
IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 6, JUNE 2024 1531

Monotonicity of Multi-term Floating-Point Adders
Mantas Mikaitis

Abstract—In the literature on algorithms for computing multi-
term addition sn =

∑n
i=1 xi in floating-point arithmetic it is

often shown that a hardware unit that has single normalization
and rounding improves precision, area, latency, and power
consumption, compared with the use of standard add or fused
multiply–add units. However, non-monotonicity can appear when
computing sums with a subclass of multi-term addition units,
which is currently not explored in the literature. We prove
that computing multi-term floating-point addition with n≥ 4,
without normalization of intermediate quantities, can result in
non-monotonicity—increasing one of the addends xi decreases
the sum sn. Summation is required in dot product and ma-
trix multiplication operations, operations that are increasingly
appearing in the hardware of high-performance computers, and
knowing where monotonicity is preserved can be of interest to the
developers and users. Non-monotonicity of summation in existent
hardware devices that implement a specific class of multi-term
adders may have appeared unintentionally as a consequence
of design choices that reduce circuit area and other metrics.
To demonstrate our findings we simulate non-monotonic multi-
term adders in MATLAB using the CPFloat custom-precision
floating-point simulator.

Index Terms—Monotonicity, floating-point arithmetic, multi-
term addition, dot product, matrix multiply.

I. INTRODUCTION

A real function f is monotonically nondecreasing on an
interval [a, b] if f(x)≤ f(y) whenever a≤ x≤ y ≤ b. In

other words, when the argument of a monotonic function is in-
creasing, the value of the function does not decrease. Similarly
for a function that is monotonic nonincreasing: when the input
argument is increasing the value of the function is not increas-
ing. For the multivariate functions, a function is monotonic if
it is monotonic for all the input values. For example, f(x1, x2)
is monotonic nondecreasing if for any x1 ≤ x∗

1 and x2 ≤ x∗
2 we

have f(x1, x2)≤ f(x∗
1, x

∗
2).

Summation of a set of values is a multivariate function that
is monotonic nondecreasing (just monotonic thereafter). Given
a set of input values x1, x2, . . . , xn, summation is expressed
as

f(x1, x2, . . . , xn) =

n∑

i=1

xi. (1)

Manuscript received 3 April 2023; revised 4 December 2023; accepted
21 February 2024. Date of publication 29 February 2024; date of current
version 10 May 2024. This work was supported in part by the Engineering
and Physical Sciences Research Council (EPSRC) under Grant EP/P020720/1;
and in part by the Exascale Computing Project (17-SC-20-SC), a collaborative
effort of the U.S. Department of Energy Office of Science and the National
Nuclear Security Administration. Recommended for acceptance by N. Revol.

The author is with the School of Computing, University of Leeds, LS2 9JT
Leeds, U.K. (e-mail: M.Mikaitis@leeds.ac.uk).

Digital Object Identifier 10.1109/TC.2024.3371783

Algorithm 1: Given numbers S = {x1, . . . , xn}, com-
pute sn =

∑n
i=1 xi.

1 Repeat while S contains more than one element
2 From S , remove two numbers a and b
3 Put fl(a+ b) to S
4 The remaining element in S is sn

This function is monotonically nondecreasing by the def-
inition of the sum: take xn = a followed by xn = a+ ε,
with ε > 0. Then f(x1, x2, . . . , a) = (

∑n−1
i=1 xi) + a, whereas

f(x1, x2, . . . , a+ ε) = (
∑n−1

i=1 xi) + a + ε > (
∑n−1

i=1 xi) + a.
Because of the commutativity of the sum this is true for all the
input arguments.

Summation of values is at the core of scientific computing—
it is required, for example, for calculating vector–vector prod-
ucts, matrix–vector and matrix–matrix multiplications, as well
as in evaluating polynomials. Most computer software works
with floating-point numbers [1], rather than exact numbers, so
the addition operation is different from the exact addition and
the monotonicity of summation should be tested rather than
assumed to hold because it holds in exact arithmetic. This is
similar to the properties of associativity, commutativity and
distributivity—commutativity is generally preserved, but asso-
ciativity and distributivity in basic arithmetic operations, when
transitioning from exact to floating-point arithmetic, are not
[2, Sec. 2.6].

From here we use the notation of the standard model
[3, Sec. 2.2] of addition in precision-p arithmetic:

fl(x+ y) = (x+ y)(1 + δ), |δ| ≤ u

where u= 2−p, the unit roundoff, and fl(x) refers to normaliz-
ing (see Section II-A) and rounding x to form a floating-point
value defined above.

Most floating-point units on general-purpose hardware in-
clude 2-term adders that compute the sum of floating-point
numbers z = fl(a+ b) which is required by the IEEE 754 stan-
dard [1, Sec. 5.4.1]. This operation includes computing a+ b
as though in infinite precision, normalizing the resultant signif-
icand if required and rounding it to obtain z [2, Sec. 7.3]. At
software level, this operation is called repeatedly to compute
sums of arbitrary length (Equation 1). A high-level algorithm
[3, Sec. 4.2] is given as Algorithm 1. On line 3 the operation
fl(a+ b) includes rounding and normalization, which means
that, when implemented this way, overall the n-term addition
performs n− 1 such roundings and normalizations. It is safe to
say that most software is implemented this way on the hardware

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information,
see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-8706-1436
mailto:M.Mikaitis@leeds.ac.uk
https://creativecommons.org/licenses/by/4.0/

1532 IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 6, JUNE 2024

Fig. 1. Various methods for implementing 4-term addition in hardware. The left-most method, which is present in virtually all modern hardware, is to
iterate over an IEEE 754 floating-point addition multiple times to sum a vector of numbers x; with this method, every iteration requires a new addition
instruction to be fetched and executed. The second and third approaches demonstrate two ways to utilize multiple IEEE 754 floating-point adders—the first
one simply chains four adders while the second one creates an adder tree to reduce the latency. In these three methods, the order of addition can be changed
by rearranging the inputs. The remaining method is a black box which contains a specialized hardware design for performing the summation, not necessarily
using the operations outlined in IEEE 754 and usually enforcing a specific order of summation. The first three approaches correspond to Class III adders and
the last one encapsulates Classes I, II, and IV (Section I-B).

Algorithm 2: Given numbers S = {x1, . . . , xn},
with exponents {e1, . . . , en} and significands
{1.m1, . . . , 1.mn} compute sn =

∑n
i=1 xi.

1 Determine emax =max(e1, . . . , en)
2 Align all 1.mi by shifting each emax − ei steps right
3 Perform addition of aligned significands
4 Perform normalization and rounding to form sn

that includes circuitry only for adding two numbers as per
IEEE 754.

Summation of three, four or longer vectors of floating-
point values can be classified under reduction operations which
are recommended but not required by the IEEE 754 standard
[1, Sec. 9.4]. The guideline provided by IEEE 754 for imple-
menting them is not significantly constrained.

Addition of more than three values can be achieved by an
accumulator which takes as one of the inputs its output from
the previous stage or by using multiple 2-term adders in series
or in parallel (Fig. 1). However, in hardware, a custom design
is often considered to gain in speed and circuit area compared
with the straightforward approach of using the standard 2-term
adders. Algorithm 2 shows the main steps taken by most of the
multi-term adders available in the literature (see Section II-A
for the details on floating point). The main point to note is
that normalization and rounding are performed once, at the
end, rather than after each intermediate addition operation, as
in Algorithm 1, which in literature on hardware appears to be
beneficial for saving hardware resources and even increasing
the accuracy. All of this applies to dot products and matrix
multiplies, by replacing fl(a+ b) with fl(fl(a× b) + c) or the
fused multiply–add (FMA) fl(a× b+ c).

As a side note, unnormalized floating-point arithmetic ap-
peared as early as 1958 in the work of Metropolis and Ashen-
hurst [4]; the performance improvement compared with the
normalized arithmetic was noted even then.

In this paper we identify four types of implementation for
the Algorithm 2 and demonstrate that one class of designs for

multi-term addition are non-monotonic, including various com-
mercial hardware designs available and widely present on the
machines in the TOP500.1 We also suggest that this issue can
be fixed by masking off the bottom bits when carries occur or
by using an adder from a different class, which can be added
into the future summation and dot product hardware designs as
an option.

We mentioned that non-monotonic summation in floating-
point arithmetic adds to the list of mathematical properties
that are not preserved when switching from exact arithmetic.
One other motivating point for studying this is reproducibil-
ity of numerical computations. Bit-wise reproducibility is not
impossible on single-core CPUs that implement the IEEE 754
standard correctly and assuming special features such as 80-bit
arithmetic are not enabled by compilers. If we run some code in
IEEE 754 software, using basic operations of a floating-point
unit (FPU), we get one behaviour, but if we run that code in
hardware that performs summation non-monotonically, we may
get unexpected results that may be hard to explain. We now
demonstrate this with an example.

A. An Example on Current Hardware

For the following we use NVIDIA A100 SXM 80GB GPU
because we have access to it, however we predict that most com-
mercial hardware in the market would not pass the following,
and similar, tests.

