
IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 7, JULY 2024 1767

Design, Implementation and Evaluation of a New
Variable Latency Integer Division Scheme

Marco Angioli , Marcello Barbirotta , Abdallah Cheikh , Antonio Mastrandrea , Francesco Menichelli ,
Saeid Jamili , and Mauro Olivieri , Senior Member, IEEE

Abstract—Integer division is key for various applications and
often represents the performance bottleneck due to its inherent
mathematical properties that limit its parallelization. This paper
presents a new data-dependent variable latency division algo-
rithm derived from the classic non-performing restoring method.
The proposed technique exploits the relationship between the
number of leading zeros in the divisor and in the partial
remainder to dynamically detect and skip those iterations that
result in a simple left shift. While a similar principle has been
exploited in previous works, the proposed approach outperforms
existing variable latency divider schemes in average latency and
power consumption. We detail the algorithm and its imple-
mentation in four variants, offering versatility for the specific
application requirements. For each variant, we report the average
latency evaluated with different benchmarks, and we analyze the
synthesis results for both FPGA and ASIC deployment, reporting
clock speed, average execution time, hardware resources, and
energy consumption, compared with existing fixed and variable
latency dividers.

Index Terms—Variable-latency divider, integer division, high-
speed arithmetic, computer arithmetic, real-time and embedded
systems, low-power design.

I. INTRODUCTION

INTEGER division is one of the fundamental operations in
computer arithmetic, used in a wide range of applications

such as digital signal processing [1], random number generation
[2], cryptography [3], artificial intelligence [1], [4], [5], matrix
factorization [6], [7], and image processing [8], [9].

Compared to addition and multiplication, division is
inherently slower due to the absence of associative and
commutative properties that does not allow factorization and
parallelization [1], [5], [10], [11], [12], resulting in an expensive
hardware implementation orsevere performance bottleneck for

Manuscript received 24 August 2023; revised 21 February 2024; accepted
30 March 2024. Date of publication 8 April 2024; date of current version
11 June 2024. Recommended for acceptance by J. Hormigo. (Corresponding
author: Marco Angioli.)

The authors are with the Department of Information Engineering, Elec-
tronics and Telecommunications (DIET), Sapienza University of Rome,
00184 Rome, Italy (e-mail: marco.angioli@uniroma1.it; marcello.barbirotta@
uniroma1.it; abdallah.cheikh@uniroma1.it; antonio.mastrandrea@uniroma1.it;
francesco.menichelli@uniroma1.it; saeid.jamili@uniroma1.it; mauro.olivieri
@uniroma1.it).

Digital Object Identifier 10.1109/TC.2024.3386060

many applications [10], [13]. The implementation of dedicated
integer division units is sometimes avoided and replaced
by alternative methods, emulating integer divisions with
floating-point dividers [12], yet requiring significantly large
area and power consumption [14] that make them unsuitable
for Field Programmable Gate Array (FPGA) implementation,
or Integrated Circuit (IC) microarchitectures with limited
hardware resources. In these contexts, low-hardware-cost
dividers with a fixed execution latency are often used [15],
[16], possibly resulting in performance limitation for those
embedded applications where computational speed is critical
such as automotive, video processing, and industrial control.

Variable latency arithmetic units have been studied for
decades, covering addition [17], [18], [19], multiplication [20],
division [5], and more complex operations [21]. Variable la-
tency represents a valid alternative to fixed-latency when the av-
erage execution time of the target application, resulting from the
average latency and the sustainable clock speed, is significantly
shorter than in a fixed latency implementation, with negligible
hardware overhead.

In this paper, we propose a variable latency data-dependent
integer divider that significantly improves the average conver-
gence time and power consumption, outperforming existing
fixed [22] and variable latency alternatives [5], [12], [23], [24]
in the literature, maintaining hardware requirements of the lat-
ter. These properties make the presented approach perfect for
low-power embedded applications where the execution time is
critical, making it suitable for on-the-edge machine learning
and edge computing applications [25], [26], [27], [28]. The
contributions of the proposed study are as follows:

• Introducing a novel variable latency integer division algo-
rithm derived from the classic non-performing restoring
technique;

• Proposing an efficient baseline hardware implementation
of the algorithm, based on high-speed Count Leading
Zeros (CLZ) units and a single-cycle barrel shifter with
the reuse of the same register to store the remainder and
the quotient;

• Detailing the hardware architectures of the algorithm in
four different variants, specifically designed for targeting
different application contexts;

• Comparing all the proposed hardware schemes with the
reference designs in literature [12], [24], in terms of aver-
age latency, hardware cost, operating frequency and energy

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information,
see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0009-0002-5955-8378
https://orcid.org/0000-0002-1902-7188
https://orcid.org/0000-0003-4495-5960
https://orcid.org/0000-0003-4243-1258
https://orcid.org/0000-0002-8453-6536
https://orcid.org/0009-0003-8624-4048
https://orcid.org/0000-0002-0214-9904
mailto:marco.angioli@uniroma1.it
mailto:marcello.barbirotta@uniroma1.it
mailto:marcello.barbirotta@uniroma1.it
mailto:abdallah.cheikh@uniroma1.it
mailto:antonio.mastrandrea@uniroma1.it
mailto:francesco.menichelli@uniroma1.it
mailto:saeid.jamili@uniroma1.it
mailto:mauro.olivieri@uniroma1.it
mailto:mauro.olivieri@uniroma1.it
https://creativecommons.org/licenses/by/4.0/

1768 IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 7, JULY 2024

consumption on FPGA and ASIC, demonstrating lower
latency and energy consumption per division compared to
the reference designs;

• Reporting, to the best of our knowledge, the first energy
consumption analysis and ASIC synthesis of variable la-
tency dividers in the literature;

• Showing and discussing a comprehensive evaluation of the
performance on six benchmark applications.

The rest of the work is organized as follows: Section II re-
views division techniques and analyzes the restoring algorithm
that forms the basis of our work. Section III presents the adopted
methodology and the proposed novel restoring algorithm. In
Section IV, we describe the basic hardware implementation
scheme for the proposed algorithm, and three alternative im-
plementation schemes optimized for latency, clock frequency,
and hardware resources, respectively. Section V analyzes the
average latency as a dependence of the input operands, by
Monte Carlo functional simulation. Section VI reports synthesis
and implementation results of all the versions of the algorithm
on FPGA using Vivado 2022.2 while Section VII reports ASIC
synthesis results. In Section VIII, we test the performance of
each of the proposed dividers using six real application bench-
marks, comparing the overall performance with state-of-the-
art variable-latency dividers and fixed-latency radix-n dividers.
Finally, Section IX discusses the main outcomes of the work.

II. BACKGROUND AND RELATED WORKS

Integer division involves a dividend A and a divisor B, re-
sulting in two integer values, namely the remainder W and the
quotient Q, which are always less or equal to the divisor B and
the dividend A, respectively, and satisfy (1).

A=B ·Q+W (1)

Like all the division algorithms used for comparison with this
work [5], [12], [22], [24], we target unsigned integer division.
In the case of signed operands, the signs of the results are deter-
mined separately from the division operation, according to (2).

sQ = sA XOR sB ; sW = sA (2)

Integer divisions can be implemented in hardware by dif-
ferent algorithms, depending on the design requirements such
as computing speed and available resources [10]. The algo-
rithms can be broadly classified into fixed and variable-latency
schemes.

In a fixed-latency divider, a constant number of quotient
bits is computed in each iteration of the algorithm, starting
from the most significant bit (MSB). Like the classic pen-and-
paper technique, the algorithm looks for the largest multiple
of the divisor that can be subtracted from a partial remainder.
The number of iterations of a fixed-latency divider depends on
the radix used to represent the dividend and divisor, and not
on their values. Due to the minimal hardware requirements, a
widely used fixed-latency divider is radix-2, with one quotient
bit computed at each iteration, thus taking n clock cycles to
perform an n-bit division. Other typical values for the radix are
4, 8, and 16, which imply a constant division latency of n/2,

Fig. 1. n-bit restoring division algorithm.

n/3, and n/4 clock cycles, respectively. However, in resource-
constrained designs, in both FPGAs and ASICs, the hardware
complexity typically limits the implementation to radix-2 and
4 [10], [12].

