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Game-Based Adaptive FLOPs and Partition Point
Decision Mechanism With Latency and
Energy-Efficient Tradeoff for Edge Intelligence

Xin Niu?, Yajing Huang ¥, Zhiwei Wang

Abstract—As the product of the combination of edge com-
puting and artificial intelligence, edge intelligence (EI) not only
solves the problem of insufficient computing capacity of the end
device, but also can provide users with various types of intel-
ligent services. However, offline and online model partitioning
methods respectively have problems of poor adaptability to the
real computing environment and delayed feedback. In addition,
previous work on optimizing energy consumption through model
partitioning often ignores the latency of intelligent services.
Similarly, the energy consumption of end devices and edge servers
is usually not considered when optimizing latency. Therefore, we
propose game-based adaptive floating-point operations and par-
tition point decision mechanism (GAFPD) to efficiently find the
optimal partition point that reduces latency and improves energy
efficiency simultaneously in a dynamically changing computing
environment. Numerous simulation experiments and robot-based
EI system experiments show that GAFPD can simultaneously
reduce the latency of intelligent services and improve the energy
efficiency of edge devices, while exhibiting strong adaptability to
bandwidth changes.

Index Terms—Edge intelligence, model partitioning, latency
and energy consumption optimization, dynamically changing
computing environment.

1. INTRODUCTION

ITH the boom of artificial intelligence (Al) applica-
Wtions and services, deep neural network (DNN) [1], as
a typical technology with the prominent superiority in deep
learning, has been widely applied in various intelligent services,
including smart healthcare [2], object detection [3], autonomous
driving [4] and so on. At the same time, the rapid development
of mobile computing is driving the popularity of end devices,
the International Data Center (IDC) predicts that billions of end
devices will be connected to the Internet and generate hundreds
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of millions of bytes of data at the edge of the network by 2025
[5]. Driven by Al and mobile computing, there is an urgent need
to push Al to the network edge, so as to make the best use of
data at the network edge and explore the computing potential of
edge devices (end devices and edge servers). As an emerging
computing paradigm that sinks resources and services to the
edge of the network, edge computing [6] is undoubtedly a good
choice. Under this tendency, the combination of Al and edge
computing is inevitable, which has also led to a new cross-
research, namely edge intelligence (EI) [7].

With the popularity and application of DNNs, more and more
intelligent services are provided through DNNs in EI. Further-
more, the end device usually offloads computing tasks to the
edge server. However, compared with cloud centers, the limited
computing resources of edge servers are difficult to satisfy the
demands of massive computing tasks represented by DNNs.
With the improvement of the computing capacity of the end
equipment [8], partitioning the DNN model and offloading part
of the computing task to the edge server is a proven solution
(Fig. 1(a)). In the process of providing intelligent services,
latency is an important factor affecting quality of service (QoS)
[9]. Among numerous intelligent services, most of them are
latency-sensitive, such as autonomous driving, object detection
and so on. Therefore, latency optimization of intelligent ser-
vices in EI is very important. In addition, one of the obvious
drawbacks of the end device is that its energy is limited [10].
In order to be able to provide sustainable and high-quality
intelligent services, the energy consumption optimization in EI
cannot be ignored.

Studies have shown that partitioning the DNN model by layer
can reduce latency or energy consumption [11]. Of course, the
selection of partition points is critical when partitioning the
DNN model. The existing partition point selection methods are
mainly classified into two categories: offline optimization [12],
[13], [14], [15] and online learning [16], [17], [18], [19]. The
offline optimization [12], [13], [14], [15] approaches treat the
selection of partition points as a static global optimization prob-
lem, aiming to find the optimal or near-optimal partition point.
However, the computing environment where EI provides in-
telligent services is changing dynamically, offline optimization
approaches may be ineffective because they are highly complex
and cannot make timely decisions. Although it is possible to
obtain the optimal partition point through online learning [16],
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(b) GAFPD pipeline for model partitioning.