A100 GPUs are equipped with matrix multiply hardware that
can perform D =A×B + C, where A ∈ R

8×8 and B ∈ R
8×4

are binary16 matrices, and C,D ∈ R
8×4 are binary32 matrices

[5, p. 20]. We showed before that matrix multipliers in this
GPU have one extra bit in the alignment of binary32 signif-
icands [6]. We will focus on two resulting matrix elements,
which perform dot products d11 = a11b11 + a12b21 + · · ·+
a18b81 + c11 and d12 = a11b12 + a12b22 + · · ·+ a18b82 + c12
by most likely implementing a 9-term adder of products. We set
A,B = 1 (matrices of ones) and c11 = 33554430 and c12 =
33554432. Computing A×B + C with the GPU matrix mul-
tipliers returns a matrix that has d11 = 33554436 and d12 =

1https://top500.org/lists/top500/list/2023/11/

https://top500.org/lists/top500/list/2023/11/

MIKAITIS: MONOTONICITY OF MULTI-TERM FLOATING-POINT ADDERS 1533

33554432, demonstrating non-monotonic behaviour where an
increase in one of the 9 addends decreases the sum. Note that we
increased the addend by 2 and the sum was decreased by 4 since
the amount we decrease by comes from the other 8 addends not
contributing to the sum. Similar examples can be constructed
around any powers of two, and at the edges of the dynamic
range the quantities by which the sum changes by decreasing
one of the addends would be larger in absolute terms. In the
past we performed tests that indicated that NVIDIA V100 and
the T4 GPUs have similar behaviour, although the V100 differs
due to narrower internal accumulator in the multi-term addition
[6]. NVIDIA H100 and the AMD matrix multipliers are yet to
be tested.

B. Multiterm Floating-Point Addition in Literature

Hardware designs of multi-term adders (Algorithm 2), in-
cluding those that are part of dot product and matrix multiply
hardware, can be classified into four main categories. Some of
the ways to build multi-term adders are demonstrated in the
high-level diagrams of Fig. 1.

We will use a term fused. From the user’s perspective, in most
cases it means that only one rounding error is incurred in the
computation, except where stated otherwise.

1) Class I: Adders That Use Long Accumulators: One
approach is to retain all the bits in the summation of multiple
values and round it once at the end. This is advocated by Kulisch
[7, Sec. 8]. See the design-space exploration by Uguen and de
Dinechin [8] for a detailed analysis of the costs. An implemen-
tation by Koenig, Bachrach, and Asanović [9] used 4288 bits
internally for multiplying and accumulating binary64 values
exactly. These kind of multi-term adders are fused because
they contain only one rounding across the whole computation;
however, keeping all of the bits can be expensive in circuit area
and latency due to carry propagation.

While not directly a multi-term adder, the accumulator of
binary16 products by Brunie [10] uses an exact 80-bit fixed-
point internal format and therefore can be used to implement
fused dot products or matrix multiplies with a single rounding
error. Brunie [11] also proposed an architectural extension to
CPUs which adds basic linear algebra instructions that work on
matrices packed in general-purpose vector registers. The papers
suggest that whether the accumulation is exact or not depends
on the precision of input arguments and whether it is feasible
to build the hardware required to accumulate exactly.

Burgess, Goodyer, Hinds, and Lutz [12] propose High-
Precision Anchored (HPA) accumulators for accurate floating-
point summation and suggest extensions to ARM Scalable
Vector Extension (SVE) units to efficiently support them. The
HPA number format would be used for computation, while the
input and output data would still be in an IEEE 754 format,
such as the binary64, which requires conversion to and from the
HPA. The main concept is to convert a floating-point value into
the HPA format by placing different parts of the significand into
different registers, based on the significance of the bits when
taking into account the exponent. HPA numbers are therefore
stored in a wider format, across multiple registers. Similar
to fixed-point representation, scaling is applied to choose the

balance between the range and precision. HPA numbers can be
configured to calculate correctly rounded sums of floating-point
values, therefore we classify this software-hardware concept in
the Class I of multi-term adders.

2) Class II: Adders That Achieve Correct Rounding Without
the Use of Long Accumulators: Tenca [13] provides an opti-
mized algorithm for finding the largest exponent and choosing
the amounts to shift the significands by. The general algorithm
is not changed, however, with the main steps in Algorithm 2
still present. Tenca [13] actually proposes a fused design for
performing fl(a+ b+ c) with only one rounding error, which
complicates the problem in that bits that are shifted out in
the significand alignment step have to be tracked. This is not
what is implemented in the hardware; for example in the A100,
which we used for the demonstration above, n− 1 rounding
or truncation errors are incurred when aligning and adding
significands in limited precision.

Sohn and Swartzlander propose a series of fused operators,
such as a two-term dot product [14], a three-term adder [15], and
a four-term dot product [16]. A generalized n-term fused dot
product architecture is explored by Tao et al. [17]. The goal is
to implement fused operations, meaning that computation is not
performed through standard hardware multipliers and adders
joined together, but by making a new optimized unit without
the intermediate rounding and normalization steps. Since these
operators are fused, we do not expect non-monotonicity to
appear when computing with them.

Multi-term adders also appear in the hardware designs of
the fast Fourier transform (FFT) operation. Swartzlander and
Saleh [18] utilize a two-term adder for implementing a fused
two-term dot product while Kaivani and Ko [19] discuss an
implementation of FFT for which a five-term floating-point
adder was used. The authors mention not using intermediate
normalization and rounding blocks by implementing a custom-
design five-term adder, which in turn allowed to reduce the area
of the FFT design. This 5-term adder is fused, but it is not
specified what the accumulator’s size is and how the sticky bits
are computed to replicate the exact accumulation.

A generalized algorithm by Boldo, Gallois-Wong, and
Hillaire [20] computes a correctly rounded dot product of a
series of fixed-point numbers with varied precisions. Instead of
using a long accumulator that could cover all possible values,
the algorithm uses some number of extra bits and round-odd
rounding mode.

3) Class III: Adders That Replicate Software Behaviour:
Kim and Kim [21] propose a 4-term dot product unit without
the intermediate normalization of sums but with intermediate
rounding performed in correct places (by taking into account
where the most significant nonzero bit is) to assure bit repro-
ducible operation compared with an IEEE 754 software imple-
mentation. Even though the monotonicity is not addressed in
this work, the implementation should be monotonic as it mimics
a software implementation with the correctly rounded elemen-
tary operations. The application space is 3D graphics—for this
a 4-term dot product in single precision is particularly useful
and this is what the authors explored. It was noted that “the
exact bit-level matching between hardware units and software

1534 IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 6, JUNE 2024

models is more important in 3D graphics than the rounding
errors to the real value.” [21, p. 892] as the motivation for
performing rounding in the intermediate calculations.

4) Class IV: Adders That Use Limited Precision Accumula-
tor: In machine learning, Kaul et al. [22] discuss a generalized
n-term dot product hardware design. It is proposed to split the
calculation of the maximum exponent and the differences to
all the other exponents into two phases, to reduce the critical
path of the design. For the purposes of our study, the main
feature of Kaul et al. [22] design is that it implements the
behaviour of Algorithm 2: it aligns the products relative to
the product with the maximum exponent, the alignment right-
shifts are in limited precision and the addition is performed
with extra bits for carries, with a single normalization step of
the sum.

Lopes and Constantinides [23] have designed a configurable
dot product unit which was tested on FPGAs for up to 150
terms and compared it with a basic implementation that uses
a tree of multipliers and adders. The main feature of the design
is that internally it uses a configurable precision fixed-point
register to accumulate the products in before normalizing and
rounding it to produce the floating-point answer. This design
follows the general structure of Algorithm 2 with precision
growth due to no intermediate normalization (as the authors
point out, precision growth allows to avoid overflows), and
therefore should be non-monotonic.

Hickmann et al. [24] present a 32× 32 matrix multiply ac-
celerator with 16-bit floating-point inputs and 32-bit outputs.
The internal accumulation of products is limited to 37 bits. One
interesting aspect of this work is that the term fused is used,
but since only the products are exact, not the accumulation of
them, this has a different meaning than the Class I/II designs
which perform everything as though the computation is exact
and rounded once. Another aspect worth noting is that this
design explicitly adds the products aibi of the 32× 32 dot
product operation before adding their sum to the accumulator
ci in order to reduce the error accumulation when the value in
the accumulator is growing in magnitude.

Bertaccini et al. [25] developed a three-term addition unit
for performing dot products or sums of floating-point values
of various formats. The internal accumulator is expanded twice,
after each addition, but it is not reported to be an exact accumu-
lator that would cover all right-shift distances in the alignment
of addends.

Lee et al. [26] implemented a four-core mixed-precision AI
chip which includes a three-term floating-point adder as part of
the FMMA (fused multiply–multiply–accumulate) instruction.
The multiplicands are 8-bit floating-point values and the accu-
mulator is 16-bit. The three-term addition is performed in 16-bit
precision followed by normalization and rounding.

