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An Integrated FPGA Accelerator for Deep
Learning-Based 2D/3D Path Planning

Keisuke Sugiura and Hiroki Matsutani , Member, IEEE

Abstract—Path planning is a crucial component for realizing
the autonomy of mobile robots. However, due to limited compu-
tational resources on mobile robots, it remains challenging to de-
ploy state-of-the-art methods and achieve real-time performance.
To address this, we propose P3Net (PointNet-based Path Planning
Networks), a lightweight deep-learning-based method for 2D/3D
path planning, and design an IP core (P3NetCore) targeting
FPGA SoCs (Xilinx ZCU104). P3Net improves the algorithm
and model architecture of the recently-proposed MPNet. P3Net
employs an encoder with a PointNet backbone and a lightweight
planning network in order to extract robust point cloud features
and sample path points from a promising region. P3NetCore
is comprised of the fully-pipelined point cloud encoder, batched
bidirectional path planner, and parallel collision checker, to cover
most part of the algorithm. On the 2D (3D) datasets, P3Net with
the IP core runs 30.52–186.36x and 7.68–143.62x (15.69–93.26x
and 5.30–45.27x) faster than ARM Cortex CPU and Nvidia Jetson
while only consuming 0.255W (0.809W), and is up to 1278.14x
(455.34x) power-efficient than the workstation. P3Net improves
the success rate by up to 28.2% and plans a near-optimal path,
leading to a significantly better tradeoff between computation and
solution quality than MPNet and the state-of-the-art sampling-
based methods.

Index Terms—Path planning, neural path planning, point cloud
processing, PointNet, deep learning, FPGA.

I. INTRODUCTION

PATH planning aims to find a feasible path from a start
to a goal position while avoiding obstacles. It is a funda-

mental component for mobile robots to autonomously navigate
and accomplish a variety of tasks, e.g., farm monitoring [1],
aerial package delivery [2], and mine exploration [3]. Such
robotic applications are often deployed on resource-limited
edge devices due to severe constraints on the cost and payload.
In addition, real-time performance is of crucial importance,
since robots may have to plan and update a path on-the-fly
in the dynamic environments. To cope with the strict per-
formance requirements, FPGA SoCs are increasingly used in
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Fig. 1. Results on the P3Net2D dataset. While MPNet (blue) fails to
plan feasible paths in the first two cases, the proposed P3Net (red) plans
successfully in all these cases, while reducing the parameters by 32.32x.

Fig. 2. Results on the P3Net3D dataset. P3Net (red) produces feasible paths
in these cases with 5.43x less parameters than MPNet.

robotic applications such as visual odometry [4] and SLAM [5].
FPGA SoC integrates an embedded CPU with a reconfigurable
fabric, which allows to develop a custom accelerator tailored for
a specific algorithm. Taking these into account, an FPGA-based
efficient path planning implementation becomes an attractive
solution, which would greatly broaden the application range,
since mobile robots can now perform expensive planning tasks
on its own without connectivity to remote servers.

In path planning, the sampling-based methods including
Rapidly-exploring Random Tree (RRT) [6] and RRT* [7] are
the most prominent; they explore the environment by incremen-
tally building a tree that represents a set of valid robot motions.
A number of RRT variants, e.g., Informed-RRT* [8] and BIT*
[9], have been proposed to improve the sampling efficiency and
convergence speed. While they offer better tradeoffs between
computational effort and solution quality, they rely on carefully
designed heuristics, which imply the prior knowledge of the
environment and may not be effective in certain scenarios. Due
to their increased algorithmic complexity, it even takes up to
tens of seconds to complete a task on an embedded CPU. On top
of that, their inherently sequential nature would require intricate
strategies to map onto a parallel computing platform.
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Motivated by the tremendous success of deep learning, the
research effort is devoted to developing learning-based meth-
ods; the basic idea is to automatically acquire a policy for
planning near-optimal paths from a large collection of paths
generated by the existing methods. MPNet [10] is a such
recently-proposed method, which employs two separate MLPs
(Multi-Layer Perceptrons) for point cloud encoding and incre-
mental path planning. Unlike sampling-based methods, MPNet
does not involve operations on complex data structures (e.g.,
KNN (K-Nearest Neighbor) search on a K-d tree), and DNN
(Deep Neural Network) inference is more amenable to parallel
processing. This greatly eases the design of a custom proces-
sor and makes MPNet a promising candidate for the low-cost
FPGA implementation. Its performance is however limited due
to the following reasons; the encoder does not take into account
the unstructured and unordered nature of point clouds, which
degrades the quality of extracted features and eventually results
in a lower success rate. Furthermore, the planning network has a
lower parameter efficiency, and MPNet has a limited parallelism
as it processes only one candidate path at a time until a feasible
solution is found.

This paper addresses the above limitations of MPNet and
proposes a new learning-based method for 2D/3D path plan-
ning, named P3Net (PointNet-based Path Planning Networks),
along with its custom IP core for FPGAs (P3NetCore). While
the existing methods often assume the availability of abundant
computing resources (e.g., GPUs), which is not the case in
practice, P3Net is designed to work on resource-limited edge
devices and still deliver satisfactory performance. Besides, to
our knowledge, P3NetCore is one of the first FPGA accelerators
for fully learning-based path planning. The main contributions
of this paper are summarized as follows:

1) To improve parameter efficiency and extract features that
are permutation-invariant, we utilize a PointNet [11]-
based encoder architecture, which is specifically designed
for point cloud processing, together with a lightweight
planning network.

2) We make two algorithmic modifications to MPNet; we
introduce a batch planning strategy to process multiple
candidate paths in parallel, which offers a new parallelism
and improves the success rates without increasing the
computation time. We then add a refinement phase at the
end to iteratively optimize the path.

3) To significantly improve the tradeoff between computa-
tion time and success rate, we design a custom IP core for
P3Net, which integrates a point cloud encoder, a bidirec-
tional neural planner, and a collision checker.

II. RELATED WORKS

A. Sampling and Learning-Based Path Planning

The sampling-based methods, e.g., RRT [6] and RRT* [7],
are prevalent in robotic path planning; they explore the environ-
ment by incrementally growing an exploration tree. Considering
that the free space should be densely filled with tree nodes to
find a high-quality solution, the computational complexity is at
worst exponential with respect to the space dimension. The later

methods introduce various heuristics to improve search effi-
ciency; Informed-RRT* [8] uses an ellipsoidal heuristic, while
BIT* [9] and its variants [12], [13] apply graph-search tech-
niques. Despite the steady improvement, they still rely on so-
phisticated heuristics; deep learning-based methods have been
extensively studied to automatically learn effective policies for
planning high-quality paths.

Several studies have investigated the hybrid approach, where
deep learning techniques are incorporated into the classical
planners. Ichter et al. [14], [15] and Wang et al. [16] extend
RRT by generating informed samples from a learned latent
space. Neural A* [17] is a differentiable version of A*, while
WPN [18] uses LSTM to generate path waypoints and then
A* to connect them. Aside from the hybrid approach, an end-
to-end approach aims to directly learn the behavior of classical
planners via supervised learning; Inoue et al. [19] and Bency
et al. [20] train LSTM networks on the RRT* and A*-generated
paths, respectively. The other architectures, e.g., CNN [21] and
Transformer [22] are also employed to construct end-to-end
models. MPNet and our P3Net follow the end-to-end supervised
approach, and perform path planning on a continuous domain
by directly regressing coordinates of the path points. P3Net is
unique in that it puts more emphasis on the computational and
resource efficiency and builds upon a lightweight MLP network,
making it suitable for the low-end edge devices.

B. Hardware Acceleration of Path Planning

Several works have explored the FPGA and ASIC acceler-
ation of the conventional graph and sampling-based methods,
e.g., A* [23], [24], [25], [26] and RRT [27], [28], [29], [30].
Kosuge et al. [24] develops an accelerator for A* graph con-
struction and search on the Xilinx ZCU102. Since A* operates
on grid environments and is subject to the curse of dimensional-
ity, it is challenging to handle higher dimensional cases or larger
maps. For RRT-family algorithms, Malik et al. [27] proposes
a parallelized architecture for RRT, which first partitions the
workspace into grids and distributes them across multiple RRT
processes. Chung et al. [30] devises a dual-tree RRT with paral-
lel and greedy tree expansion for ASIC implementation. Some
studies leverage GPU [31] or distributed computing techniques
[32], [33] to speed up RRT, while it degrades power efficiency
and not suitable for battery-powered edge devices. RRT-family
algorithms repeat tree expansion and rewiring steps alternately;
they are inherently sequential and difficult to accelerate without
a sophisticated technique (e.g., space subdivision, parallel tree
expansion). In contrast, our proposed P3Net offers more paral-
lelism and is hardware-friendly, as it mainly consists of DNN
inferences, and does not operate on complex data structures
(e.g., K-d tree).