Fig. 1. Comparison between traditional and GAFPD pipeline for model
partitioning. The traditional model partitioning only optimizes latency or
energy consumption. GAFPD first obtain Nash equilibrium FLOPs with
respect to latency and energy consumption. Then combine the output data size,
Nash equilibrium degree and FLOPs of partition points to build a regression
model. Finally, GAFPD determines the optimal partition point with latency
and energy consumption tradeoff.

[17], [18], [19], it takes a period of time for them to learn to get
the optimal partition point. In addition, the reduction of latency
and the improvement of energy efficiency typically come at the
expense of the energy consumption of edge devices and QoS for
intelligent services, respectively. Therefore, how to efficiently
find the optimal partition point that can reduce latency and im-
prove energy efficiency at same time in a dynamically changing
computing environment is currently a key issue in EI that needs
to be addressed.

In order to conquer the above challenges, we propose game-
based adaptive floating-point operations (FLOPs) and partition
point decision mechanism (GAFPD), which consists of game-
based adaptive FLOPs decision mechanism (GAFDM) and par-
tition point decision mechanism (PDM). As shown in Fig. 1(b),
we demonstrate how GAFPD operates. Firstly, GAFDM obtains
the minimum latency and lowest energy consumption of edge
devices to complete the computing task at the current moment,
along with the corresponding partition points. Moreover, es-
timate the latency of edge server to complete the computing
task offloaded by the end device. Secondly, estimate the latency
and energy consumption of the end device to complete the
computing task alone. On this basis, gain the ability of model
partitioning to reduce latency and improve energy efficiency.
Thirdly, obtain the Nash equilibrium FLOPs with respect to
latency and energy consumption. Finally, combine the output
data size, Nash equilibrium degree and FLOPs of partition
points, PDM constructs a regression model and selects the op-
timal partition point that reduces latency and improves energy
efficiency simultaneously. The main contributions of this paper
are as follows:

* Research on DNN models: We allocate the DNN mod-
els to the end device by layer, analyzing the relationship
among latency, energy consumption, FLOPs allocated to
the end device, and output data size of each partition point.
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We find that allocating reasonable FLOPs to the end device
can reduce latency and improve energy efficiency simul-
taneously. Furthermore, the impact of the output data size
of each partition point on latency and energy consumption
cannot be ignored.

* GAFDM: Based on the relationship among latency, energy
consumption, and FLOPs allocated to the end device, the
GAFDM determines the Nash equilibrium FLOPs allo-
cated to the end device through the game with respect to
latency and energy consumption.

e PDM: Considering the impact of the output data size
of partition points on latency and energy consumption,
combined with Nash equilibrium degree and FLOPs of
partition points, we design the PDM to select the optimal
partition point that achieve the tradeoff between latency
and energy consumption.

* GAFPD for theoretical feasibility and simulation ef-
ficiency: Theoretical analysis and numerous performance
evaluations show that GAFPD not only theoretically com-
putationally feasible, but also can reduce latency and im-
prove energy efficiency simultaneously.

The reminder of this paper is organized as follows. In Sec-
tion II, we discuss related work briefly. Section III shows the
system model, research on DNN model, problem formulation,
and solution in detail, and Section IV gives a detailed descrip-
tion of GAFPD. In Section V, we present various performance
evaluation and Section VI draws the conclusion.

II. RELATED WORK

Recently, academia and industry pay more attention to EI.
However, while benefiting various fields, there are key issues
in EI that need to be addressed, such as latency optimization
[15], [17]1,[20], [21] and energy consumption optimization [13],
[16], [22]. Then, we will discuss and analyze the latency and
energy consumption optimization in detail.