5) Adders That Lie in Multiple Classes: Ledoux and Casas
[27] proposed a hardware generator of general matrix multiply–
accumulate (GEMM) accelerators. The generator is parame-
terized and provides a choice of numerical formats and the
option for setting the sizes of internal accumulators, includ-
ing making them long accumulators to accumulate products
exactly. Irrespective of the setup of the accumulator, rounding

and normalization from the internal hardware numerical format
to some chosen standard format is performed at the end, once
the whole dot product has been computed. The work does not
mention the use of multi-term adders and implements GEMM
accelerators through the accumulation of values by iterating
through the hardware. Nevertheless, in terms of resultant nu-
merical behaviour, this work potentially can generate hardware
of classes I and IV listed above.

C. Commercial Hardware

Table I lists hardware that is available and contains multi-
term floating-point addition, as part of dot product and matrix
operations.

Most of the companies do not provide information on low
level numerical hardware details which makes it hard to clas-
sify them and say what numerical features, such as round-
ing and monotonicity, are present. An attempt can be made
at deducing some of the features from the numerical results
that are obtained when computing on these devices, as demon-
strated with NVIDIA V100 GPUs by Hickann and Bradford
[34] and with V100, T4, and the A100 by Fasi et al. [6].
Fasi et al. [35] have subsequently demonstrated, through er-
ror analysis, that low level features such as rounding can be-
come significant when multiplying matrices with matrix arith-
metic hardware.

D. Our Contributions

In summary, the present manuscript’s contributions to com-
puter arithmetic and beyond are three-fold:

1) We identify conditions in which floating-point operations
that involve multi-term addition can be non-monotonic—
this allows to explain surprising numerical results of
some of the commercial hardware and construct tests that
can be used to look for non-monotonicity of summation
within the vector and matrix operations in hardware de-
vices. We show that Class IV operations are not mono-
tonic, but Class I-III are and provide proofs in each case.

2) We demonstrate various applications that may
be impacted.

3) We propose ways to modify architectures that con-
tain units for adding multiple floating-point numbers
in order for the computed approximations of sums to
be monotonic.

4) The paper acts as a survey of hardware designs that are
and are not monotonic, and fills an important gap in the
literature by addressing the monotonicity of multi-term
addition.

II. BACKGROUND

A. Floating-Point Representation and Arithmetic

We will be using the following IEEE-compliant floating-
point systems and properties. A binary floating-point number
x has the form (−1)s ×m× 2e−p+1, where s is the sign bit, p
is the precision, m ∈ [0, 2p − 1] is the integer significand, and

MIKAITIS: MONOTONICITY OF MULTI-TERM FLOATING-POINT ADDERS 1535

TABLE I
LIST OF DEVICES THAT CONTAIN VECTOR OR MATRIX ARITHMETIC HARDWARE, SUCH AS DOT PRODUCT AND MATRIX MULTIPLY

Year Device/Architecture Input Formats Output Formats Multiterm Adder Terms Throughput (Max) Predicted Class

2016 Google TPUv2 [28] bfloat16 binary32 - 46 Tflop/s Class III
2017 Google TPUv3 [28] bfloat16 binary32 - 123 Tflop/s Class III
2018 NVIDIA V100 binary16 binary32 5 125 Tflops/s Class IV
2018 Graphcore IPU1 binary16 binary32 - 125 Tflop/s -
2020 Google TPUv4i [28] bfloat16 binary32 4 138 Tflop/s Class IV
2020 Graphcore IPU2 binary16 binary32 - 250 Tflop/s -
2020 NVIDIA A100 [5] bfloat16,

binary16,
binary64,
TensorFloat-32

binary32/64 9 312 Tflop/s Class IV

2021 AMD MI250X [29] bfloat16,
binary16,
binary32,
binary64

- 5 383 Tflop/s -

2021 GroqChip [30] binary16 binary32 160 188 Tflops/s Class I or II
2022 NVIDIA H100 8 bit∗,

bfloat16,
binary16,
binary64,
TensorFloat-32

binary32, binary64 17† 1978.9 Tflop/s -

2022 Intel Ponte Vecchio [31] bfloat16,
binary16,
binary64,
TensorFloat-32

- - - -

2016-2022 Intel AMX [32] binary16 binary32 17 - Class III
2023 Tesla Dojo [33] CFP8‡, bfloat16 binary32 8 360 Tflops/s Class IV

Note: In the last column we make a prediction on the class of the multiterm addition based on the available information.
†This number is determined only from the H100 whitepaper as no other information is available, to the best of our knowledge, on what inputs tensor cores
take at hardware layer;
∗two 8-bit floating-point formats are available, one with a 4-bit exponent and a 3-bit significand, and one with a 5-bit exponent and a 2-bit significand;
‡configurable floating point 8-bit data type, with programmable bias.

e ∈ [emin, emax], with emin = 1− emax, is the integer expo-
nent. In order for x to have a unique representation, the number
system is normalized so that the most significant bit of m is set
to 1 if |x| ≥ 2emin . Therefore, all floating-point numbers with
m≥ 2p−1 are normalized. Numbers below the smallest nor-
malized number 2emin in absolute value are called subnormal
numbers, and are such that e= emin and 0<m< 2p−1. The
set of floating-point numbers is denoted by F.

The results of floating-point operations may not be normal-
ized and must be normalized by shifting the significand left or
right until it falls within [2p−1, 2p − 1] and adjusting the expo-
nent accordingly. Those numbers that cannot be normalized in
such a way, due to requiring exponents lower than the minimum
exponent value, form subnormal numbers.

The IEEE 754 standard for floating-point arithmetic pro-
vides a limited set of requirements for reduction operations
such as multi-term addition [1, Sec. 9.4] or vector and ma-
trix operations: a particular order of adding the partial sums
is not required, and the use of arbitrary precision accumu-
lator is allowed. The standard does not specify: 1) whether
this internal format should be normalized after each addition,
2) which rounding mode should be used, and 3) when the round-
ing should happen. IEEE 754-2019 [1] specifies six rounding
modes for various purposes. These requirements provide a lot
of freedom in implementation choices and can potentially in-
troduce a wide array of different numerical behaviours. We
identified four main classes of algorithms that are present in
literature and made their way into various devices (Section I-B).

B. Monotonicity of IEEE 754 Arithmetics

In this section we demonstrate a few results about the approx-
imation of a sum computed using the 2-term correctly rounded
addition operation [1].

1) Rounding: The default rounding mode of IEEE 754 arith-
metics is round-to-nearest ties-to-even (RN) and it can be shown
that it is monotonic. Take x, y ∈ R, x≤ y, and two neighbour-
ing floating-point values in some precision-p arithmetic over
F, a and b. Assume that x and y lie between a and b such that
a≤ x≤ y ≤ b. Normalization of the floating-point significand
[1] followed by rounding x ∈ R to F is denoted by fl(x) and in
this case x and y can be rounded to a or b.

The definition of round-to-nearest does not allow non-
monotonic behaviour: since a≤ x, y ≤ b and x≤ y, fl(x)≤
fl(y) because a= fl(y)< fl(x) = b contradicts the definition of
round-to-nearest [1].

Other IEEE 754 [1] rounding modes can also be shown to
preserve monotonicity: round-toward-zero (RZ), round-toward-
negative (RD) and round-toward-positive (RU) are all mono-
tonic because when they are used, fl(x) = fl(y) = a or fl(x) =
fl(y) = b.

2) Addition of Two Operands: Now we look at fadd(x, y) =
fl(x+ y) where as per IEEE 754, x+ y is computed as though
in infinite precision arithmetic and then rounded to the nearest
value in some F. Take a, b, and c > b, s1 = a+ b, and s2 = a+
c, then s1 < s2. Using the same approach as in Section II-B1
we can show that fl(s1)≤ fl(s2) and therefore that the addition

1536 IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 6, JUNE 2024

of two operands in IEEE 754 arithmetics is also a monotonic
function.

Theorem II.1: Addition of two operands, fl(x+ y) with
x, y ∈ R, computed using the addition operation as de-
fined in the IEEE 754 is monotonic with round-to-nearest,
round-towards-zero, round-toward-negative, and round-toward-
positive.

Proof: Since the addition in IEEE 754 arithmetics is first
performed as though in infinite precision, the computed quan-
tities will be fl(s1) and fl(s2). Since s1 < s2 the reasoning is
equivalent to that of Section II-B1 and fl(s1)≤ fl(s2).

3) Addition of Three or More Operands: Multi-term ad-
dition in IEEE 754 floating-point arithmetics is also mono-
tonic. Let x1, . . . , xn ∈ R. Consider fl(fl(x1 + x2) + x3). Take
x3 = a and set s1 = fl(x1 + x2) + a. Then take x3 = a+ ε,
with ε > ulp(a)/2, where ulp(a) = 2ea−p+1 is the size of
the gap between a and the following floating-point number,
and set s2 = fl(x1 + x2) + a+ ε. Since a+ ε > a we get that
s1 < s2 and we can show that fl(fl(x1 + x2) + x3) is mono-
tonic by showing that fl(s1)≤ fl(s2) is, using the reasoning in
Section II-B2.

This can be repeated for showing that fl(fl(· · · fl(x1 + x2) +
· · ·) + xn) is also monotonic, and when any of the addends is
increased, not necessarily the last one.