Only a few works [34], [35], [36] have considered the
hardware acceleration of neural planners. Huang et al. [35]
presents an accelerator for a sampling-based method with a
CNN model, which produces a probability map given an image
of the environment for sampling the next robot position. In
[36], an RTL design of a Graph Neural Network-based path
explorer rapidly evaluates priority scores for edges in a random
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Algorithm 1 MPNet for 2D and 3D path planning
Require: Start cstart, goal cgoal, obstacle point cloud P
Ensure: Path τ = {c0, c1, . . . , cT } (c0, cT = cstart, cgoal)
1: φ(P)← ENet(P) � Point cloud feature extraction

� Initial coarse planning
2: τ ←NeuralPlanner(cstart, cgoal,φ(P))
3: if τ = ∅ : return ∅ � Failure
4: τ ← Smoothing(τ)
5: if τ is collision-free : return τ � Success

� Replanning
6: for i= 0, . . . , IReplan − 1 do
7: τ ← Replan(τ,φ(P))
8: τ ← Smoothing(τ)
9: if τ �= ∅ and τ is collision-free : return τ � Success

10: return ∅ � Failure

11: function NeuralPlanner(cs, cg ,φ(P))
12: τa ←{cs} , τb ←{cg} � Forward-backward paths
13: caend ← cs, cbend ← cg , r = 0 � Path endpoints
14: for i= 0, . . . , I − 1 do
15: if r = 0 : � Forward direction (start to goal)
16: canew ← PNet(φ(P), caend, cg)

17: τa
+←− {canew} , caend ← canew, r = 1

18: else if r = 1 : � Reverse direction (goal to start)
19: cbnew ← PNet(φ(P), cbend, cs)

20: τb
+←−

{
cbnew

}
, cbend ← cbnew, r = 0

21: if τa and τb are connectable : return τ =
{
τa, τb

}

22: return ∅ � Failure

23: function Replan(τ = {c0, . . . , cT } ,φ(P))
24: τnew ← ∅

25: for i= 0, . . . , T − 1 do
26: if ci and ci+1 are connectable :

27: τnew
+←− {ci, ci+1}

28: else � Plan a detour τi,i+1 = {ci, c(1)i , c
(2)
i , . . . , ci+1}

29: τi,i+1 ←NeuralPlanner(ci, ci+1,φ(P))
30: if τi,i+1 = ∅ : return ∅ � Failure

31: τnew
+←− τi,i+1

32: return τnew � Success

geometric graph, and edges with high priority are selected to
form a path. This paper extends our previous work [34]; instead
of only accelerating the DNN inference in MPNet, we imple-
ment the whole bidirectional planning algorithm on FPGA. In
addition, we derive a new path planning method, P3Net, to
achieve both higher success rate and speedup. This paper is
one of the first to realize a real-time fully learning-based path
planner on a resource-limited FPGA device.

III. PRELIMINARIES: MPNET

In this section, we briefly describe the MPNet [10] algorithm
(Alg. 1), which serves as a basis of our proposal.

Let us consider a robot moving around in a 2D/3D environ-
ment X ⊂ R

D (D = 2, 3). We denote its position as c ∈ R
D.

Given a pair of start and goal points cstart, cgoal ∈ R
D, MPNet

tries to find a collision-free path τ = {c0, c1, . . . , cT } (c0, cT =
cstart, cgoal) if exists. As illustrated in Fig. 3 (left), MPNet as-
sumes that obstacle information is represented as a point cloud
P = {p0, . . . ,pN−1} ∈ R

N×D containing N points uniformly
sampled from the obstacle region. The notation τ

+←− c is a
shorthand for τ ← τ ∪ {c}.

Importantly, MPNet uses two DNN models for encoding and
planning, namely ENet and PNet (Fig. 3, right); ENet com-
presses the obstacle information P into a feature embedding
φ(P) ∈ R

F . PNet is responsible for sampling the next position

Fig. 3. Overview of the MPNet algorithm.

Fig. 4. Processing flow of the MPNet path planning.

ct+1 which is one step closer to the goal, from the current and
goal positions ct, cgoal as well as the obstacle feature φ(P).
Fig. 4 outlines the algorithm. MPNet consists of two main steps,
referred to as (1) initial coarse planning and (2) replanning,
plus (3) a final smoothing step.

A. MPNet Algorithm

MPNet first extracts a feature φ(P) (Alg. 1, line 1) and pro-
ceeds to the initial coarse planning step (line 2) to roughly plan
a path τ between cstart and cgoal. The bidirectional planning
with PNet, referred to as NeuralPlanner (lines 11-22), plays a
central role in this step.

Given a pair of start-goal points cs, cg , NeuralPlanner plans
two paths τa, τb in forward and reverse directions alternately
(lines 15, 18). The forward path τa = {cs, . . . , caend} is incre-
mentally expanded from start to goal by repeating the PNet
inference (lines 16-17). From the current path endpoint caend
and goal cg , PNet computes a new waypoint canew, which be-
comes a new endpoint of τa and used as input in the next
inference. Similarly, the backward path τb =

{
cg, . . . , c

b
end

}
is

expanded from goal to start (lines 19-20). After updating τa or
τb, NeuralPlanner attempts to connect them and create a path
τ = {c0, c1, . . . , cT } between c0, cT = cs, cg , if there is no
obstacle between path endpoints caend, c

b
end (line 21). The above

process, i.e., path expansion and collision checking, is repeated
until a feasible path is obtained or the maximum number of
iterations I is reached. The algorithm fails if τa, τb cannot be
connected after I iterations1 (line 22).

The tentative path τ connecting cstart, cgoal is obtained from
NeuralPlanner (line 2); if τ passes the collision check, then
MPNet performs smoothing and returns it as a final solution
(lines 4-5). In the smoothing process (Fig. 4, right), the planner

1As more endpoints caend, c
b
end are sampled for the forward-backward

paths τa, τb, it is more likely that τa and τb meet each other at some point
and are connectable. More simply, setting a larger I will increase the chance
of success of NeuralPlanner.
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greedily prunes redundant waypoints from τ to obtain a shorter
and smoother path; given three waypoints ci, cj , ck (i < j < k),
the intermediate one cj is dropped if ci and ck can be directly
connected by a straight line. This involves a collision checking
on the new edge (ci, ck).

As already mentioned, the initial solution τ may contain
edges that collide with obstacles (Fig. 4 (left, red lines));
if this is the case, the planner moves on to the replanning
process (lines 7, 23-32). For every edge ci, ci+1 ∈ τ that
is in collision, MPNet tries to plan an alternative sub-path
τi,i+1 = {ci, c(1)i , c

(2)
i , . . . , ci+1} between ci, ci+1 to avoid ob-

stacles (Fig. 4 (center), line 29). NeuralPlanner is again called
with ci, ci+1 as input start-goal points. The replanning fails
if NeuralPlanner cannot plan a detour. The new waypoints
c
(1)
i , c

(2)
i , . . . are then inserted to the path (line 31). If the

resultant path is collision-free, MPNet returns it as a solution
after smoothing (lines 8-9); otherwise, it runs the replanning
again. In this way, MPNet gradually removes the non-collision-
free edges from the solution. Replanning is repeated for IReplan

times at maximum, and MPNet fails if a feasible solution is not
obtained (line 10).

PNet inference is a non-deterministic process and shows a
stochastic behavior, as it utilizes dropout in the inference phase,
unlike the typical case where the dropout is only enabled during
training. The process [φ(P), ct, cgoal] �→ ct+1 can be viewed
as sampling the next position ct+1 from a learned distribution
p(φ(P), ct, cgoal). For this reason, NeuralPlanner and Replan
are also non-deterministic. As a result, MPNet generates mul-
tiple different sub-paths in the replanning phase; by increasing
IReplan, MPNet has more chance of avoiding obstacles and
finding a feasible path.

IV. METHOD: P3NET

In this section, we propose a new path planning algorithm,
P3Net (Algs. 2-3), by making improvements to the algorithm
and model architecture of MPNet.

A. Algorithmic Improvements

P3Net introduces two ideas, (1) batch planning and (2)
refinement step, into the MPNet algorithm. As depicted in
Figs. 4–5, P3Net (1) estimates multiple paths at the same time to
increase the parallelism, and (2) iteratively refines the obtained
path to improve its quality.

1) Batch Planning: According to the NeuralPlanner algo-
rithm in MPNet (Alg. 1, lines 11-22), forward-backward paths
τa, τb are incrementally expanded from start-goal points cs, cg
until their endpoints caend, c

b
end are connectable. In this process,

PNet computes a single next position canew (cbnew) from a current
endpoint caend (cbend) and the destination cg (cs) (lines 16, 19).
Due to the input batch size of one, PNet cannot fully utilize the
parallel computing capability of CPU/GPUs, and also suffers
from the kernel launch overheads and frequent data transfers.
To amortize this overhead, two PNet inferences (lines 16, 19)
can be merged into one with a batch size of two, i.e., two
next positions [cs, cg] are computed at once from concatenated
inputs

[
caend, c

b
end

]
, [cg, cs].

