitor data accesses to
shared kernel structures from all Linux system calls as shown
in Table I. Dentry hashtable and mount hashtable,
which are lock-protected and allocated from a fixed pool of
memory, can be accessed from more than 60 different system
calls. Similarly, we also identify several kernel parameters that
are commonly referenced in many system calls with over-
commit memory as the most referenced parameter. Existing
container isolation mechanisms in the kernel do not isolate the
shared data structures or parameters.

To demonstrate the sophistication of data isolation and the
severity of performance interference, we examine the sharing of
the futex queues structure in system call futex. Threads
that fail to acquire a lock are placed in a sleep state in the
futex gueues where threads from different containers may
collide in the same bucket. There are a slew of implications of
performance interference between threads in the same bucket,
including the order of wake-up, the selection of CPUs to ex-
ecute the threads after wake-up, and data locality. To show
the severity of the problem, we place threads from two con-
tainers in the same futex queues bucket and measured
the performance of one container of futex operations as the
number of threads in another container that occupied slots in
the futex gqueues bucket gradually increased. Fig. 3 shows
up to 167. 6% performance slowdown as interference increases.
Experiments with the 1s and stat file operations also show
significant performance degradation due to contentions from
colocated containers.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 7, JULY 2024

g?’ 1 O# of container=1
E Z o | W#of container=100
. [
92 £
= = 50
@ <
£1 =
© 3 25
E g
o w
20
0 10 50 100 200 stat-0 stat-20 stat-30 Is
Number of Threads Command
(a) futex (b) dcache
Fig. 3. Slowdown due to contentions in futex and dcache. The suffix

in stat indicates the depth of file paths.

VKl code

A 4
4,

H x
F’Z;\T\' Ki-builder
!
Qcreate; &0, @load TS

customize s
User U ————— —» profiles

container

=

I

User 1 @register
Kernel hooks hash table I [
pid_ns | VKl private code private data J
vkKM vKi
Fig. 4. The architecture of vKernel.

III. VKERNEL: DESIGN AND IMPLEMENTATION

Overview. To simultaneously achieve data/performance iso-
lation, kernel customization/specialization, and low overhead,
we propose vKernel, a generic container isolation framework.
Unlike the existing kernel isolation mechanisms, vKernel en-
hances isolation by maintaining private copies of sensitive code
(e.g., system calls and privileged functions) and shared data that
may cause interference (e.g., files and kernel data structures),
and kernel configurations into a per-container vKernel Instance
(vKI). Note that vKernel does not seek to improve security
and isolation beyond user-level kernels and VM-based kernel
isolation. The objective is to achieve similar strong isolation
with a minimal set of private code and data and without the high
cost of duplicating kernels in each container. vKernel begins
with isolating sensitive code and data identified by seccomp,
capability, and apparmor and uses a security profile to specify
them. Furthermore, vKernel allows users to define customized
isolation rules and kernel configurations for each container.
Fig. 4 shows the vKernel design. vKernel consists of a con-
tainer runtime (runvk), a vkernel-builder, a system-wide vK-
ernel Manager (VKM), and per-container vKernel Instances
(vKI). runvk is modified from the widely-used container run-
time (runc), which is responsible for loading, updating, and
unloading vKIs for containers, and registering the container and
its corresponding vKI in VKM. runvk is consistent with Open
Container Initiative (OCI) specifications, ensuring compati-
bility with existing container development tools. Users simply
need to select runvk as their runtime when creating containers
with container development tools such as Docker, or container
orchestration tools like Kubernetes.vkernel-builder analyzes

HUANG et al.: VKERNEL: ENHANCING CONTAINER ISOLATION VIA PRIVATE CODE AND DATA

TABLE II
COMPARISON OF LKM WITH EBPF
features LKM eBPF
memory allocation v

Usability ~ kernel function access v limited
kernel function hook v hard

program verifier v

safety runtime isolation v

container security profiles, verifies the safety of the vKI code,
and finally generates a loadable module (vKl.ko). Notably, as
shown in the table II, eBPF does not support memory allo-
cation, can only access limited kernel functions, and is hard
to hook kernel functions, therefore loadable kernel module is
more suitable for vKernel. vKM is a loadable kernel module
responsible for redirecting container kernel requests to corre-
sponding vKIs. It relies on inline hooks to intercept system
calls and privileged function invocations. vKI is also a kernel
module loaded when a container is launched and bound to the
container based on the container’s PID namespace. Both vKM
and vKI are implemented using the rust language to ensure code
safety. vKernel strikes a good balance between performance
and isolation. Unlike VM-based methods that employ an ad-
ditional kernel to achieve full isolation, vKernel only isolates
the necessary data and code for container execution without
redundant isolation, resulting in lower performance overhead.
Compared to traditional Docker Runc, vKernel offers more
comprehensive isolation that can achieve parameter isolation
and code customization.

A. vKernel Builder

vkernel-builder is a rust-based, automatic tool for building user-
customized vKI. vkernel-builder by default uses a security pro-
file that restricts container access to system calls, privileged
functions, and sensitive files, as in seccomp, capacity, and ap-
parmor. It also allows users to specify kernel code, data, and
configuration to be included in a vKI. The output of vkernel-
builder is a loadable rust kernel module vKI.ko if vKI passes
rust compilation and contains no unsafe code. Note that vK1.ko
can be reused for any containers sharing the same isolation
requirement. Since building a vKI is done offline, it does not
add any delays to container startup.

B. vKernel Manager

The responsibility of vKM is to intercept kernel requests,
such as system calls and privileged functions, issued by a
container and redirect them to the corresponding vKIs based
on a hash table. At boot time, the host OS loads vKM as a
loadable kernel module, which registers inline hooks for the
default security checks and user-defined isolation. Note that
vKM does not use the existing in-kernel monitoring hook mech-
anism (ftrace) due to its high indirection overhead. Instead,
vKM uses inline hooks. It first looks up the addresses of the
functions that need to be redirected and then builds a stub
function by invoking text poke to redirect them to new
function implementations in vKM. Fig. 5 shows examples of

1715

default host kernel current host kernel vKM
do_syscall_64 9 call do_syscall_64 vkm_do_syscall_64

first instruction ——> jmp $lkm_addr first instruction

</> </> </>
ret ret ret

@retun : 4
d_hash d_hash vkm_d_hash

first instruction ‘_OfciVK_M_ - jmp $lkm_addr first instruction

<[> T@feplace <[> <[>
ret (1) bulldI ret ret 7

vm_enough_memory: stubvfunctlon \vm_enough_memory| vkm_vm_enough_memory

first instruction == < first instruction jmp $lkm_addr first instruction

<> jmp = = & = <[> <[>
ret ret ret ret 7

Fig. 5. The inline hooks in vKM.

hooking the system call interface do_syscall 64, the entry
function of the dentry cache d_hash, and the function that
manages memory over-commitment vm_enough memory.
When the tracer function is invoked in the container, the request
is redirected to registered call-back functions, e.g., replacing
do_syscall 64 with vkm do syscall 64. The call-
back functions invoke the corresponding implementations of the
intercepted functions in a container’s vKI.