As an important research direction to improve QoS in EI,
latency optimization has attracted the attention of many re-
searchers. While model compression [23], [24] and model early
exit [18], [25] can accelerate the DNN inference, these methods
result in a loss of accuracy and are not suitable for intelligent
services with high accuracy. Therefore, the model partitioning
that has no effect on accuracy is a good choice. To address poor
real-time performance as well as low quality of user experience
in EI, Li et al. [26] proposed the device-edge collaborative infer-
ence framework—Edgent, which combined model partitioning
and right sizing. The experimental results demonstrated that
Edgent can achieve low-latency services in enabling on-demand
EI. Xue et al. [27] proposed a DNN inference acceleration of-
floading scheme based on model partitioning, which optimized
the inference latency and reduces the computing pressure on
the end device. Meanwhile, Ren et al. [28] proposed an effi-
cient model partitioning method based on deep reinforcement
learning, which made the best use of the effective resources
of edge devices to efficiently complete computing tasks under
the premise of ensuring accuracy. In order to facilitate the
partition of DNN models, Lin et al. [21] proposed to convert the
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DNN model into graph, and then heuristically assigned parti-
tioned sub-models to available processors. Experimental results
demonstrated that the proposed mechanism can achieve the
lowest latency compared to other state-of-the-art mechanisms.

The energy consumption optimization is also a key issue
in the sustainable development of EI [29], [30]. Considering
that the end device is constrained by the limited computing
capability, Zeng et al. [31] designed the CoEdge, which utilized
available computation resources of edge devices and partitioned
the DNN model. Furthermore, the CoEdge achieved at least
25.5% energy savings. While optimizing the network structure
of DNNs can reduce energy consumption [32], it inevitably
resulted in a decline in the overall performance of DNNs. In
order to ensure the performance of DNNs, Xue et al. [33]
combined model partitioning and computing offloading to de-
sign a low-energy-efficient strategy, which was a good solution
to the problem that low-battery capacity end devices cannot
support efficient DNNs inference. Ghasemi et al. [34] proposed
a framework for edge servers collaborate with end devices to
provide intelligent services, which employed Markov decision
process to determine which device completes the computing
task at each layer of a DNN model. The framework not only met
the demand of latency of intelligent services, but also effectively
reduced system energy consumption. Aiming at the complex
problems of computing task offloading, collaborative comput-
ing, and resource allocation in EI, Tan et al. [35] formulated
a non-convex mixed integer optimization problem and used
reinforcement learning to solve it, which minimized the energy
consumption of the computing task.

A careful investigation of the above works finds that they
have the following limitations: (1) many researches, e.g., [18],
[24], [27], [28], [32], [33], [34], have the problem of delayed
feedback in optimizing latency or energy consumption. These
methods may be ineffective when dealing with real-world sys-
tems with real-time connectivity and dynamically changing
computing environments, because they are not able to make
optimal or near-optimal decisions in a timely manner. (2) var-
ious existing researches, e.g., [18], [24], [27], [28], the energy
consumption of edge devices is often ignored when optimizing
latency. Similarly, [32], [33], [34], latency is not noticed during
energy consumption optimization. Aiming at the above prob-
lems, we propose the GAFPD that is capable of efficiently se-
lecting the optimal partitioning point in dynamically changing
computing environments to reduce latency and improve energy
efficiency simultaneously.

III. SYSTEM MODEL, RESEARCH ON DNN MODELS,
PROBLEM FORMULATION AND SOLUTION

A. System Model

In the EI, the edge server S is placed alongside a base
station. Within the coverage of cellular network, S federates
m end devices U = {uy, ua, ..., U, } to provide intelligent ser-
vices to users, where one end device corresponds to one user.
Due to different intelligent services adopt different DNN mod-
els, the FLOPs that edge devices need to complete are dif-
ferent. For a DNN model with n layers L = {ly,ls,...,1,},
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TABLE I
MAIN NOTATIONS
Notation Meaning
S The edge server.
L The set of DNNs model layers.
Ik The k-th layer of the DNNs model.
N The set of partition points.
s The partition point.
D The set of output data size.
di, F. The output data size and FLOPs of [j.
U The set of end devices.
m,n The number of end devices and layers.
S The effective switching capacitance.
i fZ-S The computing resource of u; and .S.
Fp. Fy The FLOPs allocated to w; when latency and energy
’ consumption are lowest.
o The ability of model partitioning to reduce latency and
’ improve energy efficiency.
P;, R‘; The transmission power and transmission rate of wu;.
B, hi, Nog The channel bandwidth, channel gain, and noise power.
Bu Rt The energy consumption of u; to complete computing task
17 and transmit data.
ES Th(? inference energy consumption of S to complete com-
v puting task offloaded by w;.
T; The latency of computing task allocated to ;.
t, tf The inference latency of u; and S.
tg The transmission latency of u;.
The boolean indicator of whether the computing task of
Tk Yk I is allocated to u; and S.
cu.cS The number of computing resources consumed by u; and
177 S to complete one FLOP.
H The case that the computing task cannot be completed.
The latency-optimal and energy consumption-optimal
hr,hg FLOPs that allocated to the end device when the com-
puting task cannot be completed.
o s The partition points with satisfactory latency and energy
T, °F consumption.
The mapping functions that determine the FLOPs that
27, ZE allocated to the end device with satisfactory latency and
energy consumption.
The partition function that determines the FLOPs allocated
a(s) to the player.
fs The Nash equilibrium degree of the partition point s.
pt The regression model of w; evaluates the fitness of the
g partition point.