Algorithm 2 P3Net (changed parts are highlighted in red)
Require: Start cstart, goal cgoal, obstacle point cloud P
Ensure: Path τ = {c0, . . . , cT } (c0, cT = cstart, cgoal)
1: Compute point cloud feature: φ(P)← ENet(P)

� Initial coarse planning
2: for i= 0, . . . , IInit − 1 do
3: τ ←NeuralPlannerEx(cstart, cgoal,φ(P))
4: if τ �= ∅ : break � Success
5: if τ = ∅ : return ∅ � Failure
6: τ ← Smoothing(τ)

� Replanning
7: if τ is not collision-free :
8: for i= 0, . . . , IReplan − 1 do
9: τ ← Replan(τ,φ(P))

10: τ ← Smoothing(τ)
11: if τ �= ∅ and τ is collision-free : break � Success
12: if τ = ∅ : return ∅ � Failure

� Refinement
13: τbest ← τ, cbest ← Cost(τbest) � τ is now collision-free
14: for i= 0, . . . , IRefine − 1 do
15: τnew ← Refine(τbest,φ(P))
16: τnew ← Smoothing(τnew)
17: cnew ← Cost(τnew)
18: if cnew < cbest : cbest = cnew, τbest = τnew
19: return τbest

Algorithm 3 Batch Planning and Refinement Step in P3Net
1: function NeuralPlannerEx(cs, cg ,φ(P))

� Initialize batch of current and goal positions
2: CB ← [ca,00 , cb,00 , . . . , ca,0B−1, c

b,0
B−1] ∈ R

2B×D

(∀j ca,0j = cs, c
b,0
j = cg)

3: Cgoal
B ← [cg , cs, cg , cs, . . . , cg , cs] ∈ R

2B×D

� Initialize batch of paths and lengths
4: τaB ← [τa0 , τ

a
1 , . . . , τ

a
B−1], ∀j τaj = {cs}

5: τbB ← [τb0 , τ
b
1 , . . . , τ

b
B−1], ∀j τbj = {cg}

6: �B ← [�a0, �
b
0 , . . . , �

a
B−1, �

b
B−1], ∀j �xj = |τxj |= 1

7: for i= 0, . . . , I − 1 do
8: Cnext

B ← PNet(φ(P),CB,C
goal
B ) � Next positions

(Cnext
B = [ca,i+1

0 , cb,i+1
0 , . . . , ca,i+1

B−1 , cb,i+1
B−1 ])

9: for j = 0, . . . , B − 1 do � Collision checks
10: if (ca,i+1

j , cb,ij ) are connectable :
11: expandA← 1, expandB← 0, s← 1
12: else if (ca,ij , cb,i+1

j ) are connectable :
13: expandA← 0, expandB← 1, s← 1
14: else if (ca,i+1

j , cb,i+1
j ) are connectable :

15: expandA← 1, expandB← 1, s← 1
16: else
17: expandA← 1, expandB← 1, s← 0

18: if expandA : τaj
+←− {ca,i+1

j }, �aj ← �aj + 1

19: if expandB : τbj
+←− {cb,i+1

j }, �bj ← �bj + 1

20: if s= 1 : return τ = {τaj , τbj } � Success
21: CB ←Cnext

B
22: return ∅ � Failure

23: function Refine(τ = {c0, . . . , cT } ,φ(P))
24: τnew ← ∅

25: for i= 0, . . . , T − 1 do
26: τi,i+1 ← NeuralPlannerEx(ci, ci+1,φ(P))
27: � Compute a new path connecting ci and ci+1
28: if τi,i+1 �= ∅ and τi,i+1 is collision-free :

29: τnew
+←− τi,i+1 � Use new path

30: else
31: τnew

+←− {ci, ci+1} � Use current solution
32: return τnew

As shown in Fig. 5, our NeuralPlannerEx algorithm (Alg. 3,
lines 1-22) takes this idea further by creating a total of B
pairs of forward-backward paths (i.e., τaB =

[
τa0 , . . . , τ

a
B−1

]
,

τbB =
[
τb0 , . . . , τ

b
B−1

]
). It serves as a drop-in replacement for
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Fig. 5. Batch planning in NeuralPlannerEx algorithm (batch size B = 3,
iteration i= 2). The algorithm expands three forward-backward path pairs
τaB, τ

b
B , and tries to connect each path pair. The third pair (τa2 , τ

b
2 ) is

connected to form a path from start to goal τ = {cs, ca,12 , cb,22 , cb,12 , cg}.

NeuralPlanner. It keeps track of the forward-backward path
pairs (τaB, τ

b
B), which are initialized with start-goal points (lines

4-5), as well as path lengths �B (initialized with all ones, line 6),
path endpoints CB, and corresponding destination points
Cgoal

B (lines 2-3).
In each iteration i, PNet takes (φ(P),CB,C

goal
B ) as

input and computes the next waypoints Cnext
B = [ca,i+1

0 ,
cb,i+1
0 , . . . , ca,i+1

B−1 , cb,i+1
B−1 ] for a batch of paths within one in-

ference step (line 8), resulting in a total batch size of 2B. Note
that ca,i+1

j , cb,i+1
j denote i+ 1-th waypoints in j-th forward-

backward paths (j ∈ [0, B)). Then, for each sample j, the algo-
rithm tries to connect a path pair τaj , τ

b
j , by checking whether

any of the three lines connecting (ca,i+1
j , cb,ij ), (ca,ij , cb,i+1

j ),
and (ca,i+1

j , cb,i+1
j ) is obstacle-free and hence passable (lines

9-17). If this check passes, τaj and τbj are concatenated and
the result τ =

[
cs, c

a,1
s , . . . , cb,1s , cg

]
is returned to the caller

(line 20, blue path in Fig. 5); otherwise, the algorithm updates
the current endpoints CB with the new ones Cnext

B and proceeds
to the next iteration. Cnext

B is also used to update the paths
τaB, τ

b
B accordingly (lines 18-19). It fails if no solution is found

after the maximum number of iterations I .
NeuralPlannerEx is more likely to find a solution compared

to NeuralPlanner, as it creates B candidate paths for a given
task. This allows the replanning process (Alg. 2, lines 7-12),
which repetitively callsNeuralPlannerEx, to complete in a less
number of trials, leading to higher success rates as confirmed
in the evaluation (Section VI-C). To further improve success
rates, P3Net runs the initial coarse planning for IInit ≥ 1 times
(Alg. 2, lines 2-5), as opposed to MPNet which immediately
fails when a feasible path is not obtained in the first attempt
(Alg. 1, lines 2, 3).

2) Refinement Step: The paths generated by MPNet may not
be optimal, since it returns a first found path in an initial coarse
planning or a replanning phase. As highlighted in Alg. 2, lines
13-18, the refinement phase is added at the end of P3Net to
gradually improve the quality of output paths (Fig. 5). For a
fixed number of iterations IRefine, it computes a new collision-
free path τnew based on the current solution τbest (with a cost
of cbest) using Refine algorithm (Alg. 3, lines 23-32), and
accepts τnew as a new solution if it lowers the cost (cnew <
cbest). Same as the replanning phase, Refine also relies on
NeuralPlannerEx at its core. It takes the collision-free path τ

as an input and builds a new path τnew as follows: for every edge
(ci, ci+1) ∈ τ , it plans a path τi,i+1 using NeuralPlannerEx
(line 26) and connects ci, ci+1 with τi,i+1 if it is collision-free
(line 29). Note that MPNet can be viewed as a special case of
P3Net with (B, IInit, IRefine) = (1, 1, 0).

B. Lightweight Encoding and Planning Networks

Instead of E, PNet, P3Net uses a lightweight encoder with
a PointNet [11] backbone (ENetLite) to extract permutation-
invariant features, in conjunction with a downsized planning
network (PNetLite) for better parameter efficiency and faster
inference, as described in the following2.

1) ENetLite: PointNet-Based Encoding Network: As shown
in Fig. 6 (top left), MPNet uses a simple encoder architecture
(ENet) stacking four FC layers. It directly processes raw point
coordinates, and hence costly preprocessing such as normal
estimation or clustering is not required. ENet2D takes a point
cloud P with N = 1400 points, flattens it into a 2,800D vector,
and produces a F = 28D feature vector φ(P) in a single for-
ward pass. Similarly, ENet3D extracts a F = 60D feature vector
φ(P) from a 3D point cloud of size N = 2000 with a series of
FC layers3.

In spite of its simplicity, ENet has the following major draw-
backs; (1) the number of input points is fixed to N = 1400 or
N = 2000 regardless of the complexity of planning environ-
ments, (2) the number of parameters grows linearly with the
number of points, and more importantly, (3) the output feature
is affected by the input orderings. This means ENet produces
a different feature if any of the two points are swapped; since
the input still represents exactly the same point set, the result
should remain unchanged.

P3Net avoids these drawbacks by using PointNet [11] as an
encoder backbone, referred to as ENetLite. PointNet is specifi-
cally designed for point cloud processing, and Fig. 6 (top center)
presents its architecture. It is still a fully-connected network and
directly operates on raw point clouds. ENetLite2D first extracts
F = 252D individual features {ψ(p0), . . . ,ψ(pN−1)} for each
point using five building blocks. It then computes a 252D global
feature φ(P) = max (ψ(p0), . . . ,ψ(pN−1)) by aggregating
these pointwise features via max-pooling. ENetLite3D has the
same structure except the first and the last building blocks; it
extracts F = 250D features from 3D point clouds4. As seen
above, ENetLite can adapt to different point dimensions by
simply replacing the topmost FC layer, without compromising
the overall computational cost.