C. vKernel Instance

A vKernel Instance (vKI) is a per-container rust kernel
module responsible for container-specific security checks, data
isolation, and user-defined customization. As vKI has its own
code and data, it essentially serves as a minimal virtualized
interface on top of the shared host kernel. With the help of
vkernel-builder, users can define profiles based on their require-
ments and generate a vKI, i.e., a container-specific vki.ko. The
profile specifies what system calls, privileged functions, and
files the container is allowed to access as well as user-defined
data isolation and other resource management policies. vKM
stores the pairs of a container PID namespace and a pointer
to its corresponding vKI in a hash table. Note that a vKI can
be updated without restarting the container. A newly loaded
vKI can be bound to the namespace of the container, replacing
the existing vKI, and subsequently become effective for the
container. In what follows, we explain how vKI achieves more
efficient isolation for system calls, permission checks, and file
accesses as in seccomp, capability, and apparmor.

System call isolation. Linux kernel saves the addresses of all
system calls in a global system call table (sys_call table)
and locates the implementation of a system call based on its
ID. As the system call table is shared among all containers
in a host, the existing security mechanisms for system call
permission check, e.g., seccomp, use a permission filter to check
a request system call against all calls in the table until a match
is found. Contrary to this design, vKI keeps a private system
call table vki_sys call table for each container, which
only contains the system calls the container is allowed to access.
The entries for all other system calls are marked as NULL in the
private system call table, which will be denied by a KILL sig-
nal. The per-container private system call table ensures that the

1716

permission check can be completed in constant time regardless
of the call ID.

Privileged function isolation. For capability, if a process
obtains elevated capabilities by exploiting the existing vul-
nerabilities of the kernel, it can evade the permission check.
Inspired by the security isolation in VMs which leverages ma-
licious processes’ unawareness of hardware virtualization to
prevent them from escaping from the guest kernel, we im-
pose an additional permission check for privileged functions
at the vKI. Each vKI maintains a read-only effective capability
vki_caps_effective for a container. The container-wide
capability is an upper bound on what processes can do within
a container and overrides per-process capabilities if there is a
conflict. When the cap capable function is intercepted, the
vKI first checks the request against the container’s capability.
If passed, vKI performs per-process permission check as done
in capability. Otherwise, a process evasion is detected and the
request is denied. Since the container-wide capability is read-
only and is not visible to processes within a container, vKI is
more secure than the capability mechanism.

File isolation. For apparmor, since all file accesses need to
be checked, a majority of which do not involve sensitive files,
apparmor imposes unnecessary overhead. To address this issue,
vKI employs a two-step process for file permission checks.
First, vKI leverages an unused bit in the file inode’s 1 _opflags
to indicate if a file is sensitive. The sensitive bit is set to 1 if any
container’s apparmor profile includes its path in its black-list.
Second, at initialization, vKI scans the apparmor profile of a
container to identify sensitive files that should be checked upon
file accesses and builds a hash table mapping from the sensitive
files” inode numbers to the corresponding access permissions
specified in the profile. Upon a file access, vKI intercepts the
generic permission function and checks the sensitive bit
inthe 1 _opflags in the requested inode. If the bit is clear, vKI
immediately returns ALLOW. Otherwise, it looks up the access
permissions of the inode in the hash table. If any match is found
in the black-list, the file access is denied. vKI helps remove
permission checks in accessing non-sensitive files.

IV. USER-DEFINED CUSTOMIZATION

vKernel is designed to provide a lightweight framework for
isolation and customization. In addition to the three standard
access controls, vKernel allows users to define customized rules
for data isolation and kernel customization. The containers can
achieve better performance with customization. In the follow-
ing, we present four case studies. The case study on isolating
Linux dcache demonstrates how to isolate shared kernel data
structures without much change to the code accessing them
while the futex system call study shows sophisticated iso-
lation involving both code and data. We also present a case for
allowing containers to configure their own kernel parameters.
Last, we show how to enable a customized task scheduling
policy for a particular container. Here, we leverage the isolation
framework provided by vKernel to tailor the parameters and
codes extensively utilized by containers. Additionally, we can

IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 7, JULY 2024

employ profiling tools [25], [26] to pre-run the container, extract
the code and parameters involved in its execution, and further
customize the kernel specifically for containers.

A. Kernel Data Structure Isolation

The Linux dcache mechanism caches the mappings be-
tween file paths and inodes in a d_entry cache. It is critical
for fast file system operations that involve a large number of
inode accesses, such as 1s and stat. The key operation in
dcache management is the allocation of a d_entry from
the dentry hashtable, which is a structure referenced by
79 system calls and a source of interference. vKernel allocates
a private dentry hashbable for each container to cache
inodes specific to the container’s file access. No significant
changes to the kernel code are necessary unless replacing the
original d_hash with vkm_d_hash in the vKM to redirect
the file access of a container.

B. Futex Isolation

Fast userspace mutex (futex) is a widely-used system call
applications use to implement efficient synchronization, such
as POSIX mutex and barrier. Threads that fail to acquire a
lock (i.e., waiters) are put to sleep in a wait queue. Futex
maintains a single, system-wide futex queues with mul-
tiple buckets. Threads waiting on the same lock are placed
in the same bucket. Futex uses the address of the userspace
lock as the key to hash futex to select the bucket. Since
futex queues is shared among all containers, as discussed
in Section II-C, threads from multiple containers may collide
in the same bucket. Performance interference manifests in two
ways. First, interleaving threads from different containers in the
same bucket compromises wake-up efficiency, as one container
needs to scan other threads before locating a thread to wake up.
Second, sleeping threads on the futex queues are removed
from CPU run queues and later will be inserted back into a
run queue when they wake up. It is difficult to preserve the
data locality of threads, i.e., placing them back to the CPUs
where they were running before sleep if multiple threads are
simultaneously waking up from a shared queue.

vKernel provides dedicated futex queues for each con-
tainer in its vKI and devises private futex functions that
operate only on the container-local queue. For example, the
private vki hash futex function only maps a thread to
a container local queue. It should be noted that the private
kernel data allocated for containers exclusively consists of the
management structure of the hash table. The memory overhead
associated with this component remains at the KB level. As the
number of containers grows, the memory overhead does not
become excessively prominent. Container-specific wake-up is
more challenging as multiple containers may simultaneously
wake up threads and attempt to insert them into CPU run
queues. This may lead to locking on the same run queue to
prevent simultaneous insertion. To completely isolate the wake-
up process of different containers and preserve thread locality,
we also isolate threads from different containers in their own
CPU runqueues. With the help of cgroups, a reasonable change

HUANG et al.: VKERNEL: ENHANCING CONTAINER ISOLATION VIA PRIVATE CODE AND DATA

to the Linux Completely Fair Scheduler (CFS) with approx-
imately 200 lines of code ensures that threads are scheduled
on their container-local CFS runqueue. As such, the thread
is guaranteed to be on the same CPU where it ran, not only
preserving data locality but also avoiding inter-container run
queue contention. To enable this new wake-up mechanism, we
override the generic futex wait and futex wake func-
tions with new implementations in vKI and add a is_waking
flag to each thread. Vki futex wait does not put a
thread into sleep but forces the CPU scheduler to bypass
the thread with the is waking(0), emulating sleeping on
the queue.

C. Kernel Parameter Isolation

The Linux kernel includes many tunable parameters for users
to control its runtime behavior. Most of these parameters are
global and shared among all containers on the same host. The
change to a shared parameter will take effect for all containers.
Although parameters local to a namespace are private to a
container, there exists a vast majority of kernel parameters,
some performance-critical, need to be isolated.