A common way to implement a radix-2 fixed-latency divider
is the Restoring Division algorithm [22], [29], which we de-
tail here as a useful basis for discussing the proposed novel
schemes. The method is presented in Fig. 1. To perform a
division between n-bit integer numbers, this algorithm uses two
n-bits registers, Q and W , to respectively store the quotient and
the partial remainder. W is initially set equal to the dividend.
Then, at each iteration, a tentative remainder is computed by
left-shifting the W register by one bit and subtracting the divi-
sor. If the tentative remainder is non-negative, the new quotient
bit is set to one. Otherwise, the quotient bit is set to zero, and the
divisor is added back to W . When the iteration count reaches
n, the division finishes with the final quotient stored in the Q
register and the remainder stored in W . Notably, in hardware
implementations, the registersQ andW are commonly concate-
nated in a single 2n-bits register R, a technique we will refer
to in the following.

The main drawback of the approach is the restoration step,
which slows the execution. Several solutions have been pro-
posed to avoid this procedure. In the Non-Restoring algorithm
[22], the recovery step is omitted in exchange for additional
operations and more complexity. In the Non-Performing Di-
vider (NPD) [22], the tentative remainder is stored only when
the subtraction result is non-negative. Thus, the addition in the
restoring procedure is unnecessary because the R register is
updated only when required. However, these two solutions do
not change the total latency of the operation, which is fixed and
equal to n clock cycles.

Conversely, variable-latency dividers can determine a vari-
able number of quotient bits per iteration, so that the re-
quired cycle count for completing the division is not fixed but
depends on the input data values. Notably, differently from

ANGIOLI et al.: DESIGN, IMPLEMENTATION AND EVALUATION OF A NEW VARIABLE LATENCY INTEGER DIVISION SCHEME 1769

Fig. 2. Hardware implementation of the algorithm presented in [12].

approximation-based dividers [30], these solutions produce an
exact result in a variable number of clock cycles. In [5], three
variable-latency integer dividers are proposed starting from
the restoring division algorithm. In the first, the subtraction
is skipped until the MSB of the dividend reaches the MSW
of the remainder. In the second, the divisor is shifted to the
left to be aligned with the dividend, then the shift is reversed,
and the classical restoring division is performed. In the third,
the remainder and the divisor are shifted dynamically (to the
right and the left, respectively) using priority encoders. The
performance of the three solutions has been evaluated in terms
of speedup over the restoring division algorithm using algorith-
mic simulations with randomly generated operands. The work
does not provide any results on real benchmarks, hardware
requirements, or operating frequency.

Authors in [23] discuss and analyze the Needy Restoring
division algorithm, which does not need to perform subtrac-
tions under some conditions, preventing the execution of the
restoration step of the algorithm. The work does not provide
performance or hardware implementation data. Furthermore,
the algorithm requires an additional n-bit register and itera-
tively checks the value of the shifted R register, which would
significantly limit the operating frequency when implemented
in hardware.

The work in [24] proposes a variable latency divider based
on the dynamic shift of the divisor, which skips unnecessary
steps by exploiting the relationship between the remainder and
the divisor itself. Priority encoders are used to compute and im-
plement the log2 function in hardware. The technique achieves
2.73 clock cycles on average per 32-bit integer division, assum-
ing uniform operand distribution and an operating frequency
of 90 MHz with 316 LUTs in the Virtex-7 FPGA. However,
no performance data based on real application benchmarks
are provided.

Fig. 3. Statistical analysis of “shift-only” consecutive steps in 32-bit integer
divisions. For more than 98% of the divisions, the consecutive shifts are
between 27 and 31, underlying the importance and impact of a dynamic shift
mechanism on the NPD.

In [12], a similar approach is used to realize a variable-
latency integer divider, denoted as Quick-Div. The algorithm
was specifically designed for FPGA-based soft processors and
compared in detail with fixed-latency radix-n dividers. Similar
to [24], this approach performs dynamic shifting of the divisor
but exploits a highly optimized hardware design depicted in
Fig. 2 that uses a Count Leading Zeros (CLZs) technique and
splits the shift into two steps. During the first iteration, the
divisor is left-shifted by its number of leading zeros, whereas in
the remaining ones, it is right-shifted by the number of leading
zeros in the remainder. This approach maximizes the operating
frequency and allows using a 32-bit register to store the divisor,
without losing bits during the shift procedure. The division is
complete when the divisor is greater than the current partial
remainder. Notably, this requires an additional clock cycle to
set the completion signal at the end of the division. In our
solution, we avoid this by using an internal counter, which is
dynamically incremented without increasing the critical path.
Additionally, we use a single 64-bit register for storing the
remainder and the quotient on which we perform the dynamic
shift without losing bits. The Quick-Div algorithm allows an av-
erage number of clock cycles per 32-bit integer division of 1.69,
assuming uniform operand distribution. However, the hardware
implementation requires a fixed additional latency of two clock
cycles: one for storing input signals in registers and one for
performing the first shifting iteration, for an average of 3.69.
The performance is tested on many application benchmarks,
and the implementation results report 365 LUTs, 129 FFs and
an operating frequency of 426 MHz, making this architecture
the reference design for the performance comparison of the
proposed work.

III. PROPOSED DIVIDER

As summarized in Section II, the fixed-latency NPD [22]
represents an optimized version of the Restoring divider in
which the tentative remainder is stored only in the case of pos-
itive subtractions. Whenever the difference between the MSW
of R<< 1 and the divisor is negative, the previous value of
R simply shifts one position to the left. As a result, several
iterations will only perform a left shift of the R register, while
the subtraction result is not used. Fig. 3 shows the statistical
distribution of consecutive “shift-only” iterations within a 32-
bit division using the NPD. In more than 98% of the cases, the

1770 IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 7, JULY 2024

Fig. 4. Algorithmic description of the presented VLNPD.

division performs 27 to 32 consecutive steps in which the R
register is just shifted to the left.

The variable latency data-dependent divider proposed in this
work is based on the NPD in conjunction to exploiting the
relationship between the number of leading zeros in the divisor
and in the partial remainder, to dynamically detect and skip the
consecutive iterations that would perform only a left shift.

Fig. 4 depicts the step-by-step overview of the presented
division technique. At each iteration, the CLZ function com-
putes the position of the most significant non-zero bit for the
R register and the divisor D. The difference between these two
quantities represents the number of division steps in which the
subtraction result is certainly negative, and it is used to shift
the R register dynamically by shift_amount bit positions.
The term −1 in the calculation of shift_amount accounts for
a classical division step, which is always performed after the
dynamic shift. If shift_amount > 0, an equivalent amount of
quotient bits is evaluated in a single step, skipping the same

Fig. 5. Example of an 8-bit integer division with the NPD. The R register
is just shifted to the left for six subsequent steps.

Fig. 6. Example of an 8-bit integer division with the proposed VLNPD.
This approach allows skipping six steps.

number of “shift-only” steps. The iteration counter is updated
accordingly. Note that when shift_amount results greater than
the remaining division iterations, i.e. 32− 1− count, the actual
shift amount is limited accordingly.

Figs. 5 and 6 illustrate an example of 8-bit integer division
performed with the standard NPD algorithm and the proposed
technique, respectively. In the first step of the original algorithm
(Fig. 5), the difference between the 8 most significant bits of
R<< 1 and the divisor D is computed and results to be nega-
tive, so R is left-shifted by one bit position. The same situation
occurs for the following six iterations. The whole procedure
consists of 8 iterations, with subtraction results used in only
2 of them.

In the first step of the proposed algorithm (Fig. 6), R and D
have 13 and 6 leading zeros, respectively, which means that for
(13− 6)− 1 = 6 iterations the difference between the shifted
remainder and the divisor will be negative. Thus, R is left-
shifted by 6 bit positions and the classic division iteration is
executed, obtaining a non-negative difference between the 8
most significant bits of R<< 1 and D. The subtraction result
is stored in the 32 most significant bit of R, and the least
significant bit R0 is set to one. In the second step, count=7 and
only the classic division step is executed. The whole procedure
consists of 2 iterations.