Theorem II.2: Summation
∑n

i xi, with xi ∈ R and
n≥ 3, computed using the floating-point addition operation
as defined in the IEEE 754 is monotonic with round-
to-nearest, round-towards-zero, round-toward-negative,
and round-toward-positive, in any ordering, such as
fl(fl(· · · fl(x1 + x2) + · · ·) + xn).

Proof: First, consider computing x1 + x2 + · · ·+ xn re-
cursively as fl(fl(· · · fl(x1 + x2) + · · ·) + xn). Then, consider
increasing the last addend xn. We can define the partial sum of
the first n− 1 addends as sp = fl(· · · fl(x1 + x2) · · ·) + xn−1).
Then consider two cases, s1 = fl(sp + xn) and s2 = fl(sp +
(xn + ε)). Then s1 ≤ s2 through the result in Section II-B1.

Secondly, we can check what can happen when any of the
addends xi for 1≤ i≤ n− 1 are increased before the sum is
computed.

Take j to be the index of an addend which we modify. Let

x′
i =

{
xi + ε, i= j,

xi, i �= j,

and define the partial sums as

si =

{
fl(x1), i= 1,

fl(si−1 + xi), 2≤ i≤ n,

and

s′i =

{
fl(x′

1), i= 1,

fl(s′i−1 + x′
i), 2≤ i≤ n.

We need to prove that s′n ≥ sn. If i < j, then s′i = si. Using
Theorem II.2 and the fact that x′

j ≥ xj we can conclude that

s′j = fl(s′j−1 + x′
j) = fl(sj−1 + x′

j)≥ fl(sj−1 + xj) = sj .

For j < i≤ n, the result follows by induction:

s′i = fl(s′i−1 + x′
i) = fl(s′i−1 + xi)≥ fl(si−1 + xi) = si.

The proof is analogous for other orderings of evaluation of
the sum.

An anonymous referee has pointed out that each ordering
can be represented by a tree with vertices representing rounded
operations. For each ordering we need two trees, one with and
one without the ε update to one of the addends xj . Similarly to
the proof above, we can prove monotonicity for each operation
and use induction to prove the monotonicity at all levels of the
tree as the expression is being computed. This would allow us
to confirm that s′n ≥ sn which are at the roots of the trees.

4) Multiplication: Now we look at fmul(x, y) = fl(x× y)
where as per IEEE 754, x× y is computed as though in infinite
precision arithmetic and then rounded to the nearest value in
some F. Take a, b, c > b, m1 = a× b, and m2 = a× c. If a > 0,
m1 <m2 (multiplication is monotonic increasing). If a < 0 we
have m1 >m2 (monotonic decreasing).

Theorem II.3: Multiplication of two operands, fl(x× y) with
x ∈ R and y ∈ R, computed using the floating-point multiplica-
tion operation as defined in the IEEE 754 is monotonic with
round-to-nearest, round-towards-zero, round-toward-negative,
and round-toward-positive.

Proof: Since the multiplication in IEEE 754 arithmetics
is first performed as though in infinite precision, the computed
quantities will be fl(m1) and fl(m2). Since m1 <m2 the rea-
soning is equivalent to that of Section II-B1 and fl(m1)≤
fl(m2). The proof is analogous for a < 0 which gives fl(m1)≥
fl(m2).

Theorem II.4: The inner product of column vectors a, b ∈ R
n,

aT b, computed using the floating-point multiplication and ad-
dition operations as defined in IEEE 754 with round-to-nearest,
round-towards-zero, round-toward-negative, and round-toward-
positive is monotonic for any ordering, such as fl(· · · fl(fl(a1 ×
b1) + fl(a2 × b2)) + · · ·+ fl(an × bn)).

Proof: The proof follows from the monotonicity of the
scalar multiplication (Theorem II.3) and the monotonicity of
the n-term sum (Theorem II.2).

Since matrix multiplication is comprised of inner products,
elementwise monotonicity results from the monotoncicity of
the inner product operation. This proves the monotonicity prop-
erties of the units that lie in Class III (Section I-B3), which im-
plement multi-term addition hardware to mimic the behaviour
of IEEE 754, equivalent to normalizing and rounding after every
operation.

C. Fused Multiterm Adders

Theorem II.5: Summation using fused multi-term adders
which perform addition as though in infinite precision and then
round once, is monotonic.

Proof: Since fused multi-term adders compute as though
the overall sum is computed in infinite precision and rounded
once, fl(x1 + xn + · · ·+ xn), they are monotonic due to mono-
tonicity of rounding, showed in Section II-B1.

This proves the monotonicity properties of the Class I/II units
(Sections I-B1 and I-B2).

MIKAITIS: MONOTONICITY OF MULTI-TERM FLOATING-POINT ADDERS 1537

Fig. 2. Example summation of three precision-p numbers (significands showed) in IEEE 754 arithmetic and a Class IV multi-term adder without the
intermediate normalization and rounding. In the multi-term adder the carry bits on the left are kept but the bits past precision p in the fraction are discarded;
the normalization and rounding steps are performed at the end, after all the addition operations have been completed. We take p= 5. On the left is the
case in which the significand grows and requires a right-shift to be normalized. On the right is the case with a significant cancellation [2, p. 242] which
requires multiple left-shifts to normalize. Notice that the former improves the accuracy of the second addition operation, while the latter makes it worse for
the multi-term adder compared with the sum computed using IEEE 754 2-term addition operations. IEEE 754 arithmetic uses round-to-nearest even-on-ties
in this example. The monotonicity issue is caused by the lack of right-shift normalization and Equation 2 models the adder that lacks only this normalization
in order to simplify.

III. RESULTS

In this section we prove a few results about the Class IV
multi-term floating-point adders (Section I-B4).

A. Modified IEEE 754 Arithmetics: Addition Without
Normalization

We need a modified floating-point addition model to describe
Class IV multi-term addition units with precision growth. We
take the normalized significand of a floating-point number to
be 2p−1 ≤m< 2p [1]. In the binary representation of m the
binary point is defined to be between the first and second left-
most bits of m [1]. We now consider a modified version of
IEEE 754 addition operation without this constraint, meaning
that the normalization step in the addition is not performed.
Specifically, we will focus on the normalization that requires
the right-shift of the significand by one step (Fig. 2). Namely,
instead of having one bit to the left of the binary point we
assume there are multiple bits for carries to propagate when the
result of the partial summation reaches or crosses the powers of
two. Equivalently, we can keep the normalization but add one
bit of precision if the sum reaches the next power of two.

Take a, b ∈ R. If |a|< |b| swap them so that in general we
assure |a| ≥ |b|. Define t= 21+�log2 |a|�: this finds the absolute
value of the power of two nearest to |a| with |a|< |t|. Then the
adder with precision increase (which describes an adder without

the right-shift normalization) can be defined as

flr(a+ b) =

{
flp(a+ b) if |a+ b|< t,

flp+1(a+ b) if |a+ b| ≥ t.
(2)

When we use this adder multiple times, for example to compute
flr(flr(x1 + x2) + x3) any precision increase in the first adder
is propagated into the next adder. Therefore this expression
can grow precision from p to p+ 1, while n additions could
grow precision from p to p+ �log2 n�—we call this preci-
sion growth after each addition in a multi-term summation a
gradual precision growth. In practice the final result may also
be rounded to some desired target precision: fl(flr(x1 + x2)),
fl(flr(flr(x1 + x2) + x3)), and so on. As an aside, this double
rounding can cause issues with accuracy of the final result [36],
[37], but this is not the cause of the non-monotonicity and is
not addressed further in this paper. This model of addition does
not model the lack of left-shift normalization (Fig. 2); it is not
required for the purposes of this article.

A similar device was used by Ashenhurst and Metropolis
[38, p. 418] for error analysis of unnormalized floating-point
arithmetic.

B. Monotonicity of the Modified Addition

It can be shown using the similar reasoning as in Sec-
tion II-B that fl(flr(x+ y)) and fl(flr(flr(x1 + x2) + x3)) are
monotonic.

1538 IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 6, JUNE 2024

Theorem III.1: Addition of two operands, flr(x+ y)
with x ∈ R and y ∈ R, is monotonic with round-to-nearest,
round-towards-zero, round-toward-negative, and round-
toward-positive.

Proof: First, if the internal adder does not grow precision,
the final rounding does not have any effect and the summations
are monotonic as shown in Section II-B. Let us consider the
monotonicity of fl(flr(x+ y)) when the precision grows by one
bit. Take s1 = flr(a+ b) and s2 = flr(a+ c) with c > b. Due
to monotonicity of rounding, s1 ≤ s2, and therefore fl(s1)≤
fl(s2).

Theorem III.2: Addition of three operands, flr(flr(x1 +
x2) + x3) with xi ∈ R, is non-monotonic with round-to-
nearest, round-towards-zero, and round-toward-negative (xi >
0) or round-toward-positive (xi < 0), except if the final
rounding fl(flr(flr(x1 + x2) + x3)) to the starting precision
is performed.