For example, parameter overcommit memory specifies
whether an application can allocate a memory region in its
virtual address space that exceeds the amount of available phys-
ical memory, and overcommit kbytes and overcom-
mit ratio determine whether current memory usage is con-
sidered an overcommitment. While memory overcommitment
leads to more flexible memory allocations, it could also result
in memory thrashing. Setting this parameter indistinguishably
for all containers inevitably leads to suboptimal performance.
Parameter isolation not only requires the duplication of param-
eters per container, but also needs to override kernel functions
that report statistics associated with the parameters as well as
those implementing the corresponding resource management
policy. Specifically, to allow per-container memory overcom-
mitment configuration, vKI replicates the three parameters for
each container, overrides the handlers for the procfs to report
per-container memory usage, and replaces the generic memory
management functions, such as vm_memory committed,
with per-container vKI implementations.

D. Scheduling Customization

The Linux kernel is equipped with four CPU schedulers —
the default CFS, First In First Out (FIFO), Round-Robin (RR),
and deadline scheduler. In native Linux, scheduler selection can
be made on a per-process basis, but the configuration requires
root privileges. Since containers are unprivileged and reside in
userspace, they can only select the CFS scheduler. Different
schedulers are desirable in different situations. For example,
FIFO scheduling avoids frequent context switches and bene-
fits throughput-oriented workloads. The challenges in enabling
scheduling customization for containers are twofold: 1) the
customized scheduling policy should only take effect on pro-
cesses belonging to one container; 2) elevating container priv-
ilege to alter host-level scheduling is risky, and hence should
be forbidden.

1717

TABLE III
THE LINES OF CODE OF VKERNEL

Line of Code
runvk 1060+/72-
vkernel-Builder 718+

vKM vKI
system call isolation 421 47
privileged function isolation 30 82
file isolation 202 94
futex system call isolation 46 209
kernel parameter isolation 42 392
dcache isolation 40 35
scheduling customization 10 276

total 751

To this end, we demonstrate how vKI can help derive cus-
tomized scheduling for containers without changing host-level
scheduling. Specifically, the objective is to emulate the effect
of FIFO scheduling in a container on top of CFS scheduling
in the host kernel. The methodology remains the same — in-
tercepting generic scheduling functions and overriding them
with container-specific functions implemented in vKI. Sched-
ulers differ in the way they select the next task to run and
where to insert a completed task back into the run queue. The
CFS employs a global cfs_rqg (a red-black tree) to manage
all running threads, where threads from the same container
are grouped and managed in a distinct sub-cfs_rqg (a sub-
tree). With this design in mind, we can implement container-
specific scheduling strategies within these sub-cfs rq,
ensuring that such custom strategies affect only the threads
contained within them. To emulate FIFO, vKI intercepts CFS
functions __enqueue entity and pick next entity
and manipulates scheduling to ensure a process is always kept
running until it exits and newly admitted processes are inserted
to the tail of the partial CFS run queue of the container. Since
the customized policy only works on the partial cfs_rqg of
the container, it can promise effectiveness inside the container,
without affecting the scheduling of global cfs rqg and the
fairness between containers.

V. EVALUATION

In this section, we present and discuss the experimental
results. We seek to answer three questions: (a) How is the
performance of vKernel compared with that of other kernel
isolation approaches? (b) What are the benefits of user-defined
isolation and customization enabled by vKernel? (c) How well
does vKernel address existing container vulnerabilities? Our ex-
periments are performed on a PowerEdge R730 server equipped
with dual 10-CPU Intel Xeon 2.30 GHz processors, 128 GB
memory, and a 1.8TB SATA hard drive. We use Ubuntu 20.04
64bit and Linux kernel version 6.0-rc7 as host kernel. Docker
20.10.13, gVisor release-20210927.0, and kata 1.13.0 are used
as the container technology. For comparison, we evaluate the
following cases: the vanilla docker container with seccomp, ca-
pability, and apparmor enabled (docker), gVisor container with
user-level kernel isolation (gVisor), container in a lightweight
VM (Kata), and the docker container with vKernel enabled
(vKernel). Each result is an average of 10 runs. The engineering
effort to implement vKernel is summarized in Table III. Except

1718

220 [dooker
= L] gVisor
S5 Kata
E ’ L] vkernel
210

[0

N

©

£ 0.5

o

Z00

1-CPU & 2GB-RAM 10-CPU & 20GB-RAM

Fig. 6. Startup time of a minimal container image.

120 4 o
O docker O docker 106H | 216 | 4268
gVisor 32 gVisor

90 | OKata T O Kata

O vKernel 1l 8 vKernel

o N g 24

£ 6 N/ €

a N/ s

2 NH 816

€ N ¥ (<]

8 N7 NV >

% 30 NV N 7 g

s NU IND 203

° N 7 N [N -

S NA IN? |INH]

= NV NG IND =

J N 5 NA N E
o Lesla NP N [NV 0 [NA

1 10 50 100 200 1 10 50 100 200
Number of concurrent instances Number of concurrent instances

(a) Total startup time (b) Memory footprint

Fi

g. 7. Scalability when running multiple instances.

for the implementation of runvk using the Go language, other
components of vKernel are implemented using rust.

A. Container Startup

The efficiency of startup is important for short-lived con-
tainers, and the mechanisms used for kernel isolation may
negatively impact container startup time. We test the startup
time of the alpine OS [27] in containers with different kernel
isolation approaches. The startup time is normalized to that of
the docker and two hardware configurations were tested. As
shown in Fig. 6, vKernel does not cause a noticeable increase in
the startup of containers. Note that the virtual kernel instances
in vKernel are built offline and thus the result only included
the load time of vKI. As vKI can be reused by containers with
similar security profiles, we do not expect vKI build time to be
on the critical path of container startup. On average, it takes
approximately 2.5s to build a vKI offline based on the default
security profile. gVisor increases the startup time by 18.7%
mainly due to the initialization of user-level tracer processes.
In contrast, Kata needs to boot a VM before a container can
start, which increases 90% startup time.

We also test the startup time and memory footprint when
multiple instances are simultaneously started as shown in Fig. 7.
In terms of the total time taken to batch start multiple instances,
docker, vKernel, and gVsior show similar results, because the
startup process is executed in parallel on multiple cores. Ad-
ditionally, vKernel exhibits memory consumption consistent
with docker due to its loading of only a small amount of code
necessary for container execution, while gVisor and Kata both
require independent kernels.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 7, JULY 2024

B. System Call

The security mechanisms for kernel isolation mainly affect
the performance of system calls and those also with file ac-
cesses. We use LMbench [28] to test the performance of various
system calls. We also test the bitmap mechanism proposed by
Draco [29] which accelerates system call checking by using
bitmap to cache always-allowed system calls. We begin with
system call without much computation, I/ O accesses or param-
eters, such as getpid and getgid, and denote them as null
call. To evaluate system calls that require file access checking,
we configure LMBench to issue various stat system calls to
sensitive and non-sensitive files without data operation. This
is to separate system call invocation time from data transfer
time. It is labeled as star. We also include system call person-
ality, which requires parameter check, and commonly-used
system calls exec, fork, pipe, and et.al. As shown in Fig. 8,
vKernel achieve an average 10.5% performance improvement
compared with docker, especially 41% for personality by
avoiding the sequential parameter check in seccomp, and 35%
for null io by eliminating unnecessary permission check
on non-sensitive files. Our results also show that the overhead
due to docker would have been much higher if LMBench is
configured to only scan sensitive files. As expected, gVisor has
the worst performance with as much as 40x slowdown because
each system call invocation requires multiple context switches.
The kernel of the Kata is specifically designed to be lightweight,
and the version of the kernel is high. This ensures that system
calls with minimal resource usage are fast for Kata, such as
null call and numll io. However, Kata suffers a high
overhead of file operations because of a longer IO stack and
performs worse with exec, which requires frequent page table
creations, an operation known to incur high overhead.