While the presented algorithm can be extended to high-
precision computations, from 64 to 1024 bits, the proposed

ANGIOLI et al.: DESIGN, IMPLEMENTATION AND EVALUATION OF A NEW VARIABLE LATENCY INTEGER DIVISION SCHEME 1771

Fig. 7. Basic hardware implementation for the proposed variable latency
divider (VLNPD-Std). The difference between the leading zeros is used to
set the dynamic shift. D is subtracted from the output of the dynamic shifter,
and the result is used to update R.

work focuses on medium or low-precision embedded applica-
tions, and we go into the details of hardware synthesis of the
32-bit implementation.

In the following, we will refer to the proposed division al-
gorithm and its hardware implementation variants as Variable
Latency Non-Performing Divider (VLNPD).

IV. HARDWARE IMPLEMENTATION

A. Baseline Version (VLNPD-Std)

The schematic diagram in Fig. 7 depicts the baseline hard-
ware implementation (VLNPD-Std) for the proposed algo-
rithm, with the critical path highlighted in red. The hardware
unit has two 32-bit input data signals, an enable signal
Div_enable, a clock signal, and a reset signal. An output
signal Division_completed flags that the division has been
completed, and the result (quotient and remainder) is available
on the output of register R. The architecture includes a 64-bit
and a 32-bit registers for R and for the divisor D, respectively,
a 6-bit register in the iteration count logic, and a 1-bit output
register sampling the Division_completed flag, for a total
of 103 sequential logic elements, which is exactly the same
amount as for the implementation of the NPD. The division
starts when Div_enable is set, the input operands are stored
in the registers, and the counter is set to zero. At each iteration,
corresponding to one clock cycle, the value stored in the R
register is updated according to Fig. 4. A 32-bit CLZ unit is used
to find the number of leading zeros in the divisor D, while a
64-bit one is used for the R register. The difference between
the number of leading zeros defines how many bit positions

Fig. 8. Schematic of the dynamic barrel-shifter implemented by a set of
three multiplexers.

Fig. 9. Hardware scheme for the iteration count unit.

the R register should be dynamically left-shifted, according
to Fig. 4. When shift_amount is greater than the remaining
division steps, i.e. 32− 1− counter, it is accordingly limited,
and a control signal named limited_shift is set. Conversely,
no dynamic shift is performed when this difference is less than
or equal to zero. Finally, the classic division step is implemented
by subtraction between the 32 most significant bits of the shifted
R register and the divisor.

The effectiveness of the proposed division scheme relies on
the availability of a fast single-cycle barrel shifter and single-
cycle CLZ units, in order to avoid increasing the clock cycle
time. The CLZ units were implemented according to [31], fea-
turing a high-speed design tailored for small hardware overhead
on FPGAs. The best-performing barrel shifter implementation
for the chosen 32-bit operand length was found to be the mul-
tiplexing structure shown in Fig. 8, taking a 64-bit signal as
the input and performing any left-shift between 1 and 31 bit
positions. For 64-bit division implementations and above, a
better implementation could be a multi-level architecture, as
explored in [32]. The Count Unit detailed in Fig. 9 updates
the iteration count, calculates the remaining steps and sets the
Division_completed flag bit. If a dynamic shift is performed,
the count is updated by adding shift_amount+ 1 to the previ-
ous value; otherwise, it is incremented by 1. When the updated
count value reaches 32, or the limited_shift control signal is
‘1’, the division ends and the Division_completed flag is set.
The final remainder and the quotient are stored in the 32 most
significant bits and the 32 less significant bits of the R register,
respectively.

Notably, unlike the architectures presented in [12] and [24],
in the proposed implementation, the output control logic uses

1772 IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 7, JULY 2024

Fig. 10. Hardware architecture for the high-frequency variant (VLNPD-HF)
of the proposed variable latency divider. The critical path is split as highlighted
with red lines at the cost of increased average latency.

the updated value of the internal counter to detect the division
completion, rather than checking the condition remainder <
divisor. This allows to avoid an additional clock cycle to set
the completion signal without increasing the critical path.

B. High-Frequency Version (VLNPD-HF)

Since the basic architecture has the CLZ units and the barrel
shifter on its register-to-register critical path, a first optimization
can be obtained by splitting that combinational path into two
different clock cycles for a higher operating frequency, paying
in terms of the average latency. In the first cycle, the classic
division step and CLZ of the subtraction result are executed,
while in the second clock cycle, the dynamic shift is per-
formed, aligning the operands and making them ready again
for the next step. Compared to the VLNPD-Std, this solution
requires an additional clock cycle every time the operands are
not aligned.

The actual hardware implementation is shown in Fig. 10.
With respect to the baseline implementation, the R register has
been moved after the calculation of the dynamic shift, a 6-bit
register called CLZ_Remainder has been inserted to con-
tain the 64-bit CLZ output, a 5-bit one named CLZ_Divisor
contains the 32-bit CLZ output and a 1-bit register called
shift_en has been introduced to disable the shifter every time
the operands have been already aligned in the previous clock
cycle. Whenever shift_amount > 0 and shift_en= 0, the
dynamic shift of R is carried out, and the output of the shifter
is directly written back into the R register instead of being used
in the subtractor. At the next iteration, the most significant ‘1’
of register R is already aligned with that of the divisor, and the
divisor is directly subtracted from the 32 most significant bits

Fig. 11. Hardware architecture for the high-performance variant (VLNPD-
HP). In this unit, one step is saved each time a dynamic shift is performed,
and the subsequent difference is negative.

of R. Note that if shift_amount > (32− count), the shifter
takes R<< 1 as input to perform up to 32 iterations in one
clock cycle.

Notably, this approach makes it possible to move the re-
mainder’s leading zeros count in a different clock cycle with
respect to the dynamic shift, decreasing the maximum num-
ber of division steps per clock cycle from shift_amount+1 to
shift_amount, splitting the previous critical path and creating
the new one highlighted in Fig. 10.

C. High-Performance Version (VLNPD-HP)

In the described VLNPD-Std variable latency divider, the
dynamic shift of the R register is done to align its most sig-
nificant one with that of the divisor. Then, the classic division
step is performed, and the sign of the result is used to choose
the new partial remainder value. However, it is possible to
observe that whether the result of the subtraction is negative
after a dynamic shift, at the next clock cycle, the new R<< 1
will certainly be greater than the divisor, the dynamic shift
will not be performed, and the results of the subtraction will
always be greater than zero. When this condition occurs, R
can be directly assigned to the result of the subtraction be-
tween R<< (shift_amount+ 1) and the divisor, saving one
clock cycle. Fig. 12 depicts this technique on an 8-bit integer
division example.

From the hardware point of view, this version is depicted in
Fig. 11 in which it is possible to highlight that it requires two
parallel subtractions at each clock cycle and additional control
logic to select which result chooses as new R register. The
additional logic results in a higher area occupation and lower

ANGIOLI et al.: DESIGN, IMPLEMENTATION AND EVALUATION OF A NEW VARIABLE LATENCY INTEGER DIVISION SCHEME 1773

Fig. 12. Example of an 8-bit integer division in the VLNPD-HP. The HP
version performs a total of 7 steps in one clock cycle.

frequency (due to the longer critical path length) but allows for
a significant reduction of the average latency per division, as
will be described in Section V.

D. Limited Area Version (VLNPD-LA)

In the baseline VLNPD-Std architecture, the dynamic shifter
requires the most hardware resources. This unit takes 64-bit data
as input and can shift up to 32 positions to the left dynamically
at each iteration of the algorithm and is represented by a 5-bit
control signal (shift_amount). The implementation of this unit is
optimized by a series of three multiplexers, as shown in Fig. 8,
but despite that, it requires 151 LUTs. An alternative divider
version with significantly lower area occupation paid in perfor-
mance can be obtained by limiting the possible shifting range.
Observing the statistical distribution of the average number of
subsequent shift-only steps in a 32-bit division (Fig. 3), it is
possible to note that this number appears to be gathered in the
range and 24-31. Therefore, reducing the required area for the
dynamic shifter is possible by limiting the shift in this range.
The performance deviation with this solution depends heavily
on the application domain, as will be discussed in Section VIII,
but from a statistical point of view, this solution allows a sig-
nificant reduction in the hardware resources in exchange for a
small deviation in the division average latency.