Proof: Take a, b, and c where b is a power of two, a is the
floating-point number preceding b, and c is the floating-point
number following b, such that a < b < c. We consider positive
values, but the proof for negative values is analogous. Also,
take ε= c−b

2 . Then, flr(b+ ε) = b with RN, RD, and RZ, as is
flr(flr(b+ ε) + ε) = b. However, flr(a+ ε) = b and precision
grows by one bit. Due to precision growth, flr(flr(a+ ε) + ε)>
b. Therefore monotonicity is not preserved. However, the final
rounding fl(flr(flr(a+ ε) + ε)) = b and overall the monotonic-
ity is preserved. With RU monotonicity is present even without
the final rounding.

However, as we now show, a sum that includes n > 3 terms
computed with non-normalized additions modelled by Equation
2 can be non-monotonic in general.

Theorem III.3: Summation flr(· · · flr(x1 + x2) + · · ·) +
xn), with xi ∈ R and n≥ 4 is not monotonic with round-to-
nearest, round-towards-zero, and round-toward-negative (xi >
0) or round-toward-positive (xi < 0), with and without the final
rounding to the starting precision.

Proof: Take three consecutive positive floating-point
values in some precision-p arithmetic, a, b, and c with b a
power of two. Then consider evaluating a 4-term summation
flr(flr(flr(x+ ε) + ε) + ε) with x, ε > 0 (similar example
can be shown for x, ε < 0). In precision-p arithmetic, with
round-to-nearest ties-to-even, we can show that flr(b+ ε) = b
for ε≤ (c− b)/2, while in precision-(p+ 1) arithmetic
flr(b+ ε) = b for ε≤ (c− b)/4. Also, in precision-p arithmetic
a+ (c− b)/2 = b.

Take ε= (c− b)/2 and consider two cases.
1) x= b, then flr(flr(flr(b+ ε) + ε) + ε) = b (all in

precision-p).
2) x= a, then the first addition flr(a+ ε) = b (and precision

increases to p+ 1 since b is a power of two). Follow-
ing that, the second addition flr(b+ ε) = b+ ε as well
as the third addition flr(b+ ε+ ε) = c (since we are in
precision-(p+ 1)).

Since the sum evaluates to b when x= b and to c when
x= a < b, we have shown that the 4-term sum in this
modified arithmetic is non-monotonic. The final rounding
would not change the result because fl(flr(b+ ε+ ε)) = c

since 2ε is a value stored in the bits to the left of the
rounding point.

Corollary III.3.1: The inner product of vectors a, b ∈ R
n,

fl(· · · flr(fl(a1 × b1) + fl(a2 × b2)) + · · · + fl(an × bn)) for
n≥ 4, with round-to-nearest, round-toward-zero, and round-
toward-negative (ai × bi > 0) or round-toward-positive (ai ×
bi < 0) is non-monotonic.

Proof: Set all elements of b to 1. Then the proof of Theo-
rem III.3 concludes this proof.

Corollary III.3.2: Matrix-vector multiplication Ax and
matrix-matrix multiplication AB, where A ∈ R

m×n, x ∈ R
n,

B ∈ R
n×l, n≥ 4, with round-to-nearest, round-toward-zero,

and round-toward-negative (aik × bkj > 0) or round-toward-
positive (aik × bkj < 0) are element-wise non-monotonic.

Proof: Each element of the output vector or matrix is
computed by the inner product.

C. Impact of the Order of Addition

Class IV multi-term adders align all input significands rel-
ative to the largest magnitude addend. This is performed so
that all the significands can be right-shifted, with lower order
bits dropped or rounded. If the alignments were performed
relative to an addend of arbitrary choice, shifting both to the
left and right would be required. When the shifts are to the left,
shifted bits cannot be dropped and would have to be preserved,
which would introduce a high hardware cost similar to Class
I/II adders. As many bits from the left shifts would have to be
preserved as the highest difference between the exponents of
addends.

After the significands are aligned relative to the largest mag-
nitude addend’s exponent, if there is no normalization of inter-
mediate sums, the addition acts like the addition of fixed-point
values and is associative; the order of performing additions in
such a method will not impact the final result. Whether all the
addends are added in series or in parallel also does not have any
impact on the final result.

When adding a series of positive floating-point values, doing
so in an increasing rather than a decreasing order in absolute
value reduces the worst-case error bound [3, Sec. 4.2]; this
ordering may not reduce the actual error [39, Sec. 2]. When
considering both positive and negative numbers, the decreasing
order can yield better accuracy in the face of cancellation [39,
Sec. 2]. However, the hardware starts at the largest magnitude
addend, as discussed above; therefore it can be interesting to
check the accuracy of the summation, which we do in the
following section. Note that when there is no intermediate
normalization implemented, the addition is in effect growing
precision, which may improve the accuracy.

IV. NUMERICAL EXPERIMENTS

We have simulated the Class IV multi-term adders with the
gradual precision growth in MATLAB, using the custom pre-
cision simulator CPFloat [40]. The code for reproducing the
results is available.2

2https://github.com/north-numerical-computing/multi-operand-add-
monotonicity

https://github.com/north-numerical-computing/multi-operand-add-monotonicity
https://github.com/north-numerical-computing/multi-operand-add-monotonicity

MIKAITIS: MONOTONICITY OF MULTI-TERM FLOATING-POINT ADDERS 1539

Fig. 3. Summation of positive random binary16 vectors of increasing length. Three summation algorithms are used: recursive summation in increasing order
of magnitude using the binary16 IEEE 754 arithmetic, recursive summation in decreasing order of magnitude using the binary16 IEEE 754 arithmetic, and
recursive blocking summation using Class IV multi-term adders of various sizes. Relative errors are measured by comparing with the summation of the same
values in binary64 arithmetic.

A. Order of Addends and Associativity

In Fig. 3 we plot relative errors |sn−ŝn|
sn

for adding n floating-
point values in binary16 arithmetic (ŝn), with p= 11 and
emax = 15, compared with the sum in binary64 arithmetic (sn).
The addends are pseudo-random numbers generated in MAT-
LAB using the mrg32k3a random number generator with a seed
of 500, in the range (0, 0.001). We vary n and perform summa-
tions with recursive summation algorithm with addends in the
decreasing and increasing orders, as well as in the original order
with the multi-term adders with terms 4, 64, 512, and 1024. As
expected, the decreasing ordering results in the largest errors. In
most cases, multi-term adders are worse or very close to recur-
sive summation with increasing ordering of addends. However,
with the 1024-term adder, sums become more accurate. This can
be explained through precision growth—with the larger adders
there is a possibility for more precision growth, which improves
accuracy. In this experiment we observed precision to grow to
the total of 19 bits, from the default 11.

In test_associativity.m we generated a vector of 64
pseudo-random binary16 values, randomly permuted them 104

times and each time computed the sum in IEEE 754 arithmetic
and the model of a 64-term Class IV adder. Checking the range
of computed sums we found that it is non-zero for the IEEE 754
arithmetic and zero for the 64-term Class IV adder, confirming
non-associativity and associativity, respectively.

B. Monotonicity

For the purposes of demonstrating non-monotonicity of the
Class IV adders, we compute

fl(· · · fl(x1 + x2) + · · ·) + xn)

and

fl(flr(· · · flr(x1 + x2) + · · ·) + xn))

in three small floating-point systems: p= 3, emax = 3; p= 4,
emax = 3; and p= 5, emax = 4. We construct the sum for
severe non-monotonicity to appear, as follows. First, we set
all xi = 0.25 and then vary x1 by changing it to the adjacent
floating-point value towards +∞ until all representable values

are covered. On each iteration we sum the values xi with the two
different addition models, the multi-term adder with precision
growth (Class IV) and the IEEE 754 adder with normalization
and rounding after each addition operation (Class III). We report
the value of the sum as well as the relative error compared with
the same sum performed in binary64 arithmetic. The results are
plotted in Fig. 4.

First, consider the first column of diagrams in Fig. 4. In the
top diagram, we see that from the beginning the sum saturates to
some quantity and for a while stagnates with the IEEE 754 arith-
metic. Relative error starts increasing. When the sum reaches
this point, all remaining addends (set to 0.25) are rounded down
and do not contribute to the sum. With the multi-term adder
this does not occur because precision grows on powers of two,
allowing the sum to keep changing as x1 is being increased.
At a certain point, when x1 crosses the value at which the sum
stagnates, the overall value of the sum becomes x1 and both
arithmetics align. At the beginning of this, non-monotonicity
appears in the multi-term addition. As precision is increased
(rows of the matrix of diagrams in Fig. 4), the point at which
the IEEE 754 stagnates, and the point at which the multi-
term addition shows non-monotonicity, moves to higher values
of the sum.

Other columns in Fig. 4 correspond to the larger number of
terms being added. The main observation is that with more
terms the severity of non-monotonicity increases because a
larger number of terms can grow the sum more in the range
where IEEE 754 arithmetic stagnates and the multi-term adder
grows precision.

V. DISCUSSION

A. Where Non-Monotonicity Can Cause Issues

In this subsection we discuss various algorithms that may be
impacted by the non-monotonicity of floating-point arithmetic.