C. Cloud Benchmarks

Then, we test the performance of cloud services from Cloud-
Suite with different containers. As shown in Fig. 9, vkernel
outperformed docker on cloud services by about 8.5% on aver-
age. The reason is that cloud services neither enter the shared
kernel and nor trigger security checks as frequently as micro-
benchmarks. Cloud services in gVisor show at least 30% per-
formance degradation (Graph Analytics), again proving that
user-level kernel isolation does not apply to real-world service
deployment. Kata leads to 20x slowdown of media streaming
due to IO virtualization. Virtio can help alleviate the io virtual-
ization overhead of Kata, but the overhead cannot be completely
removed. The results show that vkernel can serve all cloud
services well without any performance impact.

D. Real-World Applications

Next, we evaluate the performance of vKernel with three real-
world applications. Nginx and Httpd are popular web servers
with frequent network-related system call invocations and file
retrievals. We use the workload generator ab to emulate 20
concurrent users making a total number of 3000k requests. As

HUANG et al.: VKERNEL:

ENHANCING CONTAINER ISOLATION VIA PRIVATE CODE AND DATA

1719

2.0
E] _ [docker R\ gVisor [_] Kata [ZZ7] vKernel
515 F
=]
g
*= 10 |
°
o]
N
Té 05 |
S
<00 . . ' 9 PR o 3 o
A\ . A\ 2! \e ea e\ \ = 7\ A\
2 “\\\o e,,gp N I qed® ot o ‘(\{\\ed R /\)“ 0ve“m\cv e (e@ et (5o
Fig. 8. The performance of system calls.
= 100 20
2 1.2} [Jdocker XJ gVisor C_]Kata LZZ] vKernel Jdocker (1) Jdocker [ZJvkemel [|
5 docker (100)
=1 751 L] vKernel (1) 156
_xcq 08} o 7] vkernel (100) =
= £ g
B = 50 E 10]
Noal 5 5
£ 3 3
5 35’ 25 2 sl
Z0.0]
N poaW pra¥ie® o™ 0 F@%
06"“ G‘ap meﬂ“) stat-0 stat-20 stat-30 0 1 200
o Tests Number of containers
Fig. 9. The performance of cloud benchmarks. (a) stat (b) 1s
4 Lk L 140
[] docker N3] secure-docker /= docker
S = g:(h:urel 7 Kata 120 —O=— secure-docker
- ° wemel | q20L._.____ X L
S g} 3 docker =3 gVisor = Kata £z vKernel E s o g
(o)) < —&— vKernel
=} 2 gwo ,,,,,,,,,,,,,,
1.2t g =
< i} c
= 3 2
N =3
8 0.8} g §
S 3 o
T 041
€ a0l . ‘ ‘
—
S : o 10 20 40 80
zZ 0.0 " httod Number of Threads Number of Threads
nginx wgen
9 P pwg (c) perf-bench (d) streamcluster
Fig. 10. The performance of real-world applications.
8 P PP Fig. 11. Effectiveness of vKernel for data isolation. vKernel is the base for
normalization.

shown in Fig. 10, gVisor causes a dramatic loss of 77% and 71%
throughput in Nginx and Httpd, respectively; Kata performed
even worse. In contrast, vKernel does not affect throughput.
Pwgen is a widely-used password generator. It is mostly compu-
tationally intensive with little I/O activity, but rich in malloc-
like memory allocations. Except for gVisor, all other approaches
achieve acceptable performance in Pwgen. The major source
of overhead in gVisor is the tracer that frequently intercepts
memory system calls and causes context switches. Note that
function interception in vKernel is entirely in kernel mode and
does not cause noticeable overhead.

E. User-Defined Isolation and Customization

Dentry cache. We use two representative file operations stat
and 1s to evaluate the performance of the isolated dentry
cache. The baseline is native docker with a globally shared
dentry cache. The stat test instructs each container to re-
peatedly display file information at different directory depths
i.e., 0 (current directory), 20, and 30, for 800,000 times. For
the 1s test, we recursively list the directory information until
a directory depth of 20 and repeat the operation. Fig. 11(a)

and 11(b) show the performance due to vKernel against docker.
The results suggest that contention in the dentry cache signif-
icantly degrades performance when 100 containers simultane-
ously request d_entry from the dentry hashtable. In
contrast, vKernel delivered consistent performance regardless
of activities in co-located containers, indicating good isolation
in dcache.

Futex. We evaluate how well vKernel enforces isolation on
the shared in-kernel futex queues and preserves data lo-
cality. We first use perf-bench to stress test the futex
subsystem with two containers. The container under test runs
perf - futex with a single thread while a malicious container
launches a large number of threads to continuously occupy the
buckets in futex queues. We control the malicious con-
tainer to place on average 1 or 200 threads in each bucket to
cause different levels of contention. Fig. 11 shows the perfor-
mance of the container under test with different kernel iso-
lation approaches. Docker experiences significant slowdowns
when contention is high, suggesting no isolation on the shared

1720

= 1 Docker
o 151 == Docker-fifo
.,E R vKernel
=10
.2
2
] 5
m

NEE=

800 4000

Number of Process

Fig. 12. CFS vs. FIFO scheduling in hackbench.

futex_ queues. In comparison, vKernel offers effective iso-
lation with container-local futex gqueues and reduces the
time of the wake up from 10000 ns to 100 ns.

In addition, we use benchmark streamcluster in the PARSEC
[30] suite to evaluate thread locality in futex. Streamcluster is
a barrier-intensive workload that has a large number of threads
waking up simultaneously when exiting a barrier. Without iso-
lation, the placement of these threads back on CPU run queues
is nondeterministic, likely causing loss of locality. Fig. 11(d)
shows that vKernel with locality optimization (vKernelfutex
in the figure) effectively preserves thread locality via the mecha-
nism of vKI for futex wait and wakeup, in which data locality
does not deteriorate with the thread count. In contrast, docker
with no isolation and vKernel without locality optimization
suffered much worse performance.

FIFO scheduling. We compare workload performance under
CFS and FIFO to confirm that vKernel truthfully emulates
FIFO scheduling in user space with the help of vKI. The hack-
bench [31] benchmark spawns a large number of processes,
each aggressively communicating with others via pipes and
performing little computation. The performance of hackbench
is largely determined by the number of context switches and
benefits from FIFO scheduling. Fig. 12 shows the performance
of hackbench under different scheduling policies and different
types of containers. Note that docker has no root privilege
and is unable to use the FIFO scheduler. In the figure, the
“docker-fifo” component is running within a privileged Docker
container. This privileged container can have an impact on the
scheduling policies of other containers running alongside it. On
the other hand, vKernel supports the use of FIFO scheduling
policies within the container. The results demonstrate that the
performance of vKernel using the emulated FIFO scheduling
faithfully reflects the performance of FIFO.