V. RESULTS

This section analyzes the performance in terms of clock cycle
latency for each variant of the presented VLNPD, to verify the
effectiveness of the proposed approach. Section V-A analyzes
the properties of the latency as a function of the input data,
showing how it changes with the amplitude ratio between the
operands. In Section V-B, Montecarlo simulations for 4, 6,
8, 12, 16, and 32-bit integer divisions evaluate the average
latency of the proposed dividers for uniformly distributed input
values, for direct comparison with the other dividers available in
the literature.

A. Latency Behavior Analysis

All the VLNPD implementation variants have data-
dependent latency, meaning that the number of clock cycles

Fig. 13. Trend of the VLNPD’s average clock cycle against the difference
in magnitude (as powers of two) between the operands.

required to complete a division depends on the input data
values. Here we discuss some particular cases to understand
the expected behaviour of the VLNPD:

• dividend < divisor: If the dividend is smaller than the di-
visor, the correct result is the quotient equals zero, and the
remainder equals the dividend. However, it is unnecessary
to check this condition, as the number of leading zeros in
the dividend will certainly be less than in the divisor. In
the first iteration, the dividend is placed in the LSW of
the R register, the shift amount is always greater than or
equal to 32, and the shift limiting mechanism is enabled,
shifting R left by 31 positions and subtracting the divisor.
This last step always returns a negative result, resulting
in an additional shift of R. In this way, in a single clock
cycle, the dividend is shifted from the LSW to the MSW,
becoming the remainder of the division. On the other hand,
the quotient in the LSW, is zero;

• dividend= divisor: when the dividend and divisor are
equal, the difference between the leading zeros is exactly
32. As in the previous case, these divisions automatically
end in one clock cycle with the difference that the result of
the final subtraction will be non-negative and equal to zero.
Consequently, the quotient is set to 1 and the remainder to
zero, which gives the correct result;

• dividend= 1: the special case of the dividend equal to 1
may fall into one of the two previous cases, and both are
completed in one clock cycle, as described;

• divisor = 1: this case is the most critical for variable
latency algorithms since this division requires as many
clock cycles as the number of ‘1’s in the dividend. The
latency for these cases ranges from 1 (when dividend
equals 1) to 32 (when dividend equals 232 − 1). However,
it is important to note that, unlike other architectures in
the literature, we can solve this situation by checking
whether the number of leading zeros in the divisor equals
31; still, we did not implement that to avoid adding extra
hardware overhead. By adding this extra condition to the
division_complete flag, divisions by one are completed in
one clock cycle. The produced result is automatically the

1774 IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 7, JULY 2024

Fig. 14. Average clock cycles under varying bit width of operands.

correct one since, in the first iteration, the quotient is equal
to the dividend and the remainder is equal to zero;

• log2(dividend) = log2(divisor): if the base-2 logarithm
of the dividend is equal to that of the divisor, the operands
have the same n number of leading zeros. At the first iter-
ation, R has n+ 32 leading zeros, and it is, then, dynami-
cally left-shifted by (n+ 32)− n− 1 = 31 positions. The
most significant ones are aligned in this way, and the final
subtraction gives the correct result of the operation. In this
case, the difference is always positive (because dividend
> divisor and log2(dividend) = log2(divisor)): the quo-
tient is set to 1, and the result of the subtraction is the new
remainder;

• (dividend/divisor) mod 2 = 0: if the dividend is equal
to the divisor multiplied by any power of two, the proposed
algorithm performs integer division in two clock cycles.
In the first one, the leading ones are aligned, the result of
the subtraction is zero, and the quotient bit is set to one.
After this operation, all subsequent division steps consist
only of a left shift of the R register and can be dynamically
performed in the second clock cycle. Note that this case
also includes the divisions where both the dividend and the
divisor are powers of two.

Fig. 13 shows how the average number of cycles required by
the proposed algorithm varies as a function of the distance (in
powers of 2) between the dividend and the divisor. For distances
between 0 and 213, the clock cycles required by the VLNPD-
Std algorithm are always less than or equal to 8, the latency
expected from a radix-16 divisor. After this value, the number
of cycles remains less than 12 (latency of a radix-8) up to a
distance of 219. The VLNPD-Std variable latency divider is also
better than a radix-4 one for distances up to 225. The number
of clock cycles as a function of the distance is lower in the
VLNPD-HP version and higher in the VLNPD-HF one, for the
reasons outlined in Section IV.

B. Monte-Carlo Simulation Analysis

To compare and evaluate the performance between the pro-
posed algorithm and the fixed latency solutions, we tested more

Fig. 15. Statistical distribution of division latency in 32-bit integer divisions.
VLNPD-Std: 66.7% of divisions completed in 1 clock cycle, 21% in 2 cycles,
7% in 3 clock cycles. VLNPD-HP: 75% in 1 clock cycle.

TABLE I
AVERAGE LATENCY OF INTEGER DIVIDERS

FOR UNIFORMLY DISTRIBUTED NUMBERS,
INCLUDING THE ONES REQUIRED BY THE

HARDWARE IMPLEMENTATION

Average Latency

NPD 33.000

VLNPD-Std 2.546

VLNPD-LA 2.786

VLNPD-HF 3.268

VLNPD-HP 2.370

Quick-Div [12] 3.693

Priority Encoders [24] 3.730

than 1010 dividend and divisor pairs through Monte-Carlo sim-
ulations in the case of 4, 6, 8, 12, 16 and 32 bit operand width.
Fig. 14 shows the results obtained for each version. The results
were obtained by simulating until the first and second decimal
places of the average latency remained constant over 10 billion
iterations. In all the implementation variants the increase in the
average latency becomes negligible for bit-widths greater than
12, except for the case of VLNPD-LA in which the limited
range of the shifter causes a steeper increase, yet remaining
below 1.8 cycles. The VLNPD-Std version of the proposed
divider presented in Section III requires an average number of
clock cycles converging at a value of 1.55. This average latency
is achieved thanks to the presented dynamic shifting method.
In detail, Fig. 15 reports the clock cycle distribution required
by a 32-bit integer division performed with the VLNPD-Std
algorithm. Overall, 66.67% of the divisions are completed in
one clock cycle. The 21% and the 7% of divisions are completed
in two and three clock cycles, respectively, while the number of
divisions requiring more than five clock cycles is less than 1%.
The optimization technique described in Section IV-C allows a
lower average number of clock cycles for the VLNPD-HP ver-
sion, which converges at 1.36. In this case, thanks to the addi-
tional step that can be performed at each dynamic shift, 75% of
the divisions are completed in one clock cycle. In contrast, the
average latency increases in the VLNPD-HF divider, reaching
a value of 2.27, in exchange for a higher operating frequency.
As explained in Section IV-B, this is due to the additional cycle

ANGIOLI et al.: DESIGN, IMPLEMENTATION AND EVALUATION OF A NEW VARIABLE LATENCY INTEGER DIVISION SCHEME 1775

TABLE II
OPERATING FREQUENCY, EXECUTION TIME, AREA AND ENERGY CONSUMPTION RESULTS OBTAINED ON XILINX VIRTEX

ULTRASCALE+ VCU118 BOARD

Operating Number of Number of Average Dynamic Average Static Average Execution
Frequency [MHz] LUTs FFs Energy per Division [pJ] Energy per Division [pJ] Time per division [ns]

NPD 800 136 103 2969.010 10.189 41.250

VLNPD-Std 300 385 103 178.270 6.290 8.489

VLNPD-LA 315 290 103 195.056 4.370 8.846

VLNPD-HF 460 463 115 326.846 7.020 7.105

VLNPD-HP 268 438 103 165.820 8.733 8.839

Quick-Div [12] 426 365 129 332.391 6.424 8.670

Priority Encoders [24] 286 446 103 261.100 13.162 13.321

at each dynamic shift, which allows the splitting of the critical
path. With the VLNPD-LA version, the number of clock cycles
statistically slightly increases and reaches 1.78. As mentioned
before, the performance of this version strongly depends on the
application, as will be detailed in Section VIII. Finally, Fig. 14
also shows the performance of Quick-Div [12], which exhibits
to an average number of clock cycles of 1.69 and completes
50% of divisions in one clock cycle.