there are n + 1 partition points N ={0,1,2,....,n}. We use
D ={dy,das,...,d,} to denote the output data size of each layer
of the DNN model. For each [}, € L(1 < k <n), it outputs the
data of size dj,. When partitioning the DNN model, any partition
point s € N(0 < s <n) partitions the DNN model into two
parts, where u; complete the computing tasks from layer 1 to
s and the result of layer s is transmitted to .S, which completes
the computing tasks from layer s + 1 to n. In particular, s =0
indicates that the computing tasks are completely completed by
S and s = n indicates that the computing tasks are completely
completed by u;.

After partitioning the DNN model, the energy consump-
tion to complete the computing task consists of three main
components: the inference energy consumption E}* of u;, the
transmission energy consumption E! of u;, and the inference
energy consumption EY of S. Generally, the unit of energy
consumption is Joule (J). When w; complete the computing
task, we use f; to denote the computing resources (i.e., the
number of clock cycles per second of the CPU or GPU) that
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Fig. 2.

the end device can provide. The energy consumption per unit
of computing resources is ¢(f)?, where ¢ is the effective
switching capacitance depending on the chip architecture [36].
And the unit of ¢ is Farad (F). F}, is the FLOPs of layer k, and
the number of computing resources consumed by u; to com-
plete one FLOP is C*. Then the inference energy consumption

of u; is

Ef =) FCi<(f)’ (1)
k=1

In this paper, we utilize orthogonal frequency division multi-
ple access (OFDMA) to enable the communication among edge
devices [37]. There are a total of m end devices, and OFDMA
divides the total bandwidth B into m orthogonal sub-channels
of size B/m, denoted by B. When U = {uy,ua, ..., Uy, } com-
municate with S, S allocates the m sub-channels to U =
{u1,uz, ..., um }. For the computing task that u; offloads to
S, we use P; and h; to respectively denote the transmission
power and channel gain of u; communicating with S. Due to
the interference among different sub-channels [36], then the

transmission rate is

Pih;

2
+N0+Zu,€U\{u,}PJhJ> @)
where NNy is the background noise power. The units of B, P;,
Ny, and R,f respectively are Hertz (Hz), Watt (W), W, and
bit/s (bps).

According to equation (2), the transmission energy consump-
tion E! is

R! = Blog, (1

E! = P,dy/R! 3)

where dj, denotes the output data size of [.

For the edge server S, the computing resource it can provides
is f, and the computing resource consumed by S to complete
one FLOP is C?. Then its energy consumption to complete the
offloaded computing task is

Ef = Y RCSo(f5) “
k=s+1

Here, we focus on the energy consumed by u;, including E}*
and E!. We can obtain the energy consumption of u;

E;=E!+E! )
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Latency, energy consumption and FLOPs of AlexNet at different partition points.