Container-specific memory overcommitment. We demon-
strate that vKernel containers can configure different values for
globally shared kernel parameters, which leads to superior per-
formance for different types of workloads. We select Postgresql
and Redis for evaluation as they have distinct preferences for
memory overcommitment in the kernel. Postgresql is a highly
concurrent database that supports a large number of worker
threads. It prefers not to aggressively request memory beyond
the physical memory size. As Linux employs on-demand mem-
ory allocation, aggressive memory requests that overcommit

IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 7, JULY 2024

=)
S

—=— docker (overcommit_memory=1) m

- —0— docker (overcommit_memory=2)
—e— vKernel (overcommit_memory=2) |

—— vKemel (overcommit_memory=1)
90

@
S

@
S
o

60

Error Rate (%)
5

]
=]

30+

Memory Usage (%)

=)

0 200 400 600 800 1000 1200 1400 0 50 100 150 200 250 300
Concurrency Time(s)

(a) Postgresql errors when Redis
is optimal (setting to 1)

(b) Redis memory when Post-
gresql is optimal (setting to 2)

Fig. 13. Performance of Postgresql and Redis under different over-
comit_memory settings. Docker shares kernel parameters, while vKernel
enables customization.

memory will lead to memory thrashing when concurrency in-
creases, though the requests can be successful due to the over-
commitment configuration. This translates to a high error rate
in Postgresql. In contrast, a background process (bgsave) in
Redis occupies a large amount of virtual memory in case the
database needs to be dumped on disk. Bgsave does not always
consume the requested memory but needs to provision for the
peak demand in case the entire database has to be dumped.
Redis prefers to enable memory overcommitment otherwise the
foreground database engine may not use the memory occupied
by bgsave.

We create two containers each with a 2 GB memory limit
set by cgroups. The first container runs docker and config-
ures the system-wide overcommit memory parameter. A
value of 1 in overcommit memory allows memory over-
commitment while a value of 2 disables it. To achieve the
optimal performance of Redis, under docker and vKernel,
overcommit memory of Redis is set to 1. Redis performs
equally well under docker and vKernel (not shown). In this
case, as shown in Fig. 13(a), for docker with shared kernel,
overcommit memory (fixed to 1) cannot be adjusted for
Postgresql, resulting in a sudden increase in error rate as concur-
rency increases. For vKernel, which can customize parameters,
overcommit memory corresponding to Postgresql can be
set to 2, and the error rate remains stable. To optimize Post-
gresql performance, overcommit memory for Postgresql
is set to 2 in docker and vKernel. In this case, as shown in
Fig. 13(b), for shared kernel docker, overcommit memory
cannot be adjusted, while vKernel can adjust the parameter to
1 for Redis.

E. Security Isolation

We demonstrate that vKernel is more efficient than the ex-
isting isolation mechanisms using user-level kernels and VMs.
Next, we evaluate whether vKernel achieves a similar level
of security for the data and code that are required during the
execution of a container. Accordingly, we only test whether the
data and code required for the execution of the container can
be vulnerable to attacks. We use the Proof of Concepts (POCs)
selected from [22] to test eight known container-related kernel

HUANG et al.: VKERNEL: ENHANCING CONTAINER ISOLATION VIA PRIVATE CODE AND DATA

TABLE IV
THE KERNEL VULNERABILITIES OF CONTAINER ESCALATION

Should be Disabled

CVE-ID — Docker gVisor Kata vKernel
seccomp Capability apparmor
2023-0045 @pretl v v v
2022-0185 (@unshare v v v
2020-8835 @bpf v v v v
2019-13272 @sys_admin+Qptrace v v v v
2018-18955 @setgid v ' '
2017-7308 @net_raw v v v
2017-5123 @waitid v v v
2016-1583 (DIproc/environ v v v

vulnerabilities. The vulnerabilities mostly manifest as privi-
lege escalation. Table IV shows details of the vulnerabilities,
whether a particular kernel isolation approach is vulnerable, and
the potential fix if one exists. Note that all vulnerabilities and
fixes have been tested on our test bed. Table IV suggests that
vKernel can defend against the listed known threats, at a similar
level of security as gVisor and Kata.

VI. LIMITATION AND DISCUSSION

vKernel is a virtualization framework that aims to present
required kernel isolation for containers. vKernel takes effect
for containers based on the cooperation between a system-wide
vKM and multiple vKIs. To promise extreme performance for
containers, vKernel implements vKM and vKI as LKMs, and
strips the changes to the host kernel by way of inline hooks.
In such a design, vKernel may introduce additional security
implications, because it extends the host kernel with more code
and data through LKMs. Rigorous code checks are required
through vkernel-builder when building a customized vKI, but
it is still far from enough. In the future, we will implement
the fault isolation for vKIs and learn from KPTI to achieve
vKI address space isolation to further eliminate the security
risks. Having said that, vKernel bravely introduces a new kernel
isolation approach that does not give up the host kernel. Based
on the design of VKM and vKI, vkernel requires no changes
to host kernel, therefore supporting live upgrades and multiple
versions of the Linux kernel with strong usability. It allows
users to customize the vKI for containers and obtain extreme
performance while promising better security guarantees than
the commonly-used secure docker container. Currently, vKernel
is not as secure as user-level or VM-based isolation. However, it
may be a good choice for performance-sensitive services with-
out that strong security requirement, especially those deployed
based on secure docker previously.

VII. RELATED WORK

Kernel-level isolation. Containervisor [32] focuses on isolat-
ing the memory of containers, while Slim [33] implements
an isolated network stack for containers. ContainerLeaks [34]
identifies security issues caused by kernel data leakage in a con-
tainer environment. Huang et al. [35] introduce sys,amespace
to provide dynamic private memory views for container ap-
plications. Song et al. [36] isolate file system data structures
to reduce IO competition among containers. In contrast, vK-
ernel offers a low-overhead isolation framework that does not

1721

specifically enhance the isolation of individual resources. By
implementing these aforementioned isolation methods within a
vKernel instance, we can achieve customization for a container
without requiring extensive code modifications in the kernel.

Kernel specialization. An emerging trend of kernel isolation
is to reduce kernel based on kernel specialization. Confine
[37], SPEAKER [38], and sysfilter [26] as well as temporal
specialization [39] customize and minimize the kernel interface
for containers. SHARD [40] implements a practical framework
to enforce fine-grain kernel specialization and kernel reduction.
Shadow-kernels [41] provides a primitive for an individual
application to access the dedicated kernel text sections at the
kernel. Similarly, other approaches [42], [43] based on virtual-
ization can achieve kernel reduction by building upon a mini-
mized kernel view. The kernel specialization offered by vKer-
nel instance supports both kernel reduction and customization
for users.

Hardware-based isolation. Recent work [29], [44], [45],
[46], [47], [48], [49] explores new hardware to implement addi-
tional isolation for containers. SCONE [44] and ARMlock [47]
place the container inside the trusted execution domain based
on the Intel SGX and ARM TrustZone. FastPass [48] and Iron
[46] further isolate memory management and network stack for
containers. They are efficient without noticeable overhead, but
lack versatility and comprehensiveness. In contract, vKernel is
a generic kernel isolation framework, which does not require
specific hardwar.

VIII. CONCLUSION

In this paper, we present vKernel, a kernel isolation frame-
work for containers. Compared to the existing kernel security
mechanisms, user-level and VM-based kernel isolation, vKer-
nel is able to simultaneously achieve near-native performance
and strong isolation. The key to vKernel isolation is an addi-
tional layer of indirection between the container and the host
kernel, namely the proposed vKernel Instance (vKI). vKI allows
for efficient implementation of the existing kernel isolation
mechanisms as well as user-defined functions and policies. The
layer of indirection effectively prevents users from obtaining
escalated privileges or escaping from a container.

REFERENCES

[1] D. Merkel et al., “Docker: Lightweight Linux containers for consistent
development and deployment,” Linux J., vol. 2014, no. 239, 2014, Art.
no. 2.

[2] S. Y. Lim, B. Stelea, X. Han, and T. Pasquier, “Secure namespaced
kernel audit for containers,” in Proc. Symp. Cloud Comput. (SoCC),
2021, pp. 518-532.