In a 1967 paper, Forsythe [41] notes that despite the lack
of associativity and distributivity in floating-point addition and
multiplication, one can do good analysis provided only that
the arithmetic is monotonic. At that time monotonicity was not
always preserved in arithmetics, like it was after the IEEE 754

1540 IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 6, JUNE 2024

Fig. 4. Summation with various floating-point formats and two types of addition: multi-term addition with precision growth (Class IV) and IEEE 754
addition with normalization and rounding after each operation. Value of the sum (top of each subdiagram) and the relative error (bottom) compared with the
sum performed in the binary64 arithmetic. The x-axis corresponds to the quantity of x1 which we vary, with the rest of xi = 0.25.

was released: “Such properties seem elemental but they are
extremely helpful. And they are surprisingly absent!” [41,
Sec. 4].

Demmel, Dhillon, and Ren [42] explore the bisection algo-
rithm for finding eigenvalues of real symmetric tridiagonal ma-
trices. The algorithm relies on the count(x) to count the number
of eigenvalues that are smaller than x (Algorithm 3). This

function is monotonic, but when implemented in floating-point
arithmetic various implementation details can introduce non-
monotonicity, which in turn can cause wrong results by finding
negative number of eigenvalues (count(xb)− count(xa))< 0
over a specific range xa to xb with xb > xa. We have shown that
non-monotonicity can appear in the three-term adder if no final
rounding is performed (Theorem III.2), which would invalidate

MIKAITIS: MONOTONICITY OF MULTI-TERM FLOATING-POINT ADDERS 1541

Algorithm 3: Count(x, T): return the number of eigen-
values of a real symmetric tridiagonal matrix T .

1 count← 0;
2 d← 1;
3 for i← 1 to n do

4 d← ai − x− b2i−1

d ;
5 if d < 0 then
6 count← count+ 1;

7 return count;

the Assumption 1A [42, p 120] and introduce a source of non-
monotonicity in an implementation of count(x).

Higham [3, Sec. 2.6] demonstrates that monotonicity of
rounding may be an important property when solving a
quadratic equation ax2 − 2bx+ c= 0. Computing an expres-
sion

√
b2 − ac is required and if b2 = ac but fl(b2)< b2, com-

puting fl(fl(b2)− ac) with an FMA can result in a negative
number passed into the square root function. While this would
not require a 4-term or wider adder, which we explore in this
paper, if an expression

√∑n
i=1 ai −

∑n
i=1 bi, where a and b

are vectors, which uses the multi-term adder twice and then
subtracts the sums, appears in applications, a similar issue to
that discussed by Higham can appear. We provide an example
in test_sqrt.m. We use a binary32 arithmetic with p= 24
and emax = 127, and n= 8. Then take

a= [1, 1, 1, 1, 1, 1, 1, 16777216]

and

b= [1, 1, 1, 1, 1, 1, 1, 16777214].

Computing sums recursively left to right with IEEE 754 ad-
ditions in order we get

√
4, while computing them with the

8-term Class IV adder we get
√
−4 due to the non-monotonicity

in the sum. The correct result, computed in binary64 arithmetic,
is
√
2. Note that with the IEEE 754 binary32 arithmetic we can

change the order of addends and impact the result:

a= [16777216, 1, 1, 1, 1, 1, 1, 1]

b= [16777214, 1, 1, 1, 1, 1, 1, 1]

gives
√
0, but

a= [16777216, 1, 1, 1, 1, 1, 1, 1]

b= [1, 1, 1, 1, 1, 1, 1, 16777214]

gives
√
−4. However, as discussed, with the Class IV adder the

order does not impact the final result and this example results in√
−4 irrespective of it; as a result it cannot be fixed at software

layer by reordering.
In computing elementary functions often monotonicity is

one of the properties that is desired [43]. Silverstein et al.
[44] in the report on the UNIX math library libm, note:
“Monotonicity failures can cause problems, for example, in
evaluating divided differences. The only function we have
observed to violate monotonicity for C/SVR4 is lgamma.

We would not be surprised to learn of others.”. This is of
general interest, and we are not aware of a link between the non-
monotonicity of multi-term adders and mathematical functions.

Interval arithmetic can be impacted by non-monotonicity
of floating-point. Rump [45, Sec. 2.1] gives an example
of computing lower and upper limits of the interval of
matrix multiplication of point matrices (lower and upper
limits are equal) through the change of rounding modes
in floating-point arithmetic. Similar to Rump’s example, in
test_interval.m we compute the interval of summation
operation, through round-toward-negative and round-toward-
positive, for lower and upper limits, respectively. First we sum a
vector a= [16777216, 1, 1, 1, 1, 1, 1, 1] which yields an interval
[16777216, 16777230]. We then decrease a1 and perform the
same for b= [16777214, 1, 1, 1, 1, 1, 1, 1] which yields an inter-
val [16777220, 16777222]. By decreasing one of the arguments
we expect the interval to shift down the real axis, but the lower
end shifts up and the interval becomes narrower due to precision
growth in the multi-term adder. As before, it is possible to cause
a similar issue with the IEEE 754 arithmetic, by changing the
order of the addends.

B. Possible Solutions

Having gradual precision growth in the dot product can be
beneficial in getting more accurate results. However, if mono-
tonicity is needed, a straightforward solution would be to al-
ways normalize after each addition to stop the gradual precision
growth in the internal accumulator. This can replicate the be-
haviour of a software implementation of summation based on
standard IEEE 754 operations. The hardware cost would most
likely be increased substantially.

Another approach could be to detect where precision growth
occurs by monitoring the carry-out bits in the significands of
the sums and then informing any further additions to cancel an
appropriate number of bits from the bottom of the significand
and not take them into account when adding. However, this is
highly dependent on what particular implementations are doing
and would probably impact guard, round and sticky bits which
might or might not be used in the intermediate additions inside
the multi-term adder, depending on the rounding properties
needed. The additional logic for this may make the Class IV
adders as expensive as Class I/II adders, but we leave this for
a separate hardware-oriented study.

As a summary:
• Class I/II adders perform the summation as though only

one rounding error is induced at the end, and with these
adders monotonicity and associativity of summation are
preserved.

• Class III adders perform the summation which numerically
behaves as a software implementation with the IEEE 754
addition operations, with normalization and rounding after
each. With these adders, associativity is not preserved, but
monotonicity is.

• With the Class IV adders, monotonicity is not preserverd,
as we have demonstrated, but the associativity is.

One can choose an appropriate implementation based on the
numerical properties required in a particular architecture.

1542 IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 6, JUNE 2024

VI. CONCLUSION

IEEE 754-2019 provides the following guidance for imple-
menting multi-term summation or dot product operations (col-
lectively called reduction operations) [1, Sec. 9.4]: “Language
standards should define the following reduction operations for
all supported arithmetic formats. Unlike the other operations
in this standard, these operate on vectors of operands in one
format and return a result in the same format. Implementations
may associate in any order or evaluate in any wider format.”.
In the present manuscript we analysed how various hardware
designs in the literature as well as in the available hardware
implement this. We demonstrated that there are four classes of
implementation, each with different hardware complexity and
numerical properties.

Focusing on Class IV multi-term addition, where the
significand alignment of the summands is performed in
limited precision and the sum is performed without the nor-
malization, all resulting in precision growth during the sum-
mation, we proved that non-monotonicity can occur. We also
showed that Class I–III devices are not subject to this. Our
results should assist in understanding numerical differences
between different implementations and show what is needed
in order to preserve the property of monotonicity in floating-
point multi-term addition. This applies to dot products and
matrix multiplication operations, which use multi-term addi-
tion. The results do not necessarily apply only to hardware as
the same low level floating-point algorithms could be imple-
mented in software, for example on devices that do not contain
floating-point units.

Finally, our results indicate that monotonicity should be con-
sidered in the next iteration of the IEEE 754 standard and the
new standard, P3109,3 of low-precision floating-point formats.
Suitable recommendations for the reduction operations may
need to be provided when the preservation of monotonicity is
needed.

ACKNOWLEDGMENT

The author is grateful to M. Fasi for the help on the proof
of Theorem II.2 and other comments and suggestions, and
N. J. Higham, Nicolas Brunie and three anonymous referees
for comments and suggestions.

REFERENCES

[1] IEEE Standard for Floating-Point Arithmetic, IEEE Std 754-2019 (Revi-
sion of IEEE Std 754-2008). Piscataway, NJ, USA: Institute of Electrical
and Electronics Engineers, Jul. 2019.

[2] J.-M. Muller et al., Handbook of Floating-Point Arithmetic, 2nd ed.
Cham, Switzerland: Birkhäuser, 2018.

[3] N. J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd ed.
Philadelphia, PA, USA: SIAM, 2002.

[4] N. Metropolis and R. L. Ashenhurst, “Significant digit computer arith-
metic,” IRE Trans. Electron. Comput., vol. EC-7, no. 4, pp. 265–267,
Dec. 1958.

[5] “NVIDIA A100 Tensor Core GPU architecture,” NVIDIA whitepaper
v1.0, 2020. Accessed: Mar. 5, 2024. [Online]. Available: https://www.
nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-
architecture-whitepaper.pdf

3https://sagroups.ieee.org/p3109wgpublic/

[6] M. Fasi, N. J. Higham, M. Mikaitis, and S. Pranesh, “Numerical behavior
of NVIDIA tensor cores,” PeerJ Comput. Sci., vol. 7, Art. no. e330,
Feb. 2021.