All the results reported in Fig. 14 refer to the algorithmic-
level performance, assuming the operands are already avail-
able in the local input registers and without considering any
additional latency overhead related to the implementation. For
the architecture in [12], in fact, one more cycle is required
to split the shift into two steps and increase the operating
frequency. The average number of clock cycles, including the
ones required by the hardware implementation, are summarized
in Table I for all the VLNPD variants and the designs in [12],
and [24].

Notably, in VLNPD schemes, the latency might be further
reduced by avoiding one clock cycle to load the operands in
internal registers, introducing a multiplexer to directly pass the
dividend at the input of the shifter and the CLZ unit. In the
present analysis, we did not implement this further improve-
ment to limit the hardware overhead and to assume the same
operation setup for all the compared dividers.

VI. IMPLEMENTATION ON FPGA

We synthesized and implemented the VLNPD divider, in
all its variants, on the Xilinx Virtex UltraScale+ VCU118
board (XCVU9P-L2FLGA2104E) using Vivado 2022.2. We
also replicated the design in [24], for which the data available
in the literature are related to a Virtex-7 FPGA board. Table II
reports the results of the implementations in terms of hardware
resources, i.e. Look-Up Tables (LUTs) and Flip-Flops (FFs),
operating frequency, average execution time per division at the
maximum operating frequency, and average energy consump-
tion per division.

The average execution time per 32-bit division is computed
according to (3) and is reported in Table II.

Execution_time=
average_latency

frequency
(3)

The average dynamic energy consumption per division and
average static energy consumption per division is calculated
according to (4) and (5).

E_dynamic=
Pdynamic

frequency
∗ average_latency (4)

E_static=
Pstatic

frequency
∗ LUT% ∗ average_latency (5)

where Pdynamic and Pstatic are the dynamic and static power
data, respectively, which have been obtained by the Vivado
power estimation based on the switching activity trace file ex-
tracted from the gate-level simulation of actual division opera-
tions; LUT% is the percentage of the total LUTs of the device
occupied by the division unit. For the design in [12], the energy
results were not available in the literature and therefore they
were produced by replicating the microarchitecture on the same
target FPGA.

The original NPD shows an operating frequency of
800 MHz and a very low area occupancy. It requires an
average execution time of 41.25 ns and an average dynamic
energy of 2969.01 pJ due to its fixed latency of 33 cycles.

The VLNPD designs significantly improve the execution
time and the average dynamic energy per division, at the
cost of more hardware resources. The VLNPD-Std version re-
quires 385 LUTs and 103 FFs with an operating frequency of
300MHz. Despite the lower frequency, thanks to an average of
2.55 cycles per division, it exhibits an average execution time
of 8.489 ns, providing a speedup of 4.86× over the original
algorithm and 1.02 compared to [12]. The latency difference
also affects the average dynamic energy, which in the case of the
VLNPD-Std equals 178.270 pJ , 93.99% less than the original
division algorithm and 46.37% less than [12]. These values are
also lower than all the compared variable latency architectures,
making the proposed VLNPD the most performing in terms of
the average latency, average execution time, and average static
and dynamic energy.

The VLNPD-HF version described in Section IV-B allows
the operating frequency to be increased by 53.33% over the
VLNPD-Std version, resulting in a value of 460 MHz. This
version requires 20.25% more LUTs, 12 more FFs, and a higher
average number of clock cycles (Table I). Nevertheless, this
architecture has the highest frequency and the lowest execution
time of all the compared variable latency dividers. In fact,

1776 IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 7, JULY 2024

TABLE III
OPERATING FREQUENCY, EXECUTION TIME, AREA AND ENERGY CONSUMPTION RESULTS OBTAINED ON

SYNOPSYS FUSION COMPILER IN GF22FDX TECHNOLOGY

Operating Total Cell Average Dynamic Average Static Average Time
Frequency [GHz] Area [um2] Energy per Division [pJ] Energy per Division [pJ] per division [ns]

NPD 1.66 310.97 13.464 1.171 19.800

VLNPD-Std 1.00 727.10 3.081 0.686 2.546

VLNPD-LA 1.06 619.27 2.111 0.484 2.451

VLNPD-HF 1.40 750.80 2.735 0.665 2.334

VLNPD-HP 0.98 893.30 3.375 1.008 2.407

Quick-Div [12] 1.22 722.78 3.690 0.775 3.026

the VLNPD-HF version exhibits an average execution time
speedup of 5.80× over the original algorithm, 1.20× compared
to the VLNPD-Std version and 1.22× over [12].

The VLNPD-LA design described in Section IV-C reduces
the number of LUTs by 24.67%, making this version the one
with the smallest area occupation and the lowest static energy
per operation.

Finally, although the VLNPD-HP version has the lowest
operating frequency and the highest hardware resource utiliza-
tion, it has the lowest average latency per division, providing
significantly better performance.

VII. IMPLEMENTATION ON ASIC

We further evaluated the ASIC implementation of the pro-
posed VLNPD dividers by synthesizing them with Synop-
sys Fusion Compiler on GlobalFoundries 22FDX (GF22FDX)
technology. Table III contains the comparison between the
proposed dividers and the existing reference dividers, again
in terms of area, dynamic and static energy consumption per
division operation, maximum operating frequency in typical
process corner, and resulting average time per operation. Also,
for the ASIC implementation, energy consumption data were
obtained by the power calculator tool based on switching
activity trace files extracted from gate-level simulations of
real operations.

With respect to the original NPD, the four VLNPD di-
viders proposed in this work provide an average execution time
speedup that ranges from 7.77× for the VLNPD-Std version
to 8.48× for the VLNPD-HF version. Correspondingly, the
average energy per division operation is reduced by 77.12% for
the VLNPD-Std implementation up to 84.32% for the VLNPD-
LA implementation.

To compare with the reference variable-latency design
Quick-Div, we replicated and synthesized the design reported
in [12] on the target technology. The execution time speed-up
obtained by the VLNPD dividers ranges from 1.18× to 1.29×,
while the average energy per division operation is reduced by
16.50% up to 42.79%.

The VLNPD-Std version of the variable latency divider
shows an operating frequency of 1 GHz (40% less than the
original algorithm), which is increased up to 1.40 GHz (only
15.66% less than the original algorithm and 12.83% higher

than the reference design Quick-div) by the VLNPD-HF archi-
tecture. The area occupation range from 619.27 um2 for the
VLNPD-LA design to 893.30 um2 in the VLNPD-HP occu-
pying less area than the reference design Quick-div. Overall,
the VLNPD-HF Variable Latency Divider results to be the best
version for ASIC implementation.

VIII. PERFORMANCE ANALYSIS ON BENCHMARK PROGRAMS

Since the actual speed of variable latency dividers is data-
dependent, it is relevant to explore the performance of the pro-
posed design as well as other reference designs in the execution
of real-world computation kernels. We implemented the execu-
tion of six representative benchmarks in C++ using the target
division algorithms. Also, since it is very likely that in a system-
on-chip architecture, the critical path that imposes the clock
frequency is not in a small sequential divider, we compared
the actual performance of the dividers in a continuous range
of frequencies from 100 MHz up to the maximum operating
frequency specific to each divider. The range of considered
clock frequencies is representative of an FPGA implementation;
equivalent results may be obtained for frequency ranges related
to ASIC implementation.