Compared to ENet, ENetLite can handle point clouds of any
size, and the number of parameters is independent from the

2To distinguish the models for 2D/3D planning, we suffix them with
-2D/-3D when necessary. A fully-connected (FC) layer with m input and
n output channels is denoted as FC(m,n), a 1D batch normalization with n
channels as BN(n), a 1D max-pooling with window size n as MaxPool(n),
and a dropout with a rate p ∈ [0, 1) as Dropout(p), respectively.

3ENet3D is denoted as FC(6000, 784)→ ReLU→ FC(512)→
ReLU→ FC(256)→ ReLU→ FC(60).

4ENetLite2D is written as BE(2, 64, 64, 64, 128, 252), where
BE(m,n) = FC(m,n)→ BN(n)→ ReLU is a basic building block
that maps mD point features into an nD space. In ENetLite3D, the first and
the last building blocks are replaced with BE(3, 64) and BE(250).
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Fig. 6. Encoding and planning networks for MPNet and P3Net (top right: sequential feature extraction in Section V-A). BE is a shorthand for a building
block consisting of a fully-connected layer, batch normalization, and ReLU activation. BP is a shorthand for a building block consisting of a fully-connected
layer, ReLU activation, and a dropout with a probability of 0.5.

input size. ENetLite2D(3D) provides informative features with
9x (28/252) and 4.17x (60/250) more dimensions, while requir-
ing 31.73x (1.60M/0.05M) and 104.47x (5.25M/0.05M) less
parameters than ENet2D(3D). PointNet processes each point in
a point cloud sequentially and thus avoids random accesses. In
addition, as ENetLite involves only pointwise operations and a
symmetric pooling function, its output φ(P) is invariant to the
permutation of input points, leading to better training efficiency
and robustness.

2) PNetLite: Lightweight Planning Network: The original
PNet is formed by a set of building blocks, as shown in Fig. 6
(bottom left). It takes a concatenated input [φ(P), ct, cgoal]
consisting of an obstacle feature φ(P) passed from ENet,
a current position ct, and a destination cgoal, and computes
the next position ct+1 which is one step closer to cgoal.
Notably, PNet2D/3D have the same set of hidden layers; the
only difference is in the leading and trailing layers. PNet2D
uses BP(32, 1280) and FC(2) to produce 2D coordinates from
F + 4 = 32D inputs, whereas PNet3D uses BP(66, 1280) and
FC(3) to handle F + 6 = 66D inputs and 3D outputs5.

Such design has a problem of low parameter efficiency es-
pecially in the 2D case; PNet2D will contain redundant layers
which do not contribute to the successful planning and only
increase the inference time. The network architecture can be
adjusted to the number of state dimensions and the complexity
of planning tasks. In addition, as discussed in Section IV-B1,
PointNet encoder provides permutation-invariant features that
better capture the planning environment. Assuming that MPNet
uses a larger PNet in order to compensate for the lack of robust-
ness and geometric information in ENet-extracted features, it
is reasonable to expect that PointNet allows the use of more
shallower networks for path planning.

From the above considerations, P3Net employs planning
networks with fewer building blocks, PNetLite. PNetLite2D
(Fig. 6, bottom center) is composed of six building blocks6

to compute a 2D position from a F + 4 = 256D input.
As described in Section IV-A1, NeuralPlannerEx creates

5BP(m,n) = FC(m,n)→ ReLU→Dropout(0.5).
6PNetLite2D is denoted as BP(256, 256, 128, 64, 64, 64, 2).

B pairs of forward-backward paths; PNetLite computes a
batch of next positions Cnext

B ∈ R
2B×2 from an input matrix

[φ(P),Cnext
B ,Cgoal

B ] ∈ R
2B×256. PNetLite3D is obtained by

removing a few blocks from PNet3D and replacing the first
block with BP(256, 1024) to process F + 6 = 256D inputs, as
depicted in Fig. 6 (bottom right). PNetLite{2D, 3D} has 32.58x
(3.76M/0.12M) and 2.35x (3.80M/1.62M) less parameters than
PNet{2D, 3D}; {E, P}NetLite together achieves 32.32x and
5.43x parameter reduction in the 2D and 3D case. These two
networks are jointly trained in an end-to-end supervised manner
(Sections VI-A–VI-B).

V. IMPLEMENTATION

This section details the design and implementation of
P3NetCore, a custom IP core for P3Net. It has three mod-
ules, namely, (1) Encoder, (2) NeuralPlanner, and (3) Col-
lisionChecker, which cover most of the P3Net (Alg. 2) except
the evaluation of path costs (lines 13, 17). The details are
provided in the supplementary material.

A. Encoder Module

While the number of parameters is reduced, ENetLite takes
a longer inference time than ENet (Table I, top), as it extracts
local features for each point, which requires N forward passes.
Encoder is to accelerate the inference.

Since the operations for each point is independent except
the last max-pooling, the module computes a point feature
ψ(pi) one-by-one7 and updates the global feature by taking a
maximum φ(P)←max(φ(P),ψ(pi)) (Fig. 6, top right). In
this way, Encoder can handle point clouds of any size, while
the buffer size is constant regardless of N . Encoder consists
of three kinds of submodules: FC(m,n), BN-ReLU(n), and
Max. FC(m,n) involves a matrix-vector product, and Max
updates the feature by max(φ(P),ψ). BN-ReLU(n) couples
the batch normalization and ReLU. FC and BN-ReLU are
parallelized by partially unrolling the loop and partitioning the

7It is possible to compute multiple point features in parallel, while the
current design already gives satisfactory performance (Table I, top).
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Fig. 7. Block diagram of Encoder.

relevant buffers. Besides, a dataflow optimization is applied for
the fully-pipelined execution of these submodules (Fig. 7, top).

Fig. 7 (bottom) shows the block diagram. Upon a request
from the host CPU, it first (1) initializes the FD output feature
φ(P) with zeros. Then, the input P is processed in tiles of size
NE

T as follows: the module (2) transfers a tile from DRAM to
a point buffer of size (NE

T , D), and (3) the submodule pipeline
consumes points in this buffer one-by-one to update the out-
put. After repeating this process for all 	N/NE

T
 tiles, (4) the
output φ(P) is written to the on-chip buffer of size (2B,F +
2D) for later use in NeuralPlanner. All parameters and layer
outputs are stored on-chip, which avoids DRAM accesses
during computation.

B. NeuralPlanner Module

As apparent in Algs. 1–2, the bidirectional neural planning
(NeuralPlannerEx) is at the core of P3Net and thus has a
significant impact on the overall performance. In contrast to
the previous work [34], which only implements PNet infer-
ence on the custom IP core, NeuralPlanner covers the entire
NeuralPlannerEx algorithm (Alg. 3).

1) PNetLite Inference and Collision Checking: For
PNetLite inference, the module contains two types of sub-
modules: FC(m,n) and Dropout-ReLU(p) which fuses ReLU
and dropout into a single pipelined loop. FC(m,n) exploits
the fine-grained (data-level) parallelism as described in Section
V-A, while Dropout-ReLU(p) (p= 0.5) is implemented with
Mersenne-Twister (MT). Note that in the 3D case, parameters
for the second building block BP(1024, 768) are kept on the
DRAM due to limited on-chip memory, which necessitates a
single sweep (burst transfer) of weight and bias parameters
during inference.

In addition to PNetLite, the module deals with collision
checking. It adopts a simple approach based on the discretiza-
tion [10], [31]: the line between cstart, cend is split into seg-
ments with a predefined interval δ (Fig. 8, right top), producing
equally spaced midpoints c0, . . . , cM 8. If any midpoint collides
with any obstacle, the line is in collision. To simplify the imple-
mentation, the module assumes that each obstacle is rectangular

8ci = cstart + (i/M)Δ, Δ= cend − cstart, M = ‖Δ‖ /δ.

Fig. 8. Block diagram of NeuralPlanner.

Fig. 9. Buffers for NeuralPlanner (B = 3). At each iteration, NeuralPlan-
ner updates the path endpoints CB,Cnext

B , lengths �B , as well as the DRAM
buffers for forward-backward paths τaB =

[
τa0 , τ

a
1 , τ

a
2

]
, τbB =

[
τb0 , τ

b
1 , τ

b
2

]
.

The path lengths stored on-chip are used as pointers to the DRAM path
buffers (red arrows). In iteration i= 2, the third path pair τa2 , τ

b
2 is found to

be connectable. The module writes the success flags and path lengths �B to
the DRAM buffer and completes the task.

and represented as a bounding box with minimum and maxi-
mum corner points cobsi,min, c

obs
i,max. The module contains a total

of PNP
Chk · PNP

ChkPCheck submodules to test PNP
ChkP midpoints

against PNP
Chk obstacles in parallel (Fig. 8, right bottom). The

interval δ should be set small enough to test a line (cstart, cend)
with a finer resolution and ensure reliable collision avoidance.
The false negatives, i.e., lines being misclassified as collision-
free, would cause the planner to produce an unfeasible path,
and a robot may collide with obstacles as a result.