[7] U. Kulisch, Computer Arithmetic and Validity: Theory, Implementation,
and Applications. Berlin, Germany: De Gruyter, 2013, doi:10.1515/
9783110301793.

[8] Y. Uguen and F. de Dinechin, “Design-space exploration for the Kulisch
accumulator,” Working paper or Preprint, Mar. 2017. Accessed: Mar. 5,
2024. [Online]. Available: https://hal.archives-ouvertes.fr/hal-01488916

[9] J. Koenig, D. Biancolin, J. Bachrach, and K. Asanović, “A hardware
accelerator for computing an exact dot product,” in Proc. IEEE 24th
Symp. Comput. Arithmetic (ARITH), 2017, pp. 114–121.

[10] N. Brunie, “Modified fused multiply and add for exact low precision
product accumulation,” in Proc. IEEE 24th Symp. Comput. Arithmetic
(ARITH), 2017, pp. 106–113.

[11] N. Brunie, “Towards the basic linear algebra unit: Replicating multi-
dimensional FPUs to accelerate linear algebra applications,” in Proc.
54th Asilomar Conf. Signals, Syst., Comput., 2020, pp. 1283–1290.

[12] N. Burgess, C. Goodyer, C. N. Hinds, and D. R. Lutz, “High-precision
anchored accumulators for reproducible floating-point summation,”
IEEE Trans. Comput., vol. 68, no. 7, pp. 967–978, Jul. 2019.

[13] A. F. Tenca, “Multi-operand floating-point addition,” in Proc. 19th IEEE
Symp. Comput. Arithmetic, Portland, OR, USA, Jun. 2009, pp. 161–168.

[14] J. Sohn and E. E. Swartzlander, “Improved architectures for a floating-
point fused dot product unit,” in Proc. IEEE 21st Symp. Comput.
Arithmetic, 2013, pp. 41–48.

[15] J. Sohn and E. E. Swartzlander, “A fused floating-point three-term
adder,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 61, no. 10,
pp. 2842–2850, Oct. 2014.

[16] J. Sohn and E. E. Swartzlander, “A fused floating-point four-term dot
product unit,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 63, no. 3,
pp. 370–378, Mar. 2016.

[17] Y. Tao, G. Deyuan, F. Xiaoya, and J. Nurmi, “Correctly rounded
architectures for floating-point multi-operand addition and dot-product
computation,” in Proc. IEEE 24th Int. Conf. Appl.-Specific Syst., Archit.
Process., 2013, pp. 346–355.

[18] E. E. Swartzlander and H. H. Saleh, “FFT implementation with fused
floating-point operations,” IEEE Trans. Comput., vol. 61, no. 2, pp. 284–
288, 2012.

[19] A. Kaivani and S.-B. Ko, “Area efficient floating-point FFT butterfly
architectures based on multi-operand adders,” Electron. Lett., vol. 51,
no. 12, pp. 895–897, 2015.

[20] S. Boldo, D. Gallois-Wong, and T. Hilaire, “A correctly-rounded fixed-
point-arithmetic dot-product algorithm,” in Proc. IEEE 27th Symp.
Comput. Arithmetic (ARITH), 2020, pp. 9–16.

[21] D. Kim and L. Kim, “A floating-point unit for 4D vector inner product
with reduced latency,” IEEE Trans. Comput., vol. 58, no. 7, pp. 890–901,
Jul. 2009, doi: 10.1109/TC.2008.210.

[22] H. Kaul, M. Anders, S. Mathew, S. Kim, and R. Krishnamurthy,
“Optimized fused floating-point many-term dot-product hardware for
machine learning accelerators,” in Proc. IEEE 26th Symp. Comput.
Arithmetic (ARITH), 2019, pp. 84–87.

[23] A. Roldao Lopes and G. A. Constantinides, “A fused hybrid floating-
point and fixed-point dot-product for FPGAs,” in Reconfigurable Com-
puting: Architectures, Tools and Applications, P. Sirisuk, F. Morgan,
T. El-Ghazawi, and H. Amano, Eds., Berlin, Germany: Springer-Verlag,
2010, pp. 157–168.

[24] B. Hickmann, J. Chen, M. Rotzin, A. Yang, M. Urbanski, and S. Avan-
cha, “Intel Nervana Neural Network Processor-T (NNP-T) fused floating
point many-term dot product,” in Proc. IEEE 27th Symp. Comput.
Arithmetic (ARITH), 2020, pp. 133–136.

[25] L. Bertaccini, G. Paulin, T. Fischer, S. Mach, and L. Benini, “MiniFloat-
NN and ExSdotp: An ISA extension and a modular open hardware unit
for low-precision training on RISC-V cores,” in Proc. IEEE 29th Symp.
Comput. Arithmetic (ARITH), 2022, pp. 1–8.

[26] S. K. Lee et al., “A 7-nm four-core mixed-precision AI chip with
26.2-TFLOPS hybrid-FP8 training, 104.9-TOPS INT4 inference, and
workload-aware throttling,” IEEE J. Solid-State Circuits, vol. 57,
no. 1, pp. 182–197, Jan. 2022.

[27] L. Ledoux and M. Casas, “A generator of numerically-tailored and high-
throughput accelerators for batched GEMMs,” in Proc. IEEE 30th Annu.
Int. Symp. Field-Programmable Custom Comput. Mach. (FCCM), 2022,
pp. 1–10.

[28] N. P. Jouppi et al., “Ten lessons from three generations shaped Google’s
TPUv4i: Industrial product,” in Proc. ACM/IEEE 48th Annu. Int. Symp.
Comput. Archit. (ISCA), 2021, pp. 1–14.

https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://sagroups.ieee.org/p3109wgpublic/
doi: 10.1515/9783110301793
doi: 10.1515/9783110301793
https://hal.archives-ouvertes.fr/hal-01488916
https://doi.org/10.1109/TC.2008.210

MIKAITIS: MONOTONICITY OF MULTI-TERM FLOATING-POINT ADDERS 1543

[29] “AMD Instinct™ MI200 Series Accelerator.” Advanced Micro De-
vices, Inc., Santa Clara, CA, USA. Accessed: Mar. 5, 2024.
[Online]. Available: https://www.amd.com/system/files/documents/amd-
instinct-mi200-datasheet.pdf

[30] D. Abts et al., “A software-defined tensor streaming multiprocessor for
large-scale machine learning,” in Proc. 49th Annu. Int. Symp. Comput.
Archit. (ISCA). New York, NY, USA: ACM, 2022, pp. 567–580.

[31] W. Gomes et al., “Ponte Vecchio: A multi-tile 3D stacked processor
for exascale computing,” in Proc. IEEE Int. Solid-State Circuits Conf.
(ISSCC), vol. 65, 2022, pp. 42–44.

[32] “Intel architecture instruction set extensions and future features
programming reference.” Intel Corporation 319433–051, Santa Clara,
CA, USA. Dec. 2023. Accessed: Mar. 5, 2024. [Online]. Available:
https://software.intel.com/sites/default/files/managed/c5/15/architecture-
instruction-set-extensions-programming-reference.pdf

[33] E. Talpes et al., “The microarchitecture of DOJO, Tesla’s exa-scale
computer,” IEEE Micro, vol. 43, no. 3, pp. 31–39, May/Jun. 2023.

[34] B. Hickmann and D. Bradford, “Experimental analysis of matrix
multiplication functional units,” in Proc. 26th IEEE Symp. Comput.
Arithmetic, Kyoto, Japan, Oct. 2019, pp. 116–119.

[35] M. Fasi, N. J. Higham, F. Lopez, T. Mary, and M. Mikaitis, “Matrix
multiplication in multiword arithmetic: Error analysis and application to
GPU tensor cores,” SIAM J. Sci. Comput., vol. 45, no. 1, pp. C1–C19,
Feb. 2023.

[36] P. Roux, “Innocuous double rounding of basic arithmetic operations,”
J. Formalized Reasoning, vol. 7, no. 1, pp. 131–142, Jul. 2014.

[37] S. M. Rump, “IEEE754 precision-k base-β arithmetic inherited by
precision-m base-β arithmetic for k <m,” ACM Trans. Math. Softw.,
vol. 43, no. 3, pp. 1–15, Jan. 2017.

[38] R. L. Ashenhurst and N. Metropolis, “Unnormalized floating point
arithmetic,” J. ACM, vol. 6, no. 3, pp. 415–428, Jul. 1959.

[39] N. J. Higham, “The accuracy of floating point summation,” SIAM J. Sci.
Comput., vol. 14, no. 4, pp. 783–799, Jul. 1993.

[40] M. Fasi and M. Mikaitis, “CPFloat: AC library for simulating low-
precision arithmetic,” ACM Trans. Math. Softw., vol. 49, no. 2, pp. 18:1–
18:32, Jun. 2023.

[41] G. E. Forsythe, “Today’s computational methods of linear algebra,”
SIAM Rev., vol. 9, no. 3, pp. 489–515, Jul. 1967.

[42] J. W. Demmel, I. Dhillon, and H. Ren, “On the correctness of some
bisection-like parallel eigenvalue algorithms in floating point arithmetic,”
Electron. Trans. Numer. Anal., vol. 3, pp. 116–149, 1995.