A. Benchmark Set

Details on the six benchmark routines adopted for the anal-
ysis are the following:

RNG: pseudo-random number generation function. At each
iteration, a new random number, Xn+1, is calculated starting
from the previous one, according to (6). Like the minstd_rand
functions in C++, we used m= 231 − 1, a= 16807 and
c= 0. In this benchmark, 23% of the executed instructions
are divisions.

Xn+1 = (aXn + c) mod m (6)

SQRT: Newton-Raphson method used to find the approxi-
mate value of the square root of a number x according to (7).
The iterative method starts with an initial guess g and uses
it to improve the estimation, g′, until the desired accuracy is
achieved. In this routine, 26% of the operations are divisions.

g′ = 0.5 ∗ (g + x/g) (7)

PRIME: function that checks whether an integer input n is a
prime number. If at least one of the divisions between n and

ANGIOLI et al.: DESIGN, IMPLEMENTATION AND EVALUATION OF A NEW VARIABLE LATENCY INTEGER DIVISION SCHEME 1777

Fig. 16. Average execution time per division required in six different benchmarks as a function of the operating frequency.

every possible divisor in the range [0,
√
n] has a remainder

equal to zero, the number is not prime. In this benchmark, 25%
of instructions are divisions. RSA: function for decrypting text
files using RSA technique (8), [33]. The private key is indicated
with d, and the modulus is indicated with n. The percentage of
divisions in this benchmark depends on n; on average, circa
13% are divisions.

m=
(
cd mod n

)
(8)

LU_FACT: function for performing the LU factorization of
fixed-point matrices. This technique is used for efficiently solv-
ing linear systems and inverting matrices in AI tasks such as
regressions and recommendation systems. For 3× 3 matrices,
in this benchmark 16% of the operations are divisions.

IMDIV: pixel-wise image division used to report the frac-
tional change or ratio for each pixel. In this benchmark, 33%
of operations are divisions.

B. Results

The results of the analysis are expressed as the average di-
vision absolute execution time when running the benchmark
routines, in the examined clock frequency range. Fig. 16 sum-
marizes the obtained data. The general most relevant outcome
of the analysis is that - in all the benchmarks - the proposed
VLNPD dividers can obtain the same or better average ex-
ecution time at a frequency lower than the other compared
dividers. This is particularly relevant as it would allow running
the entire system-on-chip architecture - in which the divider is
to be integrated - at a lower frequency while maintaining the
same division operation performance, in the view of low power
consumption. Other specific details on the results are discussed
below. In the RNG benchmark, the VLNPD-Std version of
our variable latency divider shows an average number of clock
cycles of 2.49, providing a speedup equal to 13.25× over the
original algorithm and 1.40× over Quick-div. The low average

1778 IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 7, JULY 2024

is due to how this benchmark works. Considering that in (6), m
is equal to 231 − 1, this function performs two types of division:

1) dividend≤m: as described in Section V-A, the pro-
posed algorithm always completes these divisions in one
clock cycle;

2) 231 < dividend < 232: in this case, the distance (in pow-
ers of two) between the dividend and the divisor can be
at most 1, and these divisions require two clock cycles
(Fig. 13). Such a range for the dividend means that the
first performed dynamic shift equals 32− 1− 1 = 30.
The subtraction result will certainly be negative and an-
other shift will be required. However, this is exactly the
case optimized in the VLNPD-HP version that, in this
benchmark takes an average of 1 clock cycle.

To this quantity, an additional clock cycle must be added due
to the hardware implementation, as described in Section V. This
discussion also explains why the VLNPD-LA exhibits the same
performance of the VLNPD-Std in this benchmark.

In the SQRT benchmark, the latency increases with the dif-
ference in magnitude between input operands, reaching its max-
imum in the last iteration when the estimation g′ matches the
actual number’s square root. In this case, the following con-
dition holds: log2(g′) = 1

2 log2(x), meaning that the maximum
latency according to Fig. 13, will be equal to 10 clock cycles. On
average, the VLNPD-Std version requires 6.65 clock cycles for
this benchmark, providing a speedup equal to 4.96× compared
to the NPD and 1.15× over Quick-div.

The PRIME benchmark is the worst for variable-latency
dividers since the dividend is fixed and the divisor varies in
[2,

√
n]. Also, the procedure is interrupted on the first division

with a non-zero remainder, meaning that, in most cases, only a
small part of the available range is tested. For this benchmark,
the VLNPD-Std presents an average clock cycle of 14.61, pro-
viding a speedup of 2.26× and 1.06× over NPD and Quick-div,
respectively. Note that this example shows how the workload
strongly impacts the performance of the VLNPD-LA version
that is almost never capable of performing the dynamic shift.

In the RSA benchmark, no particular observations are re-
quired since the latency depends on the distance of the powers
of c and the modulus n. The VLNPD-Std presents an average
number of clock cycles equal to 7.49, with a speedup equal to
4.41× compared to NPD and 1.07× over Quick-div.

In the LU_FACT routine, the elements of the lower trian-
gular matrix are computed through the division by the corre-
sponding diagonal elements of the upper triangular one. In this
benchmark, the VLNPD-Std requires 4.82 clock cycles, with
a speedup equal to 6.84× relative to the NPD and 1.1× over
Quick-div.

Finally, in the IMDIV program, the division is usually per-
formed between two pixels with similar values. The VLNPD-
Std has an average of 2.62 cycles and a speedup of 12.60×
compared to NPD and 1.50× over Quick-div.

IX. CONCLUSION

The presented variable latency data-dependent division ex-
ploits the relationship between the leading zeros in the divisor

and the partial remainder to reduce the average execution time
and energy consumption. These features make it suited for low-
power embedded applications with high speed requirements.

We presented the algorithm, its hardware implementation and
a detailed performance analysis to evaluate its effectiveness.
Experimental results show that the approach achieves an aver-
age of 1.55 clock cycles per 32-bit integer division, providing a
speedup of 20.65× over the starting NPD algorithm, and in the
range of 2.26× up to 13.25× when applied to real benchmarks,
depending on the input data.

We illustrated four implementation versions of the presented
divider, and we synthesized all of them on a Xilinx Virtex
UltraScale+ VCU118 FPGA, as well as on ASIC GF22FDX
technology. The FPGA VLNPD-Std version achieved the low-
est execution time per division in the literature with an av-
erage of 8.489 ns, also reaching the lowest average dynamic
energy consumption, with a reduction of 93.99% compared to
the original algorithm and 46.37% over the reference design.
The same properties were observed on ASIC in GF22FDX
technology, with an execution time of 2.546 ns and dynamic
and static energy consumption of 3.081 pJ and 0.686 pJ ,
respectively. The VLNPD-HF version improved the operating
frequency by 53.33% on FPGA and 40% on ASIC, leading to
a further reduction in the average execution time compared to
the VLNPD-Std version, with 7.105 ns on FPGA and 2.334 ns
on ASIC despite a higher average latency in clock cycles.
The best performance in terms of latency was achieved by
the VLNPD-HP version with an average of 1.36 clock cycles
and the 75% of divisions completed in just one iteration. In
contrast, the VLNPD-LA version reduced the area occupa-
tion by 26.67%, leaving performance highly dependent on the
target application.

The availability of different versions allow selecting the im-
plementation according to the system requirements. Overall,
the VLNPD-Std is the most versatile hardware implementa-
tion of the algorithm that balances operating frequency, power
consumption and hardware requirements, offering a general
excellent alternative to fixed-latency solutions in embedded
systems. The VLNPD-HF version should be preferred when the
system performance is limited by the operating frequency of
the variable latency arithmetic units. The VLNPD-HP results
particularly suited when clock frequency is imposed by other
parts of the system, so that minimizing the clock cycle count
per division is primary. Finally, the VLNPD-LA version is
recommended in scenarios with very strict hardware resource
constraints and the workload profiling can be used to tune the
shifter range.

REFERENCES

[1] U. S. Patankar, M. E. Flores, and A. Koel, “Division algorithms-
from past to present chance to improve area time and complexity for
digital applications,” in Proc. IEEE Latin Am. Electron Devices Conf.
(LAEDC), Piscataway, NJ, USA: IEEE Press, 2020, pp. 1–4.