[3] W. Viktorsson, C. Klein, and J. Tordsson, “Security-performance trade-
offs of Kubernetes container runtimes,” in Proc. Symp. Model., Anal.,
Simul. Comput. Telecommun. Syst. (MASCOTS), 2020, pp. 1-4.

[4] D. Zahka, B. Kocoloski, and K. Keahey, “Reducing kernel surface areas
for isolation and scalability,” in Proc. 48th Int. Conf. Parallel Process.
(ICPP), 2019, pp. 1-10.

[5] O. Tunde-Onadele, J. He, T. Dai, and X. Gu, “A study on container
vulnerability exploit detection,” in Proc. Int. Conf. Cloud Eng. (IC2E),
2019, pp. 121-127.

[6] 1. Abal, C. Brabrand, and A. Wasowski, “42 variability bugs in the Linux
kernel: A qualitative analysis,” in Proc. Int. Conf. Automated Softw. Eng.
(ASE), 2014, pp. 421-432.

1722

(71

(8]

[9]

[10]
[11]

[12]

[13]

[14]
[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

P. Franz, T. Berger, 1. Fayaz, S. Nadi, and E. Groshev, “ConfigFix:
Interactive configuration conflict resolution for the Linux kernel,” in
Proc. Int. Conf. Softw. Eng./Softw. Eng. Pract. (ICSE-SEIP), 2021,
pp- 91-100.

N. G. Bachiega, P. S. Souza, S. M. Bruschi, and S. D. R. De Souza,
“Container-based performance evaluation: A survey and challenges,” in
Proc. IEEE Int. Conf. Cloud Eng. (IC2E), 2018, pp. 398—403.

G. McGrath and P. R. Brenner, “Serverless computing: Design, imple-
mentation, and performance,” in Proc. Int. Conf. Distrib. Comput. Syst.
Workshops (ICDCSW), 2017, pp. 405-410.

Kata Container. [Online]. Available: https://katacontainers.io/

A. Agache et al., “Firecracker: Lightweight virtualization for serverless
applications,” in Proc. Symp. Netw. Syst. Des. Implementation (NSDI),
2020, pp. 419-434.

“The container security Platform.” gVisor. [Online]. Available: https://
gvisor.dev/

A. Lingayat, R. R. Badre, and A. K. Gupta, “Integration of Linux
containers in OpenStack: An introspection,” Indonesian J. Elect. Eng.
Comput. Sci., vol. 12, no. 3, pp. 1094-1105, 2018.

S. E. Hallyn and A. G. Morgan, “Linux capabilities: Making them work,”
in Proc. Linux Symp., 2008.

J. Edge, “A seccomp overview,” in Linux Weekly News, 2015. [Online].
Available: https://lwn.net/Articles/656307/

A. Gruenbacher and S. Arnold, “AppArmor technical documentation,” in
SUSE Labs/Novell, 2007. [Online]. https://lkml.iu.edu/hypermail/linux/
kernel/0706.1/0805/techdoc.pdf

A. Raza et al., “Unikernels: The next stage of linux’s dominance,” in
Proc. Workshop Hot Topics Operating Syst. (HotOS), 2019, pp. 7-13.
A. Madhavapeddy et al., “Unikernels: Library operating systems for the
cloud,” ACM SIGARCH Comput. Archit. News, vol. 41, no. 1, pp. 461—
472, 2013.

S. Kuenzer et al., “Unikraft: Fast, specialized unikernels the easy way,”
in Proc. Eur. Conf. Comput. Syst. (EuroSys), 2021, pp. 376-394.
“alibaba clusterdata.” GitHub. [Online]. Available: https://github.com/
alibaba/clusterdata/

Z. Shen et al.,, “X-Containers: Breaking down barriers to improve
performance and isolation of cloud-native containers,” in Proc. Int.
Conf. Archit. Support Program. Lang. Operating Syst. (ASPLOS), 2019,
pp. 121-135.

X. Lin, L. Lei, Y. Wang, J. Jing, K. Sun, and Q. Zhou, “A measurement
study on Linux container security: Attacks and countermeasures,” in
Proc. Annu. Comput. Secur. Appl. Conf. (ACSAC), 2018, pp. 418-429.
W. Wu, Y. Chen, X. Xing, and W. Zou, “KEPLER: Facilitating control-
flow hijacking primitive evaluation for Linux kernel vulnerabilities,” in
Proc. Secur. Symp., 2019, pp. 1187-1204.

“Trinity: Linux system call fuzzer.” GitHub. [Online]. Available: https://
github.com/kernelslacker/trinity

Q. Wang et al., “KeenTune: Automated tuning tool for cloud application
performance testing and optimization,” in Proc. Int. Symp. Softw. Testing
Anal. (ISSTA), 2023, pp. 1487-1490.

N. DeMarinis, K. Williams-King, D. Jin, R. Fonseca, and V. P. Kemerlis,
“Sysfilter: Automated system call filtering for commodity software,”
in Proc. Int. Symp. Res. Attacks Intrusions Defenses (RAID), 2020,
pp. 459-474.

“Alpine Container.” Docker Hub. [Online]. Available: https://hub.docker.
com/alpine

L. W. McVoy and C. Staelin, “Imbench: Portable tools for performance
analysis,” in Proc. Annu. Tech. Conf. (ATC), 1996, pp. 279-294.

D. Skarlatos, Q. Chen, J. Chen, T. Xu, and J. Torrellas, “Draco:
Architectural and operating system support for system call security,”
in Proc. Annu. Int. Symp. Microarchit. (MICRO), 2020, pp. 42-57.

C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC benchmark
suite: Characterization and architectural implications,” in Proc. Int. Conf.
Parallel Architect. Compilation Techn. (PACT), 2008, pp. 72-81.

R. Russell, “Hackbench: A new multiqueue scheduler benchmark,”
Message to Linux Kernel Mailinglist. lkml.org. [Online]. Available:
http://www.lkml.org/archive/2001/12/11/19/index.html

T. Li, K. Gopalan, and P. Yang, “ContainerVisor: Customized control
of container resources,” in Proc. Int. Conf. Cloud Eng. (IC2E), 2019,
pp- 190-199.

D. Zhuo et al., “Slim: OS kernel support for a low-overhead container
overlay network,” in Proc. Symp. Netw. Syst. Des. Implementation
(NSDI), 2019, pp. 331-344.

X. Gao, Z. Gu, M. Kayaalp, D. Pendarakis, and H. Wang, “Container-
Leaks: Emerging security threats of information leakages in container
clouds,” in Proc. Annu. Int. Conf. Dependable Syst. Netw. (DSN), 2017,
pp. 237-248.

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 7, JULY 2024

H. Huang, J. Rao, S. Wu, H. Jin, K. Suo, and X. Wu, “Adaptive resource
views for containers,” in Proc. Int. Symp. High-Perform. Parallel Distrib.
Comput. (HPDC), 2019, pp. 243-254.

S. Wu, Z. Huang, P. Chen, H. Fan, S. Ibrahim, and H. Jin, “Container-
aware I/O stack: Bridging the gap between container storage drivers
and solid state devices,” in Proc. Int. Conf. Virtual Execution Environ.
(VEE), 2022, pp. 18-30.

S. Ghavamnia, T. Palit, A. Benameur, and M. Polychronakis, “Confine:
Automated system call policy generation for container attack surface
reduction,” in Proc. Int. Symp. Res. Attacks Intrusions Defenses (RAID),
2020, pp. 443-458.