2) Processing Flow of NeuralPlanner Module: As shown
in Figs. 8–9, the module consists of submodules and several
buffers to perform the bidirectional planning. The module first
(1) reads the task configurations such as start-goal points cs, cg
from DRAM, as well as algorithmic parameters (e.g., the max-
imum iterations I) from control registers. It then (2) initializes
BRAM buffers (Fig. 9, top) for the current endpoints, destina-
tions, next waypoints CB,C

goal
B ,Cnext

B ∈ R
2B×D (D = 2, 3),

and path lengths �B ∈ N
2B , as well as the result buffers on

DRAM (Alg. 3, lines 2-6). These result buffers store the entire
forward-backward paths τaB, τ

b
B along with their lengths and

success flags in a format depicted in Fig. 9 (bottom).
The module proceeds to alternate between PNetLite infer-

ence (line 8) and collision checking (lines 9-17); it (3) sets
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PNetLite inputs CB,C
goal
B and computes Cnext

B (Fig. 8, left bot-
tom). Using the current and next endpoints CB,C

next
B , the mod-

ule (4) attempts to connect each path pair τaj , τ
b
j (j ∈ [1, B))

(Fig. 5). If the path connection succeeds, it transfers the success
flag and path length (�aj , �

b
j ∈ �B) to the DRAM result buffer

and completes the task. The module appends new waypoints
Cnext

B to the DRAM result buffers, increments path lengths �B
accordingly, and replaces CB with Cnext

B for the next iteration.
The collision check of a line segment is cast as checks on the
discrete midpoints {ci}. The module reads a tile of bound-
ing boxes {(cobsi,min, c

obs
i,max)} into an on-chip obstacle buffer of

size (NNP
T , 2, D), and tests PNP

ChkP midpoints with PNP
Chk obsta-

cles in parallel using an array of Check submodules (Fig. 8,
right bottom).

C. CollisionChecker Module

Since collision checking is performed throughout P3Net, it
is implemented in a dedicated CollisionChecker module for
further speedup. It checks whether the path τ = {c0, . . . , cT } is
in collision by repeating the process described in Section V-B1
for each edge (ci, ci+1). Similar to NeuralPlanner, it contains
PCC
Chk · PCC

ChkPCheck submodules to test PCC
ChkP midpoints on

the edge (ci, ci+1) against PCC
Chk obstacles in parallel. The

obstacle bounding boxes are transferred from DRAM to an on-
chip buffer of size (NCC

T , 2, D) as necessary. After completion,
the result is written to the control register (1 if τ collides with
any obstacle).

D. Design Space Exploration for P3NetCore

Following [37], we conduct a design space exploration to
find a parameter set that gives the best performance under
FPGA resource and bandwidth constraints. Due to page limit,
we briefly describe the performance model for each module,
which is defined as:

Perf = min (Nop/L · f,AI · BW) (ops/s), (1)

where an arithmetic intensity AI =Nop/Dall is a ratio of the
number of operations (OPs) Nop to the bytes Dall transferred
from/to DRAM. L, f,BW denote the latency (cycles), clock
frequency (Hz), and the maximum bandwidth (bytes/s), respec-
tively9. Here we consider the usages of BRAM, URAM, and
DSP, which are the limiting resources for our design (Table II).
BRAM usage is modeled as [38]:

RB(s, w,PF)

= PF · 	s/(PF · 	w/36
 · (18 · 103))
 · 	w/36
, (2)

where s, w,PF are the required buffer size (bits), bit-width,
and partition factor10. URAM model is similar to Eq. 2. DSP

9Since P3NetCore is connected to DRAM via a single 128-bit AXI port
(Fig. 8), we set to f = 200MHz and BW = f · 128bit = 3.2GB/s, assuming
that the 128-bit data arrives at every clock cycle.

10A single BRAM block can store up to 18Kb of data and the maximum
bit-width is 36.

consumption mainly comes from the MAC operations in layer
submodules (Sections V-A and V-B1)11.

For Encoder, Nop, L, and Dall are modeled as:

NE
op =N ·

(∑
i N

E,i
op

)
, DE

all =N · (128/8)

LE =

⌈
N

NE
T

⌉
·
(
LE,max

(
NE

T − 1
)
+
∑

i L
E,i + LP

(
NE

T

))
,

(3)

where NE,i
op /LE,i denotes the OPs/latency for the i-th pipeline

stage (Fig. 7, top)12. DE
all is straightforward because only the

input points are transferred. LP(n) =Dn+ LReq (D = 2, 3)
models the latency for transferring n points from DRAM, and
LReq is a latency for the read request. LE is determined by the
longest stage LE,max =maxi(L

E,i). To reduce design space,
only an unroll factor for the longest pipeline stage, PE, is
considered, and ones for the other stages are adjusted accord-
ingly to balance the latency; thus, Encoder has two design
parameters: NE

T , P
E.

The performance model of NeuralPlanner is follows:

NNP
op = Ī

(
NNP,Net

op +NNP,Chk
op

)
, NNP,Net

op =
∑

i N
NP,i
op

NNP,Chk
op = 3BNChk

op (d̄, Nobs)

LNP = Ī
(
LNP,Net + LNP,Chk

)
, LNP,Net =

∑
i L

NP,i

LNP,Chk =B

⌈
Nobs

NNP
T

⌉
·
(
LO(N

NP
T

)

+ 3LChk
(
d̄, NNP

T , PNP
Chk, P

NP
ChkP)

)

DNP
all = (2B + 2ĪBNobs + 2ĪB +B) · (128/8), (4)

where Nobs, Ī denote the number of obstacles and an em-
pirical average of the iterations. NNP,{Net,Chk}

op /LNP,{Net,Chk}

denotes the OPs/latency for the PNetLite inference and collision
checking. NNP,Net

op /LNP,Net is computed by summing up the
OPs/latency in each layer (Fig. 8, bottom left)13. Similar to
Encoder, only an unroll factor PNP

Net for the largest FC layer is
considered, and ones for the other layers are adjusted accord-
ingly. NChk

op (d, n)/LChk(d, n, P0, P1) denotes the OPs/latency
to check the collision between n obstacles and an edge of length
d, with an interval of δ (Section V-B1). They are modeled as
(d/δ) · 2Dn and (d/(δ · P1))(L0 + L1 · 	n/P0
), where d/δ
is the number of midpoints on the edge, P0, P1 the number
of Check submodules, L0 the latency to compute the next
midpoint, and L1 the latency to check each midpoint. Since d
depends on the input, its empirical average d̄ is used instead
for performance modeling. LO(n) = 2Dn+ LReq is a latency

11For instance, FC submodule in Encoder and NeuralPlanner consumes
2P and 2BP DSPs, respectively, given an unroll factor P .

12For instance, the module FC(m,n) involves n(2m+ 1) OPs and
consumes around mn/P cycles, given that the loop over the output dimension
n is unrolled with a factor of P .

13For instance, FC(m,n) involves 2Bn(2m+ 1) OPs and takes around
mn/P cycles, where P is an unroll factor on the dimension n (the loop on the
batch dimension is always fully unrolled). In the 3D case, weight parameters
for the second FC layer are stored on DRAM; it takes n(m/4) cycles to read
weight parameters from DDR (four values per cycle) and compute outputs.
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for transferring n obstacles from DRAM. DNP
all consists of the

terms for start-goal positions, obstacles, paths, and planning
results (Fig. 9); in the 3D case, it includes the parameter size
for the second FC layer as well (≈ 3.15MB). Similar to Eq. 4,
CollisionChecker is modeled as follows:

NCC
op =NChk

op (τ̄ , δ,Nobs)

DCC
all =

(
2Nobs +

⌈
Nobs

NCC
T

⌉
T̄

)
· (128/8)

LCC =

⌈
Nobs

NCC
T

⌉
·
(
LO

(
NCC

T

)

+LChk
(
τ̄ , NCC

T , PCC
Chk, P

CC
ChkP

))
, (5)

where T̄ and τ̄ denote the empirical average length and distance
of the input path τ (Section V-C).

For Encoder, NE
op ≈N · 100Kops and AIE reaches

6.25Kops/bytes (6.23Kops/bytes) in the 2D (3D) case,
independent of N . From Eq. 3, the bandwidth during
transferring points is estimated to be 1.26GB/s (3D: 1.06GB/s).
The AI of NeuralPlanner increases with a batch size; NNP

op

and AINP are 1.12–8.95Mops and 1.18–5.25Kops/bytes (3D:
13.53–108.26Mops and 4.30–34.36ops/bytes) for B = [1, 8].
The higher AI in the 2D case is because all network parameters
are stored on-chip. In CollisionChecker, NCC

op and AICC

are 85.74Kops and 178.23ops/bytes (3D: 179.88Kops and
373.16ops/bytes). The effective bandwidth is around 1.04–
1.26GB/s (3D: 0.79–0.90GB/s) when transferring obstacle
and path information. While it is lower than the theoretical
maximum BW, it can be easily improved by using more
available AXI ports. For these three modules, we observe
that the first term in Eq. 1 is up to 545x, 1302x, and 179x
(3D: 1078x, 5.26x, and 373x) lower than the second term due
to the small amount of data transfer, meaning that they are
compute-bound. The performance is limited by the amount
of onboard computing resources rather than the memory
bandwidth. For this reason, we focus on minimizing the
weighted latency Ltotal under FPGA resource constraints by
conducting an exhaustive search:

Ltotal = N̄E
callL

E + N̄NP
callL

NP + N̄CC
callL

CC, (6)

where N̄
{E,NP,CC}
call is an average number of calls to the re-

spective module during planning. These empirical values are
obtained by running P3Net with P3Net2D/3D dataset (Section
VI-B). For instance, we use the design point (NE

T , P
E, PNP

Net,
PNP
Chk, PNP

ChkP, PCC
Chk, PCC

ChkP) = (128, 64, 16, 4, 8, 8, 8)
(3D: (2048, 64, 8, 8, 8, 2, 8)) for ZCU104 (B = 4). More details
are provided in the supplementary material.