[2] S. K. Park and K. W. Miller, “Random number generators: Good ones
are hard to find,” Commun. ACM, vol. 31, no. 10, pp. 1192–1201, 1988.

[3] E. Milanov, “The RSA algorithm,” RSA Laboratories, Washington, DC,
USA, Tech. Rep. 2009, pp. 1–11.

ANGIOLI et al.: DESIGN, IMPLEMENTATION AND EVALUATION OF A NEW VARIABLE LATENCY INTEGER DIVISION SCHEME 1779

[4] K. P. Sinaga and M.-S. Yang, “Unsupervised k-means clustering algo-
rithm,” IEEE Access, vol. 8, pp. 80716–80727, 2020.

[5] R. K. L. Trummer, “A high-performance data-dependent hardware
integer divider,” M.S. thesis, Inst. Comput. Sci. Syst. Anal., Paris Lodron
Univ., Salzburg, Austria, 2005.

[6] R. Mittal and A. Al-Kurdi, “LU-decomposition and numerical structure
for solving large sparse nonsymmetric linear systems,” Comput. Math.
Appl., vol. 43, nos. 1–2, pp. 131–155, 2002.

[7] W. Gander, “Algorithms for the QR decomposition,” Res. Rep., vol. 80,
no. 2, pp. 1251–1268, 1980.

[8] X. Wang, “Variable Precision Floating-Point divide and square root
for efficient FPGA implementation of image and signal processing
algorithms,” PhD dissertation, Northeastern University, Boston, Mas-
sachusetts, 2007.

[9] D. G. Bailey, “Space efficient division on FPGAs,” in Proc. Electron.
New Zealand Conf. (EnzCon’06), 2006, pp. 206–211.

[10] U. S. Patankar and A. Koel, “Review of basic classes of dividers based
on division algorithm,” IEEE Access, vol. 9, pp. 23035–23069, 2021.

[11] R. S. Hongal and D. Anita, “Comparative study of different division
algorithms for fixed and floating point arithmetic unit for embed-
ded applications,” Int. J. Comput. Sci. Eng., vol. 4, no. 9, pp. 48–
54, 2016.

[12] E. Matthews, A. Lu, Z. Fang, and L. Shannon, “Rethinking integer
divider design for FPGA-based soft-processors,” in Proc. IEEE 27th
Annu. Int. Symp. Field-Programmable Custom Comput. Mach. (FCCM),
Piscataway, NJ, USA: IEEE Press, 2019, pp. 289–297.

[13] S. F. Obermann and M. J. Flynn, “Division algorithms and implemen-
tations,” IEEE Trans. Comput., vol. 46, no. 8, pp. 833–854, Aug. 1997.

[14] X. Fang and M. Leeser, “Open-source variable-precision floating-point
library for major commercial FPGAs,” ACM Trans. Reconfigurable
Technol. Syst. (TRETS), vol. 9, no. 3, pp. 1–17, 2016.

[15] Advanced Micro Devices, Inc. (AMD), Microblaze Processor Ref-
erence Guide. 2021. Accessed: Apr. 14, 2024. [Online]. Avail-
able: https://www.amd.com/content/dam/xilinx/support/documents/sw_
manuals/xilinx2021_2/ug984-vivado-microblaze-ref.pdf

[16] Intel Corporation, Nios II Processor Reference Guide. 2020. Ac-
cessed: Apr. 14, 2024. [Online]. Available: https://cdrdv2-public.intel.
com/666887/n2cpu-nii5v1gen2-683836-666887.pdf

[17] A. De Gloria and M. Olivieri, “Completion-detecting carry select
addition,” Comput. Digital Tech. IEE Proc., vol. 147, pp. 93–100,
Apr. 2000.

[18] M. Olivieri and A. Mastrandrea, “A general design methodology for
synchronous early-completion-prediction adders in nano-CMOS DSP
architectures,” in Proc. VLSI Des., 2013, pp. 785281:1–785281:12.

[19] S. Ghosh, D. Mohapatra, G. Karakonstantis, and K. Roy, “Voltage
scalable high-speed robust hybrid arithmetic units using adaptive clock-
ing,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 18, no. 9,
pp. 1301–1309, Sep. 2010.

[20] M. Olivieri, “Design of synchronous and asynchronous variable-latency
pipelined multipliers,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,
vol. 9, no. 2, pp. 365–376, Apr. 2001.

[21] R. Andraka, “A survey of cordic algorithms for FPGA based computers,”
in Proc. ACM/SIGDA 6th Int. Symp. Field Programmable Gate Arrays
(FPGA’98), New York, NY, USA: ACM, 1998, pp. 191–200.

[22] M. D. Ercegovac and T. Lang, Digital Arithmetic. San Francisco, CA:
Morgan Kaufmann Publishers, 2004.

[23] N. Aggarwal, K. Asooja, S. S. Verma, and S. Negi, “An improvement
in the restoring division algorithm (needy restoring division algorithm),”
in Proc. 2nd IEEE Int. Conf. Comput. Sci. Inf. Technol., Piscataway, NJ,
USA: IEEE Press, 2009, pp. 246–249.

[24] F. Hassan, A. Ammar, and H. Drennen, “A 32-bit integer division
algorithm based on priority encoder,” in Proc. 27th IEEE Int. Conf.
Electron. Circuits Syst. (ICECS), Piscataway, NJ, USA: IEEE Press,
2020, pp. 1–4.

[25] M. Olivieri, A. Cheikh, G. Cerutti, A. Mastrandrea, and F. Menichelli,
“Investigation on the optimal pipeline organization in RISC-V multi-
threaded soft processor cores,” in Proc. New Gener. CAS (NGCAS),
Piscataway, NJ, USA: IEEE Press, 2017, pp. 45–48.

[26] A. Cheikh, S. Sordillo, A. Mastrandrea, F. Menichelli, G. Scotti, and
M. Olivieri, “Klessydra-T: Designing vector coprocessors for multi-
threaded edge-computing cores,” IEEE Micro, vol. 41, no. 2, pp. 64–71,
Mar./Apr. 2021.

[27] M. Barbirotta, A. Cheikh, A. Mastrandrea, F. Menichelli, and
M. Olivieri, “Design and evaluation of buffered triple modular redun-
dancy in interleaved-multi-threading processors,” IEEE Access, vol. 10,
pp. 126074–126088, 2022.

[28] M. Angioli, M. Barbirotta, A. Mastrandrea, S. Jamili, and M. Olivieri,
“Automatic hardware accelerators reconfiguration through linearUCB
algorithms on a RISC-V processor,” in Proc. 18th Conf. Ph.D. Res.
Microelectron. Electron. (PRIME), Piscataway, NJ, USA: IEEE Press,
2023, pp. 169–172.

[29] M. M. Mano, C. R. Kime, and T. Martin, Logic and Computer Design
Fundamentals, 5th ed., Hoboken, NJ, USA: Pearson, 2015.

[30] I. Tsiokanos, L. Mukhanov, and G. Karakonstantis, “Low-power
variation-aware cores based on dynamic data-dependent bitwidth trun-
cation,” in Proc. Des., Autom. Test Europe Conf. Exhib. (DATE),
Piscataway, NJ, USA: IEEE Press, 2019, pp. 698–703.

[31] S. Perri, F. Spagnolo, F. Frustaci, and P. Corsonello, “Design of leading
zero counters on FPGAs,” IEEE Embedded Syst. Lett., vol. 15, no. 3,
pp. 149–152, Sep. 2023.

[32] A. Ammar, H. Drennen, and F. Hassan, “High-precision priority encoder
based integer division algorithm,” in Proc. IEEE Int. Midwest Symp.
Circuits Syst. (MWSCAS), 2021, pp. 494–497.