L. Lei, J. Sun, K. Sun, C. Shenefiel, R. Ma, Y. Wang et al., “Speaker:
Split-phase execution of application containers,” in Proc. Int. Conf.
Detection Intrusions Malware, Vulnerability Assessment (DIMVA), 2017,
pp. 230-251.

S. Ghavamnia, T. Palit, S. Mishra, and M. Polychronakis, ‘“Temporal
system call specialization for attack surface reduction,” in Proc. USENIX
Secur. Symp., 2020, pp. 1749-1766.

M. Abubakar, A. Ahmad, P. Fonseca, and D. Xu, “SHARD: Fine-grained
kernel specialization with context-aware hardening,” in Proc. USENIX
Secur. Symp., 2021, pp. 2435-2452.

O. R. Chick, L. Carata, J. Snee, N. Balakrishnan, and R. Sohan, “Shadow
kernels: A general mechanism for kernel specialization in existing
operating systems,” Proc. ACM SIGOPS Operating Syst. Rev. 2016, vol.
50, no. 1, pp. 3-8.

R. Ta, L. Litty, and D. Lie, “Splitting interfaces: Making trust between
applications and operating systems configurable,” in Proc. Symp. Oper-
ating Syst. Des. Implementation (OSDI), 2006, pp. 279-292.

Z. Gu, B. Saltaformaggio, X. Zhang, and D. Xu, “Face-change:
Application-driven dynamic kernel view switching in a virtual ma-
chine,” in Proc. Annu. Int. Conf. Dependable Syst. Netw. (DSN), 2014,
pp. 491-502.

S. Arnautov et al., “SCONE: Secure Linux containers with Intel SGX,”
in Proc. Symp. Operating Syst. Des. Implementation (OSDI), 2016,
pp. 689-703.

D. Skarlatos, U. Darbaz, B. Gopireddy, N. S. Kim, and J. Torrellas,
“BabelFish: Fusing address translations for containers,” in Proc. Annu.
Int. Symp. Comput. Archit. (ISCA), 2020, pp. 501-514.

J. Khalid et al., “Iron: Isolating network-based CPU in container
environments,” in Proc. Symp. Netw. Syst. Des. Implementation (NSDI),
2018, pp. 313-328.

Y. Zhou, X. Wang, Y. Chen, and Z. Wang, “ARMlock: Hardware-based
fault isolation for arm,” in Proc. SIGSAC Conf. Comput. Commun. Secur.
(CCS), 2014, pp. 558-569.

W. Zhang, A. Sharma, K. Joshi, and T. Wood, “Hardware-assisted
isolation in a multi-tenant function-based dataplane,” in Proc. Symp.
SDN Res. (SOSR), 2018, pp. 1-7.

Z. Hua, Y. Yu, J. Gu, Y. Xia, H. Chen, and B. Zang, “TZ-Container:
Protecting container from untrusted OS with ARM TrustZone,” Sci.
China Inf. Sci., vol. 64, no. 9, pp. 1-16, 2021.

Hang Huang received the B.S. degree from
Huazhong University of Science and Technology
(HUST), in 2016. He is currently working toward
the Ph.D. degree with the Service Computing Tech-
nology and System Lab (SCTS), Cluster and Grid
Computing Lab (CGCL), and Big Data Technology
and System Lab (BDTS), Huazhong University of
Science and Technology (HUST), China. His re-
search interests include container technology and
kernel scheduling.

Honglei Wang received the B.S. degree from
Huazhong University of Science and Technology,
in 2020. He is currently working toward the M.S.
degree with the Service Computing Technology and
al System Lab (SCTS) and Cluster and Grid Com-
puting Lab (CGCL), HUST. His research interests
include operating systems and virtualization.

https://katacontainers.io/
https://gvisor.dev/
https://gvisor.dev/
https://lwn.net/Articles/656307/
https://lkml.iu.edu/hypermail/linux/kernel/0706.1/0805/techdoc.pdf
https://lkml.iu.edu/hypermail/linux/kernel/0706.1/0805/techdoc.pdf
https://github.com/alibaba/clusterdata/
https://github.com/alibaba/clusterdata/
https://github.com/kernelslacker/trinity
https://github.com/kernelslacker/trinity
https://hub.docker.com/alpine
https://hub.docker.com/alpine
http://www.lkml. org/archive/2001/12/11/19/index.html

Jia Rao (Member, IEEE) received the B.S. and
M.S. degrees in computer science from Wuhan
University, in 2004 and 2006, respectively, and the
Ph.D. degree from Wayne State University, in 2011.
He is currently working as an Associate Professor
of computer science with the University of Texas,
Arlington. His research interests include the areas
of distributed systems, resource auto-configuration,
machine learning, and CPU scheduling on emerging
multi-core systems.

Song Wu (Member, IEEE) received the Ph.D. de-
gree from Huazhong University of Science and
Technology (HUST), in 2003. He was a Profes-
sor of computer science with HUST, China. He
is currently working as the Vice Dean with the
School of Computer Science and Technology and
the Vice Head with the Service Computing Tech-
nology and System Lab (SCTS) and the Cluster
and Grid Computing Lab (CGCL) in HUST. His
research interests include cloud resource scheduling
and system virtualization.

Hao Fan received the Ph.D. degree from Huazhong
University of Science and Technology (HUST), in
2021. He is currently working as a Postdoctor with
the Service Computing Technology and System
Lab (SCTS) and Cluster and Grid Lab (CGCL),
Huazhong University of Science and Technology
(HUST), China. His research interests include con-
tainer technology and storage system.

Chen Yu (Member, IEEE) received the Ph.D. de-
gree in information science from Tohoku University,
in 2005. He is currently a Professor with the School
of Computer Science and Technology, Huazhong
University of Science and Technology (HUST). His
research interests include cloud computing, ubiqui-
tous computing, and green communications.

HUANG et al.: VKERNEL: ENHANCING CONTAINER ISOLATION VIA PRIVATE CODE AND DATA 1723

Hai Jin (Fellow, IEEE) received the Ph.D. degree
in computer engineering from Huazhong Univer-
sity of Science and Technology (HUST) in 1994.
He is a Chair Professor of computer science and
engineering with HUST, China. He worked with
The University of Hong Kong from 1998 to 2000,
and as a Visiting Scholar with the University of
Southern California from 1999 to 2000. He has co-
authored more than 20 books and published over
900 research papers. His research interests include
computer architecture, parallel and distributed com-
puting, big data processing, data storage, and system security. In 1996, he
was awarded a German Academic Exchange Service fellowship to visit the
Technical University of Chemnitz, Germany. He was awarded Excellent Youth
Award from the National Science Foundation of China in 2001. He is a Fellow
of CCF and a Life Member of the ACM.

Kun Suo (Member, IEEE) received the B.S. degree
in software engineering from Nanjing University,
China, in 2012, and the Ph.D. degree from the
University of Texas, Arlington, in 2019. He is cur-
rently an Assistant Professor with the Department
of Computer Science, Kennesaw State University.
His research interests include the areas of cloud
computing, virtualization, operating systems, Java
virtual machines, and software defined network.

Lisong Pan is working toward the undergraduate
degree with Huazhong University of Science and
Technology. He is currently doing an internship with
the Service Computing Technology and System Lab
(SCTS), Cluster and Grid Computing Lab (CGCL),
and Big Data Technology and System Lab (BDTS).
His research interests include virtualization and
cloud computing.