[43] J.-M. Muller, Elementary Functions: Algorithms and Implementation,
3rd ed. Boston, MA, USA: Birkhäuser, 2016.

[44] J. D. Silverstein, S. E. Sommars, and Y.-C. Tao, “The UNIX system
math library, a status report,” in Proc. USENIX —Winter’90, Jan. 22–
26, Washington, D.C., USA, 1990, pp. 117–131.

[45] S. Rump, “INTLAB — INTerval LABoratory,” in Developments in
Reliable Computing, T. Csendes, Ed., Dordrecht, The Netherlands:
Kluwer, 1999, pp. 77–104.

Mantas Mikaitis received the B.Sc. (Hons.) and
Ph.D. degrees in computer science from the Univer-
sity of Manchester, Manchester, U.K., in 2016 and
2020, respectively. Between 2019 and 2020, he was
an EPSRC Doctoral Prize Fellow and between 2020
and 2022, a Research Associate, both within the Nu-
merical Linear Algebra Group with the University
of Manchester. He is currently a Lecturer with the
School of Computing, University of Leeds, Leeds,
U.K. His research interests include various aspects
of computer arithmetic and mathematical software.

https://www.amd.com/system/files/documents/amd-instinct-mi200-datasheet.pdf
https://www.amd.com/system/files/documents/amd-instinct-mi200-datasheet.pdf
https://software.intel.com/sites/default/files/managed/c5/15/architecture-instruction-set-extensions-programming-reference.pdf
https://software.intel.com/sites/default/files/managed/c5/15/architecture-instruction-set-extensions-programming-reference.pdf

<<
	/CompressObjects /Off
	/ParseDSCCommentsForDocInfo false
	/CreateJobTicket false
	/PDFX1aCheck false
	/ColorImageMinResolution 200
	/GrayImageResolution 300
	/DoThumbnails false
	/ColorConversionStrategy /sRGB
	/GrayImageFilter /DCTEncode
	/EmbedAllFonts true
	/CalRGBProfile (Adobe RGB \0501998\051)
	/MonoImageMinResolutionPolicy /OK
	/AllowPSXObjects false
	/LockDistillerParams true
	/ImageMemory 1048576
	/DownsampleMonoImages true
	/ColorSettingsFile (None)
	/PassThroughJPEGImages true
	/AutoRotatePages /None
	/Optimize false
	/ParseDSCComments false
	/MonoImageDepth -1
	/AntiAliasGrayImages false
	/GrayImageMinResolutionPolicy /OK
	/JPEG2000ColorImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/ConvertImagesToIndexed true
	/MaxSubsetPct 100
	/Binding /Left
	/PreserveDICMYKValues false
	/GrayImageMinDownsampleDepth 2
	/MonoImageMinResolution 400
	/sRGBProfile (sRGB IEC61966-2.1)
	/AntiAliasColorImages false
	/GrayImageDepth -1
	/PreserveFlatness false
	/OtherNamespaces [
		<<
			/IncludeSlug false
			/CropImagesToFrames true
			/IncludeNonPrinting false
			/OmitPlacedBitmaps false
			/AsReaderSpreads false
			/Namespace [
				(Adobe)
				(InDesign)
				(4.0)
]
			/FlattenerIgnoreSpreadOverrides false
			/OmitPlacedEPS false
			/OmitPlacedPDF false
			/SimulateOverprint /Legacy
			/IncludeGuidesGrids false
			/ErrorControl /WarnAndContinue
		>>
		<<
			/IgnoreHTMLPageBreaks false
			/IncludeHeaderFooter false
			/AllowTableBreaks true
			/UseHTMLTitleAsMetadata true
			/MetadataTitle /
			/ShrinkContent true
			/UseEmbeddedProfiles false
			/TreatColorsAs /MainMonitorColors
			/MetricUnit /inch
			/RemoveBackground false
			/HonorBaseURL true
			/ExpandPage false
			/AllowImageBreaks true
			/MetadataSubject /
			/MarginOffset [
				0.0
				0.0
				0.0
				0.0
]
			/Namespace [
				(Adobe)
				(GoLive)
				(8.0)
]
			/OpenZoomToHTMLFontSize false
			/PageOrientation /Portrait
			/MetadataAuthor /
			/MobileCompatible 0.0
			/MetadataKeywords /
			/MetricPageSize [
				0.0
				0.0
]
			/HonorRolloverEffect false
		>>
		<<
			/IncludeProfiles true
			/ConvertColors /NoConversion
			/FormElements true
			/MarksOffset 6.0
			/FlattenerPreset <<
				/PresetSelector /MediumResolution
			>>
			/DestinationProfileSelector /UseName
			/MultimediaHandling /UseObjectSettings
			/PreserveEditing true
			/PDFXOutputIntentProfileSelector /UseName
			/BleedOffset [
				0.0
				0.0
				0.0
				0.0
]
			/UntaggedRGBHandling /LeaveUntagged
			/GenerateStructure false
			/AddRegMarks false
			/IncludeHyperlinks false
			/IncludeBookmarks false
			/MarksWeight 0.25
			/PageMarksFile /RomanDefault
			/UntaggedCMYKHandling /LeaveUntagged
			/AddPageInfo false
			/AddBleedMarks false
			/IncludeLayers false
			/IncludeInteractive false
			/AddColorBars false
			/UseDocumentBleed false
			/AddCropMarks false
			/DestinationProfileName (U.S. Web Coated \050SWOP\051 v2)
			/Namespace [
				(Adobe)
				(CreativeSuite)
				(2.0)
]
			/Downsample16BitImages true
		>>
]
	/CompressPages true
	/GrayImageMinResolution 200
	/CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
	/PDFXBleedBoxToTrimBoxOffset [
		0.0
		0.0
		0.0
		0.0
]
	/AutoFilterGrayImages false
	/EncodeColorImages true
	/AlwaysEmbed [
]
	/EndPage -1
	/DownsampleColorImages true
	/ASCII85EncodePages false
	/PreserveEPSInfo false
	/PDFXTrimBoxToMediaBoxOffset [
		0.0
		0.0
		0.0
		0.0
]
	/CompatibilityLevel 1.7
	/MonoImageResolution 600
	/NeverEmbed [
]
	/CannotEmbedFontPolicy /Error
	/PreserveOPIComments false
	/AutoPositionEPSFiles false
	/JPEG2000GrayACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
	/EmbedJobOptions true
	/JPEG2000ColorACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/MonoImageDownsampleType /Bicubic
	/DetectBlends true
	/EmitDSCWarnings false
	/ColorImageDownsampleType /Bicubic
	/EncodeGrayImages true
	/Namespace [
		(Adobe)
		(Common)
		(1.0)
]
	/AutoFilterColorImages false
	/DownsampleGrayImages true
	/GrayImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/AntiAliasMonoImages false
	/GrayImageAutoFilterStrategy /JPEG
	/GrayACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/ColorImageAutoFilterStrategy /JPEG
	/ColorImageMinResolutionPolicy /OK
	/ColorImageResolution 300
	/PDFXRegistryName (http://www.color.org)
	/MonoImageFilter /CCITTFaxEncode
	/CalGrayProfile (Dot Gain 15%)
	/ColorImageMinDownsampleDepth 1
	/PDFXTrapped /False
	/DetectCurves 0.0
	/ColorImageDepth -1
	/JPEG2000GrayImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/TransferFunctionInfo /Remove
	/ColorImageFilter /DCTEncode
	/PDFX3Check false
	/ParseICCProfilesInComments true
	/DSCReportingLevel 0
	/ColorACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/PDFXOutputConditionIdentifier (CGATS TR 001)
	/PDFXCompliantPDFOnly false
	/AllowTransparency false
	/UsePrologue false
	/PreserveCopyPage true
	/StartPage 1
	/MonoImageDownsampleThreshold 1.5
	/GrayImageDownsampleThreshold 1.5
	/CheckCompliance [
		/None
]
	/CreateJDFFile false
	/PDFXSetBleedBoxToMediaBox true
	/EmbedOpenType false
	/OPM 1
	/PreserveOverprintSettings true
	/UCRandBGInfo /Preserve
	/ColorImageDownsampleThreshold 1.5
	/MonoImageDict <<
		/K -1
	>>
	/GrayImageDownsampleType /Bicubic
	/Description <<
		/ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
		/GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
		/FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
		/KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
		/HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
		/NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
		/DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
		/CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
		/ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
		/DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
		/JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
		/SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
		/SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
		/CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
		/CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
		/ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
		/RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
		/HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
		/PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
		/NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
		/TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
		/POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
		/HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
		/SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
		/RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
		/ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
	>>
	/CropMonoImages false
	/DefaultRenderingIntent /Default
	/PreserveHalftoneInfo true
	/ColorImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/CropGrayImages false
	/PDFXOutputCondition ()
	/SubsetFonts false
	/EncodeMonoImages true
	/CropColorImages false
	/PDFXNoTrimBoxError true
>>
setdistillerparams
<<
	/PageSize [
		612.0
		792.0
]
	/HWResolution [
		600
		600
]
>>
setpagedevice