Similarly, the latency of edge devices to complete the com-
puting task consists of three main components: the inference
latency of u;, the transmission latency, and the inference latency
of S. The inference latency of u; and S to complete the com-
puting task at the [, layer respectively are ¢, = Fy,/(C} f}")
and t7, = F},/(C? f7). Furthermore, the computing resources
owned by u; and S determine the inference latency. The output
data size of [y is dj. If the partition point is s = k, then the
transmission latency is ¢ , = di/R}. Therefore, the latency to
complete the computing task is

T; = Z witl'y, 4+ (1 =z )td), + ynti (6)
k=1
where xy, yi € {0,1}. When the computing task of [}, is com-
pleted by the end device, xy, = 1, otherwise, z; = 0. If s <k,
we have yi = 0, otherwise y, = 1.

B. Research on DNN Models

Here, taking AlexNet [38] as an example, we allocate
AlexNet to the end device by layer. Then, we analyze the re-
lationship among latency, energy consumption, and the FLOPs
allocated to the end device. About the edge devices, we select
the NUC with 2.80GHz 8x 11th Gen Intel(R) Core(TM) i7-
1165G7 as the end device', and we use the device equipped with
the 32G NVIDIA TESLA V100 as the edge server platform.
The edge devices use the AlexNet to perform image classifica-
tion over CIFAR-10 [39].

Latency and energy consumption characteristics of DNN
models by layer—As shown in Fig. 2, each histogram in
Fig. 2(a) and Fig. 2(b) respectively represents the latency and
the energy consumption of end-to-edge when partitioning the
AlexNet at different layer. In Fig. 2, the leftmost and right-
most histograms respectively represent the scenarios where the
edge server and the end device complete the computing task
alone. For convenience, we abbreviate them as Edge-only and
End-only. Furthermore, we also use broken line to represent
the FLOPs allocated to the end device in Fig. 2. With the
amount of FLOPs allocated to the end device increases, the
inference latency of the end device is gradually increasing.
Meanwhile, the energy consumption of the end device is also

Thttps://www.intel.com/content/www/us/en/products/docs/boards-kits/nuc/
edge-compute.html
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gradually increasing. The latency and the energy consumption
of transmitting data are different when the partition points are
different, the main reason is that the output data size of AlexNet
varies at different partition points. Therefore, if you want to
optimize latency and energy consumption, you need to allocate
appropriate FLOPs to the end device. Besides, you also should
consider the output data size at each partition point, because it
determines the transmission latency and energy consumption.

Key observations—(1) The latency and the energy con-
sumption of transmitting data respectively are the primary fac-
tors determining overall latency and energy consumption; (2)
Although the edge server has significant computing advantages
compared to the end device, the impact of data transmission
results in the End-only sometimes having lower latency and
higher energy consumption than Edge-only; (3) The appropriate
FLOPs allocated to the end device can reduce latency and
improve energy efficiency of edge devices.

C. Problem Formulation

The edge devices want to provide low latency intelligent
services to users with as little energy consumption as possible in
EI, but the partition points with minimum latency and lowest en-
ergy consumption sometimes are different [11]. Therefore, how
to obtain the optimal partition point that can reduce latency and
improve energy efficiency at the same time is the key problem
that needs to be solved at present. Considering that latency and
energy consumption are determined by the FLOPs allocated to
the end device and the output data size of the partition point.
Therefore, we will obtain the optimal partition point that simul-
taneously reduces latency and improves energy efficiency in the
following two steps. Firstly, we find the FLOPs allocated to the
end device where the latency and energy consumption reach
Nash equilibrium. According to the obtained Nash equilibrium
FLOPs, we can obtain the Nash equilibrium degree of each
partition point. Secondly, combined with the output data size,
Nash equilibrium degree, and FLOPs of partition points, we
establish the regression model and select the optimal partition
point that reduces latency and improves energy efficiency at
same time.