<<
	/CompressObjects /Off
	/ParseDSCCommentsForDocInfo false
	/CreateJobTicket false
	/PDFX1aCheck false
	/ColorImageMinResolution 200
	/GrayImageResolution 300
	/DoThumbnails false
	/ColorConversionStrategy /sRGB
	/GrayImageFilter /DCTEncode
	/EmbedAllFonts true
	/CalRGBProfile (Adobe RGB \0501998\051)
	/MonoImageMinResolutionPolicy /OK
	/AllowPSXObjects false
	/LockDistillerParams true
	/ImageMemory 1048576
	/DownsampleMonoImages true
	/ColorSettingsFile (None)
	/PassThroughJPEGImages true
	/AutoRotatePages /None
	/Optimize false
	/ParseDSCComments false
	/MonoImageDepth -1
	/AntiAliasGrayImages false
	/GrayImageMinResolutionPolicy /OK
	/JPEG2000ColorImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/ConvertImagesToIndexed true
	/MaxSubsetPct 100
	/Binding /Left
	/PreserveDICMYKValues false
	/GrayImageMinDownsampleDepth 2
	/MonoImageMinResolution 400
	/sRGBProfile (sRGB IEC61966-2.1)
	/AntiAliasColorImages false
	/GrayImageDepth -1
	/PreserveFlatness false
	/OtherNamespaces [
		<<
			/IncludeSlug false
			/CropImagesToFrames true
			/IncludeNonPrinting false
			/OmitPlacedBitmaps false
			/AsReaderSpreads false
			/Namespace [
				(Adobe)
				(InDesign)
				(4.0)
]
			/FlattenerIgnoreSpreadOverrides false
			/OmitPlacedEPS false
			/OmitPlacedPDF false
			/SimulateOverprint /Legacy
			/IncludeGuidesGrids false
			/ErrorControl /WarnAndContinue
		>>
		<<
			/IgnoreHTMLPageBreaks false
			/IncludeHeaderFooter false
			/AllowTableBreaks true
			/UseHTMLTitleAsMetadata true
			/MetadataTitle /
			/ShrinkContent true
			/UseEmbeddedProfiles false
			/TreatColorsAs /MainMonitorColors
			/MetricUnit /inch
			/RemoveBackground false
			/HonorBaseURL true
			/ExpandPage false
			/AllowImageBreaks true
			/MetadataSubject /
			/MarginOffset [
				0.0
				0.0
				0.0
				0.0
]
			/Namespace [
				(Adobe)
				(GoLive)
				(8.0)
]
			/OpenZoomToHTMLFontSize false
			/PageOrientation /Portrait
			/MetadataAuthor /
			/MobileCompatible 0.0
			/MetadataKeywords /
			/MetricPageSize [
				0.0
				0.0
]
			/HonorRolloverEffect false
		>>
		<<
			/IncludeProfiles true
			/ConvertColors /NoConversion
			/FormElements true
			/MarksOffset 6.0
			/FlattenerPreset <<
				/PresetSelector /MediumResolution
			>>
			/DestinationProfileSelector /UseName
			/MultimediaHandling /UseObjectSettings
			/PreserveEditing true
			/PDFXOutputIntentProfileSelector /UseName
			/BleedOffset [
				0.0
				0.0
				0.0
				0.0
]
			/UntaggedRGBHandling /LeaveUntagged
			/GenerateStructure false
			/AddRegMarks false
			/IncludeHyperlinks false
			/IncludeBookmarks false
			/MarksWeight 0.25
			/PageMarksFile /RomanDefault
			/UntaggedCMYKHandling /LeaveUntagged
			/AddPageInfo false
			/AddBleedMarks false
			/IncludeLayers false
			/IncludeInteractive false
			/AddColorBars false
			/UseDocumentBleed false
			/AddCropMarks false
			/DestinationProfileName (U.S. Web Coated \050SWOP\051 v2)
			/Namespace [
				(Adobe)
				(CreativeSuite)
				(2.0)
]
			/Downsample16BitImages true
		>>
]
	/CompressPages true
	/GrayImageMinResolution 200
	/CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
	/PDFXBleedBoxToTrimBoxOffset [
		0.0
		0.0
		0.0
		0.0
]
	/AutoFilterGrayImages false
	/EncodeColorImages true
	/AlwaysEmbed [
]
	/EndPage -1
	/DownsampleColorImages true
	/ASCII85EncodePages false
	/PreserveEPSInfo false
	/PDFXTrimBoxToMediaBoxOffset [
		0.0
		0.0
		0.0
		0.0
]
	/CompatibilityLevel 1.7
	/MonoImageResolution 600
	/NeverEmbed [
]
	/CannotEmbedFontPolicy /Error
	/PreserveOPIComments false
	/AutoPositionEPSFiles false
	/JPEG2000GrayACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
	/EmbedJobOptions true
	/JPEG2000ColorACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/MonoImageDownsampleType /Bicubic
	/DetectBlends true
	/EmitDSCWarnings false
	/ColorImageDownsampleType /Bicubic
	/EncodeGrayImages true
	/Namespace [
		(Adobe)
		(Common)
		(1.0)
]
	/AutoFilterColorImages false
	/DownsampleGrayImages true
	/GrayImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/AntiAliasMonoImages false
	/GrayImageAutoFilterStrategy /JPEG
	/GrayACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/ColorImageAutoFilterStrategy /JPEG
	/ColorImageMinResolutionPolicy /OK
	/ColorImageResolution 300
	/PDFXRegistryName (http://www.color.org)
	/MonoImageFilter /CCITTFaxEncode
	/CalGrayProfile (Dot Gain 15%)
	/ColorImageMinDownsampleDepth 1
	/PDFXTrapped /False
	/DetectCurves 0.0
	/ColorImageDepth -1
	/JPEG2000GrayImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/TransferFunctionInfo /Remove
	/ColorImageFilter /DCTEncode
	/PDFX3Check false
	/ParseICCProfilesInComments true
	/DSCReportingLevel 0
	/ColorACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/PDFXOutputConditionIdentifier (CGATS TR 001)
	/PDFXCompliantPDFOnly false
	/AllowTransparency false
	/UsePrologue false
	/PreserveCopyPage true
	/StartPage 1
	/MonoImageDownsampleThreshold 1.5
	/GrayImageDownsampleThreshold 1.5
	/CheckCompliance [
		/None
]
	/CreateJDFFile false
	/PDFXSetBleedBoxToMediaBox true
	/EmbedOpenType false
	/OPM 1
	/PreserveOverprintSettings true
	/UCRandBGInfo /Preserve
	/ColorImageDownsampleThreshold 1.5
	/MonoImageDict <<
		/K -1
	>>
	/GrayImageDownsampleType /Bicubic
	/Description <<
		/ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
		/GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
		/FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
		/KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
		/HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
		/NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
		/DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
		/CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
		/ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
		/DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
		/JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
		/SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
		/SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
		/CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
		/CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
		/ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
		/RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
		/HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
		/PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
		/NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
		/TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
		/POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
		/HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
		/SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
		/RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
		/ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
	>>
	/CropMonoImages false
	/DefaultRenderingIntent /Default
	/PreserveHalftoneInfo true
	/ColorImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/CropGrayImages false
	/PDFXOutputCondition ()
	/SubsetFonts false
	/EncodeMonoImages true
	/CropColorImages false
	/PDFXNoTrimBoxError true
>>
setdistillerparams
<<
	/PageSize [
		612.0
		792.0
]
	/HWResolution [
		600
		600
]
>>
setpagedevice