E. Implementation Details

We used Xilinx Vitis HLS 2022.1 to develop the IP core,
and Vivado 2022.1 for synthesis and place-and-route. Two vari-
ants of P3NetCore were created for 2D and 3D planning. The
board-level implementation is depicted in the supplementary
material. Xilinx ZCU104 is used as a target device, and the
clock frequency is set to 200MHz. To preserve the precision
of PNetLite outputs (i.e., waypoint coordinates), Encoder and

NeuralPlanner employ 32-bit (16.16) fixed-point format for
layer outputs, and 24-bit (8.16) fixed-point for model param-
eters. Besides, collision checking is performed using 32-bit
floating-point, taking into account that the interval δ (Sec-
tion V-B1) is set sufficiently small to prevent false negatives.
Following the previous work [34], we create another IP core
for P3Net, P3NetCore-NN, that only implements the {E, P}
NetLite inference.

VI. EVALUATION

This section evaluates the proposed P3Net to demonstrate the
improvements on success rate, speed, quality of solutions, and
power efficiency. For convenience, P3Net accelerated by the
proposed IP core is referred to as P3Net-FPGA.

A. Experimental Setup

MPNet and the famous sampling-based methods, RRT* [7],
Informed-RRT* (IRRT*) [8], BIT* [9], and ABIT* [12] were
used as a baseline. All methods including P3Net were imple-
mented in Python using NumPy and PyTorch. The implemen-
tation of RRT*, Informed-RRT*, and BIT* is based on the
open-source code [39]14. We implemented an ABIT* planner
following the algorithm in the paper [12]. For MPNet, we
used the code from the authors [10] as a reference; MPNet
path planner and the other necessary codes for training and
testing were rewritten from scratch. The experiments were con-
ducted on a workstation (with Intel Xeon W-2235 (3.8GHz)
and Nvidia GeForce RTX 3090), Nvidia Jetson {Nano, Xavier
NX}, and Xilinx ZCU104 (see the supplementary material).
Following the MPNet paper [10], we trained models in an end-
to-end supervised manner, which is detailed in the supplemen-
tary material as well. The maximum number of iterations I
in NeuralPlanner(Ex) (Algs. 1, 3) is set to 5015. RRT* and
Informed-RRT* were configured with a maximum step size of
1.0 and a goal bias of 0.05. BIT* and ABIT* were executed
with a batch size of 100 and Euclidean distance heuristic. The
collision checking interval δ is set to 0.01.

B. Path Planning Datasets

For evaluation, we used a publicly-available dataset for
2D/3D path planning provided by the MPNet authors [10],
referred to as MPNet2D/3D16. It is split into one training
and two testing sets (Seen, Unseen); the former contains 100
workspaces, each of which has a point cloud P representing
obstacles, and 4000 planning tasks with randomly generated
start-goal points and their respective ground-truth paths. Seen
set contains the same 100 workspaces as the training set, but

14For a fair performance comparison, we replaced a brute-force linear
search with an efficient K-D tree-based search using Nanoflann library (v1.4.3)
[40]. In BIT* planner, we used a priority queue to pick the next edge to
process, which avoids searching the entire edge queue, as mentioned in the
original paper [9].

15We find that the average is around 2. We thus set the maximum of I to
50 throughout the evaluation and consider the other algorithmic parameters,
e.g., IReplan, IRefine, etc.

16Originally called Simple2D and Complex3D in the MPNet paper.
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with each having 200 new planning tasks; Unseen set contains
ten new workspaces not observed during training, each of which
has 2000 planning tasks.

Each workspace is a square (or cube) of size 40 containing
randomly-placed seven square obstacles of size 5 (or ten cuboid
obstacles with a side length of 5 and 10). Note that, trivial
tasks in the testing sets are excluded, where start-goal pairs can
be connected by straight lines and obstacle avoidance is not
required. We only used the first 20/200 tasks for each workspace
in Seen/Unseen dataset. As a result, the total number of plan-
ning tasks is 945/892 and 740/756 in MPNet2D (Seen/Unseen)
and MPNet3D (Seen/Unseen) datasets, respectively. Both MP-
Net and P3Net models were trained with MPNet2D/3D train-
ing sets.

In addition, we generated P3Net2D/3D dataset for testing
(Figs. 1–2), which contains 100 workspaces, with 20 planning
tasks for each. Compared to MPNet2D/3D, the number of ob-
stacles is doubled to simulate more challenging tasks.

C. Planning Success Rate

First, the tradeoff between planning success rate and the av-
erage computation time per task is evaluated on the workstation
with GPU acceleration.

1) Comparison of Encoding and Planning Networks: MP-
Net is executed under three combinations of models, i.e., {E,
P}Net (original), ENetLite-PNet (ELite), and {E, P}NetLite
(EPLite), with a varying number of replan iterations IReplan =
{10, 20, 50, 100}. The refinement step is not performed in
P3Net (IRefine = 0). The results on MPNet and P3Net test
datasets are shown in Fig. 10 (left).

In the 2D case (1st/3rd row), replacing {E, P}Net with
{E, P}NetLite yields substantially higher success rate and
even faster computation time, while reducing the parame-
ters by 32.32x (Section IV-B2). For IReplan = 10, MPNet-
ELite is 15.58% (69.17/84.75%) and 23.75% (45.15/68.90%)
more successful than MPNet-original on MPNet-Unseen and
P3Net datasets. PNetLite further improves the success rate
by 3.48% (84.75/88.23%) and 4.45% (68.90/73.35%). MPNet-
EPLite is 1.40x (0.067/0.048s) and 1.12x (0.131/0.117s) faster
than MPNet-original, indicating that the proposed models help
MPNet algorithm to quickly find a solution in a less number
of replan attempts. This empirically validates the discussion in
Section IV-B1 that the shallower PNet is sufficient since the
PointNet encoder provides permutation-invariant features. Con-
sidering the success rate improvements (19.06/28.20%) in these
two datasets, the proposed models offer greater performance
advantages in more difficult problem settings.

In the 3D case (2nd/4th row, left), MPNet-EPLite gives
the similar success rate as MPNet-original, while achiev-
ing 5.43x parameter reduction (Section IV-B2). ENetLite im-
proves the success rate by 1.46% (89.82/91.27%) and 3.70%
(79.35/83.05%), whereas PNetLite slightly lowers it by 0.40%
(91.27/90.87%) and 3.95% (83.05/79.10%) on MPNet-Unseen
and P3Net datasets. This performance loss is compensated by
the P3Net planner. Comparing the results from MPNet- Seen
/ Unseen datasets (dashed/solid lines), the difference in the

Fig. 10. Success rate and computation time tradeoffs (measured on the
workstation with GPU acceleration). Left: comparison of MPNet and P3Net.
Right: comparison of MPNet, P3Net, and sampling-based methods. Upper left
is better.

success rate is at most 3.46%, which confirms that our proposed
models generalize to workspaces that are not observed during
training. We compare the P3Net success rate under varying
feature dimensions F in ENetLite. The result is presented in
the supplementary material.

2) Comparison of P3Net With MPNet: Fig. 10 (left) high-
lights the advantage of P3Net over MPNet: P3Net success
rate gradually improves with increasing IReplan and reaches
nearly 100%.17 While MPNet shows a similar trend, P3Net
consistently outperforms MPNet18. In the 2D case (1st/3rd
row), compared to MPNet-EPLite, P3Net (B = 8) is 2.80%
(96.30/99.10%) and 9.85% (87.60/97.45%) more successful
and is 2.20x (0.101/0.046s) and 1.55x (0.326/0.210s) faster
on MPNet-Unseen and P3Net datasets (IReplan = 100). While
MPNet shows a noticeable drop in success rate (96.30/87.69%)
when tested on P3Net dataset, P3Net only shows a 1.65%
drop (99.10/97.45%) and maintains the high success rate in a
more challenging dataset. In the 3D case (2nd/4th row), it is
2.91% (96.69/99.60%) and 8.00% (91.75/99.75%) better, and
runs 2.70x (0.081/0.030s) and 1.02x (0.277/0.272s) faster.

17In NeuralPlanner(Ex), path waypoints are sampled from a learned
distribution; since it is defined on a high-dimensional latent feature space
φ(P), the theoretical analysis of P3Net (e.g., how to determine the optimal
value of IReplan) is challenging and thus is out of scope of this work. While
it is not guaranteed that the success rate reaches one as IReplan →∞, Fig.
10 shows a promising result. One simple approach to guarantee this property
is to employ a classical planner (e.g., RRT*) when NeuralPlanner fails to
produce a detour in the replanning process (Alg. 1, line 29).