In order to get the Nash equilibrium FLOPs, we define the
following problem. Firstly, we define a convex, closed complete
subset X on R2, where (s7,sg) denotes the pair of partition
points with satisfactory latency and energy consumption. When
st = Sg, it means that the partition points with satisfactory
latency and lowest energy consumption are the same, and we
add (s7,sg) to X. Moreover, we use H to denote the case
that the computing task cannot be completed, at this point, the
partition points with satisfactory latency and lowest energy con-
sumption are different. Suppose that for any point X U {H },
there are two mapping functions zp and zg that determine the
FLOPs allocated to the end device, whose corresponding sets
are defined as

Z ={(2r,2g): 2(s) = Fr,z(s) = Fg,s € X} @)

for the H, we have h = (zp(H), zg(H)) = (0,0).
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When selecting the partition point, it is assumed that the user
is rational, that is, the Nash equilibrium FLOPs can be found.
Then, the problem we are going to solve is able to defined
as follows:

Definition 1: Bargaining problem. If (Z, h) satisfies the fol-
lowing properties: (1) h € Z; (2) for any (Fr, F) in Z, there
is always Fr > hr, Fg > hg; (3) Z is convex, bounded, and
closed. Then (Z, h) is a bargaining problem.

According to Definition 1, find the FLOPs allocated to the
end device where the latency and energy consumption satisfac-
tory is a bargaining problem. Nash proposed and proved that
every bargaining problem (Z, h) has a corresponding bargain-
ing solution F* = (F7, F}.) [40] and satisfies the following
conditions [41],

arg max (Fp — h1)*(Fg — hy)”
0<a,B<1
where (Fr, Fg) € R?, (Fr, Fg) > (h1, hs), a and f3 respec-
tively denote the ability of model partitioning to reduce latency
and improve energy efficiency.

For the ability of model partitioning to reduce latency «,
o =0 when the minimum latency 7; of model partitioning is
greater than the latency 7;“ in which the end device completes
the computing task alone. Otherwise, we assign the ratio of T}
to T; to «. Similarly, for the ability of model partitioning to
reduce energy consumption /3, 3 =0 when F;' is greater than
E;® that the end device completes the computing task alone.
Otherwise, we assign the ratio of F; to F;* to 3. In particular,
when a large number of end devices offload computing tasks
to the edge server causing the edge server to overload (i.e.,
t2 >T%), weset =1 and 3 =0.

Besides, we count the FLOPs that allocated to the end device
and the output data size of each partition point. Then, we estab-
lish the regression model Pif of u; to evaluate the suitability of
s to u;. The input to Pif consists of F that allocated to the end
device, the output data size dg, and the Nash equilibrium degree
fs, where F§, ds and f are all normalized values. In addition,
fs is the FLOPs difference between the partition point s and the
Nash equilibrium FLOPs. Finally, we select the partition point
with the smallest Pif as the optimal partition point. Therefore,
the partition point decision problem can be defined as:

®)

min Pif(F€7dS7fS)7 )
st. 0<s<n, (9a)
0< F,,ds, fo<1. (9b)

D. Nash Bargaining Solution

We formulate the problem of finding the FLOPs allocated to
the end device that simultaneously optimize latency and energy
consumption as a dynamic bargaining game with complete
information. The essence of the bargaining game lies in how
the players divide the desired item. In this paper, we define
F’ = F, — F} as the resource that two players want to divide,
where F1 = IIliIl(F‘T7 FE)» FQ = maX(FT, FE), and [O, FI] is
the bargaining range for two players. We denote the partition
function as q(s): [0, F'] = R, let ¢} and ¢ (q},q5 € [0, F]
and ¢} < ¢) respectively represent the bargaining results for
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the two players. Nash [40], [41] proved that ¢} + ¢5 < F’ and
Eq. (7) achieves its maximum value if and only if ¢ + ¢4 = F”.
Thus, we can obtain the following theorem.

Theorem 1: When =1 and =1, the Nash equilib-
rium solution of the bargaining problem (Z,h) is z =
zo = (Fy — F1)/2 and the maximum value of Eq. (7) is
(Fy — F»)?/4. Otherwise, the Nash equilibrium solution is
z=F + (1 - pB)(Fy, — F1)/(1 — af) and the maximum value
of Eq. (7) is a(l — B)2(Fy — F»)?/(1 — aB)?, where F| =
min(FT7 FE), F2 = HlaX(FT, FE)

Proof: When Eq. (7) takes the maximum value, we can
obtain the Nash equilibrium solution of the game. Due to
(h1,h2) =(0,0), we need to obtain the maximum value of
F%Fg to get the Nash equilibrium solution.