[33] J. M. Torres-Palma, “SC-RSA: Basic and minimal implementation of
RSA-32 in C.” GitHub Repository, 2016. [Online]. Available: https://
github.com/jmtorrespalma/sc-rsa

https://www.amd.com/content/dam/xilinx/support/documents/sw_manuals/xilinx2021_2/ug984-vivado-microblaze-ref.pdf
https://www.amd.com/content/dam/xilinx/support/documents/sw_manuals/xilinx2021_2/ug984-vivado-microblaze-ref.pdf
https://cdrdv2-public.intel.com/666887/n2cpu-nii5v1gen2-683836-666887.pdf
https://cdrdv2-public.intel.com/666887/n2cpu-nii5v1gen2-683836-666887.pdf
https://github.com/jmtorrespalma/sc-rsa
https://github.com/jmtorrespalma/sc-rsa

<<
	/CompressObjects /Off
	/ParseDSCCommentsForDocInfo false
	/CreateJobTicket false
	/PDFX1aCheck false
	/ColorImageMinResolution 200
	/GrayImageResolution 300
	/DoThumbnails false
	/ColorConversionStrategy /sRGB
	/GrayImageFilter /DCTEncode
	/EmbedAllFonts true
	/CalRGBProfile (Adobe RGB \0501998\051)
	/MonoImageMinResolutionPolicy /OK
	/AllowPSXObjects false
	/LockDistillerParams true
	/ImageMemory 1048576
	/DownsampleMonoImages true
	/ColorSettingsFile (None)
	/PassThroughJPEGImages true
	/AutoRotatePages /None
	/Optimize false
	/ParseDSCComments false
	/MonoImageDepth -1
	/AntiAliasGrayImages false
	/GrayImageMinResolutionPolicy /OK
	/JPEG2000ColorImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/ConvertImagesToIndexed true
	/MaxSubsetPct 100
	/Binding /Left
	/PreserveDICMYKValues false
	/GrayImageMinDownsampleDepth 2
	/MonoImageMinResolution 400
	/sRGBProfile (sRGB IEC61966-2.1)
	/AntiAliasColorImages false
	/GrayImageDepth -1
	/PreserveFlatness false
	/OtherNamespaces [
		<<
			/IncludeSlug false
			/CropImagesToFrames true
			/IncludeNonPrinting false
			/OmitPlacedBitmaps false
			/AsReaderSpreads false
			/Namespace [
				(Adobe)
				(InDesign)
				(4.0)
]
			/FlattenerIgnoreSpreadOverrides false
			/OmitPlacedEPS false
			/OmitPlacedPDF false
			/SimulateOverprint /Legacy
			/IncludeGuidesGrids false
			/ErrorControl /WarnAndContinue
		>>
		<<
			/IgnoreHTMLPageBreaks false
			/IncludeHeaderFooter false
			/AllowTableBreaks true
			/UseHTMLTitleAsMetadata true
			/MetadataTitle /
			/ShrinkContent true
			/UseEmbeddedProfiles false
			/TreatColorsAs /MainMonitorColors
			/MetricUnit /inch
			/RemoveBackground false
			/HonorBaseURL true
			/ExpandPage false
			/AllowImageBreaks true
			/MetadataSubject /
			/MarginOffset [
				0.0
				0.0
				0.0
				0.0
]
			/Namespace [
				(Adobe)
				(GoLive)
				(8.0)
]
			/OpenZoomToHTMLFontSize false
			/PageOrientation /Portrait
			/MetadataAuthor /
			/MobileCompatible 0.0
			/MetadataKeywords /
			/MetricPageSize [
				0.0
				0.0
]
			/HonorRolloverEffect false
		>>
		<<
			/IncludeProfiles true
			/ConvertColors /NoConversion
			/FormElements true
			/MarksOffset 6.0
			/FlattenerPreset <<
				/PresetSelector /MediumResolution
			>>
			/DestinationProfileSelector /UseName
			/MultimediaHandling /UseObjectSettings
			/PreserveEditing true
			/PDFXOutputIntentProfileSelector /UseName
			/BleedOffset [
				0.0
				0.0
				0.0
				0.0
]
			/UntaggedRGBHandling /LeaveUntagged
			/GenerateStructure false
			/AddRegMarks false
			/IncludeHyperlinks false
			/IncludeBookmarks false
			/MarksWeight 0.25
			/PageMarksFile /RomanDefault
			/UntaggedCMYKHandling /LeaveUntagged
			/AddPageInfo false
			/AddBleedMarks false
			/IncludeLayers false
			/IncludeInteractive false
			/AddColorBars false
			/UseDocumentBleed false
			/AddCropMarks false
			/DestinationProfileName (U.S. Web Coated \050SWOP\051 v2)
			/Namespace [
				(Adobe)
				(CreativeSuite)
				(2.0)
]
			/Downsample16BitImages true
		>>
]
	/CompressPages true
	/GrayImageMinResolution 200
	/CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
	/PDFXBleedBoxToTrimBoxOffset [
		0.0
		0.0
		0.0
		0.0
]
	/AutoFilterGrayImages false
	/EncodeColorImages true
	/AlwaysEmbed [
]
	/EndPage -1
	/DownsampleColorImages true
	/ASCII85EncodePages false
	/PreserveEPSInfo false
	/PDFXTrimBoxToMediaBoxOffset [
		0.0
		0.0
		0.0
		0.0
]
	/CompatibilityLevel 1.7
	/MonoImageResolution 600
	/NeverEmbed [
]
	/CannotEmbedFontPolicy /Error
	/PreserveOPIComments false
	/AutoPositionEPSFiles false
	/JPEG2000GrayACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
	/EmbedJobOptions true
	/JPEG2000ColorACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/MonoImageDownsampleType /Bicubic
	/DetectBlends true
	/EmitDSCWarnings false
	/ColorImageDownsampleType /Bicubic
	/EncodeGrayImages true
	/Namespace [
		(Adobe)
		(Common)
		(1.0)
]
	/AutoFilterColorImages false
	/DownsampleGrayImages true
	/GrayImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/AntiAliasMonoImages false
	/GrayImageAutoFilterStrategy /JPEG
	/GrayACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/ColorImageAutoFilterStrategy /JPEG
	/ColorImageMinResolutionPolicy /OK
	/ColorImageResolution 300
	/PDFXRegistryName (http://www.color.org)
	/MonoImageFilter /CCITTFaxEncode
	/CalGrayProfile (Dot Gain 15%)
	/ColorImageMinDownsampleDepth 1
	/PDFXTrapped /False
	/DetectCurves 0.0
	/ColorImageDepth -1
	/JPEG2000GrayImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/TransferFunctionInfo /Remove
	/ColorImageFilter /DCTEncode
	/PDFX3Check false
	/ParseICCProfilesInComments true
	/DSCReportingLevel 0
	/ColorACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/PDFXOutputConditionIdentifier (CGATS TR 001)
	/PDFXCompliantPDFOnly false
	/AllowTransparency false
	/UsePrologue false
	/PreserveCopyPage true
	/StartPage 1
	/MonoImageDownsampleThreshold 1.5
	/GrayImageDownsampleThreshold 1.5
	/CheckCompliance [
		/None
]
	/CreateJDFFile false
	/PDFXSetBleedBoxToMediaBox true
	/EmbedOpenType false
	/OPM 1
	/PreserveOverprintSettings true
	/UCRandBGInfo /Preserve
	/ColorImageDownsampleThreshold 1.5
	/MonoImageDict <<
		/K -1
	>>
	/GrayImageDownsampleType /Bicubic
	/Description <<
		/ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
		/GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
		/FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
		/KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
		/HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
		/NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
		/DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
		/CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
		/ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
		/DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
		/JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
		/SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
		/SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
		/CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
		/CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
		/ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
		/RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
		/HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
		/PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
		/NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
		/TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
		/POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
		/HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
		/SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
		/RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
		/ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
	>>
	/CropMonoImages false
	/DefaultRenderingIntent /Default
	/PreserveHalftoneInfo true
	/ColorImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/CropGrayImages false
	/PDFXOutputCondition ()
	/SubsetFonts false
	/EncodeMonoImages true
	/CropColorImages false
	/PDFXNoTrimBoxError true
>>
setdistillerparams
<<
	/PageSize [
		612.0
		792.0
]
	/HWResolution [
		600
		600
]
>>
setpagedevice