18Note that the success rate of P3Net (B = 1) surpasses that of MPNet-
EPLite, since the former performs more collision checks to connect a
pair of forward-backward paths in each iteration (Alg. 1, line 21 and
Alg. 3, lines 9-17).
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Notably, increasing the batch size B improves both suc-
cess rate and speed, which clearly indicates the effectiveness
of the batch planning strategy (Section IV-A1). On P3Net2D
dataset (3rd row), P3Net with B, IReplan = 8, 10 is 5.25% more
successful and 1.88x faster than with B = 1 (79.40/84.65%,
0.128/0.068s). The number of initial planning attempts IInit
affects the performance as well; increasing it from 1 to 5 yields
a 2.85% better success rate on P3Net2D dataset (IReplan = 10).
We confirm that P3Net-FPGA and P3Net achieve similar suc-
cess rates. More evaluations are presented in the supplemen-
tary material.

3) Comparison With Sampling-Based Methods: Fig. 10
(right) plots the results from sampling-based methods.
The number of iterations is set to {200, 300, 400, 500} for
RRT*/IRRT*, and {50, 100, 200} for BIT*/ABIT*. Sampling-
based methods exhibit a higher success rate with increasing
iterations; they are more likely to find a solution as they place
more random nodes inside a workspace and build a denser
tree. While MPNet-GPU is as fast as the sampling-based
methods and {E, P}NetLite leads to higher success rates,
it is still less successful than ABIT*. Compared to that,
P3Net achieves comparable or even better success rates than
ABIT* by planning multiple paths simultaneously (i.e., setting
B = 8), and outperforms the other methods. On P3Net2D
dataset (Fig. 10 (right), 3rd row), MPNet-original and MPNet-
EPLite (IReplan = 100) plan in 0.687/0.326s on average
and are 65.45/87.60% successful. P3Net (B, IReplan = 8, 100)
improves the result to 0.214s and 97.60%, making it 1.84/5.69x
faster and 0.95/2.20% better than ABIT*/BIT* (200 iterations).
This demonstrates that both the batch planning strategy
(Section IV-A1) and model architecture improvement (Section
IV-B) contribute to better performance and hence are equally
important.

D. Computation Time

Fig. 11 visualizes the distribution of computation time mea-
sured on various platforms. The sampling-based methods were
run on the CPU. On Nvidia Jetson, MPNet and P3Net were
executed with GPU. WS {CPU, GPU} refers to the workstation
with and without GPU acceleration. On the basis of results from
Section VI-C, hyperparameters of the planners were selected to
achieve similar success rates.

P3Net-FPGA is faster than the other planners on ZCU104
and Jetson in most cases, and its median computation time is
below 0.1s. In the 2D case (Fig. 11, left), it even outperforms
sampling-based methods on the WS CPU, and is comparable
to MPNet/P3Net on the WS GPU. The performance advantage
of P3Net-FPGA comes from that the entire planning algorithm
is implemented on the dedicated IP core, which (i) effectively
speeds up both {E, P}Net inference and collision checking and
(ii) reduces the data transfer overhead. In the 3D case (Fig. 11,
right), while MPNet on the WS-GPU looks faster than P3Net-
FPGA, it only solves easy planning tasks that require less replan
trials, and gives more than 10% lower success rate. We observe
a significant reduction of the variance in computation time.
On the ZCU104 and P3Net dataset, MPNet solves a task in

Fig. 11. Computation time distribution. Hyperparameters are as
follows. P3Net2D: (B, IInit, IReplan, IRefine) = (4, 5, 50, 5), P3Net3D:
(B, IInit, IReplan, IRefine) = (4, 5, 20, 5), MPNet2D/3D: {E, P}NetLite,
IReplan = 100, ABIT*/BIT* (2D): 100 (200) iterations for MPNet (P3Net)
dataset, ABIT*/BIT* (3D): 50 iterations, IRRT*/RRT* (2D/3D): 500
iterations. The red dashed line is a median time of P3Net-FPGA.

Fig. 12. Average speedup factors. Hyperparameter settings are the same as
in Fig. 11.

7.623±19.987s on average, which is improved to 4.651±8.909s
and 0.093±0.092s in P3Net-{CPU, FPGA}.

1) Path Planning Speedup: Fig. 12 shows the performance
gain of P3Net-FPGA over the other planners. We compared the
sum of execution times for successful planning tasks. In the 2D
case, P3Net-FPGA is the fastest among the methods considered.



SUGIURA AND MATSUTANI: INTEGRATED FPGA ACCELERATOR FOR DEEP LEARNING-BASED 2D/3D PATH PLANNING 1453

Fig. 13. Computation time breakdown. Hyperparameter settings are the
same as in Fig. 11.

On P3Net dataset (bottom left), it achieves 30.52–186.36x,
13.33–143.62x, 7.68–59.01x, and 2.85–13.40x speedups over
the ARM Cortex CPU, Jetson Nano, Jetson Xavier NX, and a
workstation, respectively. Offloading the entire planning algo-
rithm to the dedicated IP core eliminates unnecessary data trans-
fers and brings more performance benefits than using highend
CPUs. P3Net-FPGA completes more planning tasks in a shorter
period of time than MPNet (e.g., 8.05% higher success rate and
3.60x speedup than MPNet on WS GPU), despite that it also
performs an extra refinement phase (IRefine = 5). Additionally,
while P3Net-FPGA shows a 1.49x speedup over MPNet (WS
GPU) in terms of median time (Fig. 11, bottom left), the to-
tal execution time is reduced by 3.60x (Fig. 12, bottom left).
This implies P3Net solves challenging tasks much faster than
MPNet, thanks to the improved algorithm and model architec-
ture. P3Net offers performance advantages in a more challeng-
ing dataset, considering that it runs 17.74x/36.09x faster than
MPNet-CPU on ZCU104 for MPNet/P3Net dataset. P3Net-
FPGA mostly outperforms the other planners in the 3D case
as well. On P3Net3D dataset (bottom right), it provides 15.69–
93.26x, 10.43–45.27x, 5.30–23.10x, and 1.23–5.69x speedups
compared to the ARM Cortex CPU, Jetson Nano, Jetson Xavier
NX, and a workstation, respectively.

2) Computation Time Breakdown: The computation time
breakdown of MPNet/P3Net is summarized in Fig. 13. FPGA-
NN refers to P3Net with P3NetCore-NN (i.e., only the inference
is accelerated). P3NetCore effectively reduces the execution
time of all three phases. On P3Net2D dataset (bottom left),
the replanning phase took 3.041s and accounted for 89.24%
of the entire execution time in MPNet, which is almost halved
to 1.557s (51.37%) in P3Net (ARM), and is brought down to
0.052s (53.53%) in P3Net-FPGA. The saved time can be used to
perform the additional refinement step and improve the quality
of solutions. As seen from the results of WS {CPU, GPU}, GPU
acceleration of the DNN inference only slightly improves the
overall performance; since MPNet/P3Net alternates between
collision checks on CPU and PNet inference on GPU, the
frequent data transfer undermines the performance gain. Simi-
larly, P3Net (FPGA-NN) is only 1.21/1.53x faster than P3Net
(ARM) on P3Net2D/3D dataset, as collision checking runs
slower on the host CPU. Only offloading the collision checking

TABLE I
LATENCY FOR INFERENCE (TOP) AND COLLISION CHECKING

(BOTTOM) ON ZCU104

2D 3D

Model N CPU (ms) IP (ms) N CPU (ms) IP (ms)
ENet 1400 43.25 – 2000 146.40 –

ENetLite
1400 163.70 3.40 2000 229.85 4.67
2048 242.05 4.87 4096 478.06 9.31
4096 477.47 9.52 8192 950.91 18.40

Model B CPU (ms) IP (ms) B CPU (ms) IP (ms)

PNet
1 102.77 – 1 103.22 –
2 107.79 – 2 108.31 –
4 130.41 – 4 130.68 –

PNetLite
1 3.56 0.319 1 44.48 1.74
2 4.02 0.321 2 46.85 1.78
4 4.72 0.392 4 56.63 1.82

d Nobs CPU (ms) IP (ms) Nobs CPU (ms) IP (ms)

5.0

16 3.02 0.261 16 3.29 0.262
32 5.23 0.267 32 5.75 0.287
64 9.65 0.262 64 10.68 0.318

128 18.49 0.285 128 20.59 0.358

20.0

16 10.12 0.264 16 11.22 0.311
32 18.97 0.265 32 21.18 0.336
64 36.91 0.274 64 41.09 0.402

128 72.86 0.275 128 80.78 0.474

part onto FPGA would lead to 7.02/19.47x longer execution
time than P3Net-FPGA, which highlights the advantage of our
design choices.

3) Speedup of Inference and Collision Checking: Table I
(top) lists the inference time of {E, P}Net and {E, P}NetLite,
measured on the ZCU104 with and without the P3NetCore.
The data is the average of 50 runs. As mentioned in Section
V-A, ENetLite basically involves N times of forward passes
to compute pointwise features, which increases the inference
time by 3.78/1.57x compared to ENet2D/3D (N = 1400, 2000).
P3NetCore accelerates the inference by 48.15/49.22x and as
a result achieves 12.72/31.35x faster feature extraction than
ENet. P3NetCore consistently attains more than 45x speedup,
owing to the combination of inter-layer pipelining (Fig. 7 (top))
and parallelization within each layer. The inference time in-
creases proportionally to N , which corresponds to the O(N)
complexity of ENetLite, and P3NetCore yields a better perfor-
mance gain with a larger N (48.15/50.15x for N = 1400, 4096,
2D). PNetLite has a 26.81/2.32x shorter inference time than
PNet2D/3D, mainly due to the 32.58/2.35x parameter reduction
(Section IV-B2). It does not grow linearly with the batch size
B, since the computation is always parallelized along the batch
dimension. The batch planning strategy in P3Net thus effec-
tively improves success rates without incurring a significant
additional overhead. With P3NetCore, PNetLite is sped up by
11.16–12.52/25.56–31.12x, resulting in an overall speedup of
322.16–335.79/59.32–71.80x over PNet.

Table I (bottom) presents the computation time of colli-
sion checking on the ARM Cortex CPU and P3NetCore. We
conducted experiments with four random workspaces of size
40 containing different numbers of obstacles Nobs, and 50
random start-goal pairs with a fixed distance of d= 5.0, 20.0
for each workspace. P3NetCore gives a larger speedup with
the increased problem complexity (larger d or Nobs). It runs
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Fig. 14. Distribution of the relative path cost.

2D/3D collision checking 11.57–64.88/12.56–57.51x faster for
d= 5.0, and 38.33–264.95/36.08–170.42x for d= 20.0. The
parallelization with an array of submodules (Section V-B2)
contributes to the two orders of magnitude faster execution.
The latency does not increase linearly with Nobs, as P3NetCore
terminates the checks as soon as any of midpoints between start-
goal points is found to be in collision, and such early-exit is
more likely to occur in a workspace with more obstacles.

E. Path Cost

This subsection evaluates the quality of solutions returned
from P3Net in comparison with the other planners. The relative
path cost is used as a quality measure; it is computed by dividing
a length of the output path by that of the ground-truth available
in the dataset19. Fig. 14 shows the results on MPNet/P3Net
datasets (IRefine = 5).

On P3Net2D dataset, P3Net with/without refinement
achieves the median cost of 1.001/1.026, which is comparable
to the sampling-based methods (1.038, 1.012, 1.174, and
1.210 in ABIT*, BIT*, IRRT*, and RRT*). The median is
further improved by increasing the number of refine steps
(1.001, 0.996, 0.989 for IRefine = 5, 10, 20). In the replanning
phase (Alg. 3, lines 23–32), the current path τ is replaced by
a new one τnew when it has a lower cost, meaning that the
cost monotonically decreases and the path at least converges
to a sub-optimal solution as IRefine →∞. Similar to [16],
the uniform distribution may also be used in conjunction
with PNet in the sampling process (Alg. 3, line 8) to avoid
sub-optimal solutions. The result confirms that the median
cost is close to one without such a heuristic, and thus the
learned distribution of PNetLite allows to sample a waypoint
from a promising region and build a close-to-optimal path. In
the supplementary material, the evolution of the path cost is
presented in comparison of IRRT*. Figs. 1–2 show examples
of the output paths obtained from MPNet and P3Net-FPGA
on P3Net dataset.

19Since ground-truth paths were obtained by running sampling-based plan-
ners with a large number of iterations, the relative cost may become less
than one when a planner finds a better path with a smaller cost than the
ground-truth.

TABLE II
FPGA RESOURCE CONSUMPTION (%) OF

P3NETCORE ON ZCU104

B BRAM URAM DSP FF LUT

2D

1 75.48 – 34.26 13.64 50.51
2 97.92 – 49.31 14.20 46.85

4
97.92 – 49.77 13.71 44.61

(95.51) – (46.64) – –
8 100.00 – 50.75 13.56 45.49

3D

1 60.10 89.58 42.36 15.04 46.02
2 51.12 89.58 33.91 15.37 48.98

4
69.71 89.58 46.88 15.87 52.93

(62.18) (83.33) (42.13) – –
8 99.20 89.58 65.45 16.29 48.91

F. FPGA Resource Consumption

Table II summarizes the FPGA resource consumption of
P3NetCore for various batch sizes. The design parameters are
obtained by the design space exploration as described in Section
V-D. The BRAM usage reaches nearly 100%, which is mainly
due to the on-chip buffers for model parameters and layer
outputs. The exploration allows to automatically find a design
point that fully utilize the FPGA resource and maximize the
performance, without repeating the time-consuming synthesis
and place-and-route.

In the 2D case, {E, P}NetLite fits within the BRAM thanks
to the parameter reduction and memory-efficient sequential fea-
ture extraction (Section V-A). Plus, P3NetCore consumes less
than half of the onboard DSP, FF, and LUT resources, while it
consists of a collision checker and two DNNs. The 48.4% of
BRAM is consumed for parameters, and 42.3% for layer out-
puts. The other data (point clouds, obstacles, and path informa-
tion) are stored on DRAM and transferred on-chip as necessary;
it consumes only 2.7% of BRAM, which is independent of N
or Nobs. Obstacles are simply represented as bounding boxes,
and point cloud is a memory-efficient format compared to dense
voxels, as it does not contain the information about obstacle-
free regions and is free from the curse of dimensionality. In
the 3D case, the 56.4% of URAM is used to store PNetLite
parameters (except the second FC layer). The estimates are
presented in Table II (with parentheses) for B = 4; our re-
source model estimates the BRAM and DSP usages within
around 7% error.

G. Power Efficiency

Finally, we compare the power consumption of P3Net-
FPGA with that of P3Net and ABIT*. The details are pro-
vided in the supplementary material. Table III presents the
results. In the 2D (3D) case, P3Net-FPGA consumes 124.51x,
147.80x, and 448.47x (39.64x, 45.60x, and 145.48x) less power
than ABIT*, P3Net-CPU, and P3Net-GPU on the worksta-
tion. It achieves 4.40–5.38/4.58–6.10x (1.36–1.77/1.55–2.07x)
power savings over ABIT*/P3Net on Nvidia Jetson. While
P3Net-FPGA consumes slightly more power than P3Net in
the 3D case, this indicates that the power consumption of the
P3NetCore itself is at most 0.318W (0.809− 0.491). Combined
with the results from Fig. 12 (bottom), P3Net-FPGA offers
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TABLE III
COMPARISON OF THE POWER CONSUMPTION (W)

2D 3D

Machine
ABIT* P3Net ABIT* P3Net

CPU CPU +GPU +IP CPU CPU +GPU +IP
ZCU104 0.480 0.461 – 0.255 0.480 0.491 – 0.809
Nano 1.373 – 1.556 – 1.434 – 1.678 –
Xavier 1.123 – 1.168 – 1.097 – 1.250 –
WS 31.75 37.69 114.36* – 32.07 36.89 117.69* –

* 114.36W: 29.72 + 84.64 (CPU/GPU); 117.69W: 32.51 + 85.17 (CPU/GPU).

79.40–208.43/35.18–81.34x (7.19–18.49/13.27–31.88x) power
efficiency than ABIT*/P3Net on ARM Cortex CPU and
Nvidia Jetson in the 2D (3D) case. The power efficiency
reaches 514.23x, 434.54x, and 1278.14x (48.76x, 146.83x, and
455.34x) when compared with ABIT*, P3Net-CPU, and P3Net-
GPU on the workstation.

VII. CONCLUSION

In this paper, we have presented a new learning-based path
planning method, P3Net. P3Net aims to address the limitations
of the recently-proposed MPNet by introducing two algorithmic
improvements: it (1) plans multiple paths in parallel for com-
putational efficiency and higher success rate, and (2) iteratively
refines the solution. In addition, P3Net (3) employs hardware-
amenable lightweight DNNs with 32.32/5.43x less parameters
to extract robust features and sample waypoints from a promis-
ing region. We designed P3NetCore, a custom IP core incor-
porating neural path planning and collision checking, to realize
a planner on a resource-limited edge device that finds a path
in ∼0.1s while consuming ∼1W. P3NetCore was implemented
on the Xilinx ZCU104 board and integrated into the P3Net
path planner.

Evaluation results successfully demonstrated that P3Net
achieves a significantly better tradeoff between computational
cost and success rate than MPNet and the state-of-the-art
sampling-based methods. In the 2D (3D) case, P3Net-FPGA
obtained 30.52–186.36x and 7.68–143.62x (15.69–93.26x and
5.30–45.27x) average speedups over ARM Cortex CPU and
Nvidia Jetson, and its performance was even comparable to
the workstation. P3Net-FPGA was up to 514.23x and 1278.14x
(48.76x and 455.34x) more power efficient than P3Net and
ABIT* on the Nvidia Jetson and workstation, showcasing that
FPGA SoC is a promising solution for efficient path plan-
ning. P3Net converged fast to close-to-optimal solutions in
most cases.

P3Net is currently evaluated on the simulated static 2D/3D
environments, and the robot is modeled as a point-mass. As a
future work, we plan to extend P3Net to more complex settings,
e.g., multi-robot problems, dynamic environments, and higher
state dimensions. P3NetCore employs a standard fixed-point
format for DNN inference; while it already provides satis-
factory performance improvements, low-precision formats and
model compression techniques (e.g., pruning, low-rank factor-
ization) could be used to further improve the resource efficiency
and speed.
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