First, we consider the case of & = 3 = 1. We need to find a
point that maximizes the value of F'r F'g, that is, find the values
of Fy and F5 corresponding to the maximum value of FjFb.
Since F' = F, — F; and ¢} + ¢4 = F’, we can obtain

(Fr —d)*(Fg — dy)”?
(Fy — Fy)°

B Fy, — Fy
= (2’1 5 )—i— 1

Obviously, the maximum value of (Fr — hy)®(Fg — ho)”
is (F} — F»)?/4, and the corresponding value of ¢} is (Fy —
F1)/2. Then the FLOPs that the end device need to complete
is (Fr + Fg)/2.

Then we discuss the general case where « and 3 are not
simultaneously equal to 1. The two players alternate their bid-
ding, and in each round, each player attempts to reduce the other
player’s share and increase its own share.

We assume that the two players reach a consensus after r
rounds of the game. The share that one player can obtain is ¢/,
and ¢} is equal to « or /3 times the result of the previous round of
bargaining. In the bargaining game with complete information,
the other player knows that the player will be satisfied with the
share ¢} received in round r. Besides, the offer of the player
in round r — 1 will not exceed ag} or B¢}. To maximize the
payoff of the first player, the other player of the game will make
an offer (g}, 1 — aq}) or (B¢},1 — Bq¢}) in round r — 1.

For the other player, it knows that the player who gets ai¢} or
B¢} share in round r — 1 will offer 5(1 — aq}) or a(1 — fq})
in  — 2 round. Therefore, for the other player, it will offer (1 —
B(1— adh). B(1 - agh) or (1 - a(l - ;). a(l - Bg;)) in
round r — 1, in other words, the share it can get in round r — 1
is1—08(1—ag))orl—a(l-—_paq).

Therefore, we can get 1 — B(1 —aq)) =¢, or 1 —a(l1 —§
&) = i then g, = (1 — B)/(1— aB) or s = (8 — aB)/(1 -
af3). Since the range of the game is [0, F5 — F}], we can get
the result of the game is Fip = Fy + (1 — 8)(F> — F1)/(1 —
aB) or Fr=F,— (Fy — F1)B(1 —«a)/(1 —af), and the
maximum value of (Fr —d)*(Fg —d2)? is a(l —B)32
(Fy — F2)?/(1 —ap)?. O

(10)

E. Partition Point Decision Model

Here, we model the ability of each partition point to si-
multaneously optimize latency and energy consumption. As
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defined in Section III-C, the partition point for simultaneously
reducing latency and improving energy efficiency is determined
by Fj, ds, and f, jointly. Therefore, for each partition point, we
first measure the latency and energy consumption under varied
configurable parameters. Then, compared with the end device
to complete the computing task alone, we quantify the ability
of each partition point to reduce latency and improve energy
efficiency. Next, we establish a regression model for partition
points to judge their ability to simultaneously optimize latency
and energy consumption. We use logarithmic or linear functions
as regression functions, and the percentage reduction in latency
and energy consumption as performance metrics.

In the regression function, every variable(Fs, ds, and f;)
plays an indispensable role in assessing the partition point’s
ability to reduce latency and improve energy efficiency simul-
taneously. In the Section III-B, we have elaborated the impact
of the FLOPs allocated to the end device and the output data
size of each partition point on latency and energy consumption.
The f; denotes how far the partition point s deviates from
the Nash equilibrium FLOPs. The importance of each of the
aforementioned variables can be derived through training.

As previously mentioned, it is an analysis step required for
each DNN model to establish the regression model. The es-
tablished PDM can directly assist edge devices to select the
optimal partition point that simultaneously reduces latency and
improves energy efficiency without additional overhead.

IV. GAME-BASED ADAPTIVE FLOPS AND PARTITION POINT
DECISION MECHANISM

In order to solve the problem defined in Section III, we pro-
pose GAFPD (Fig. 3). As shown in Algorithm 1, for any end de-
vice u;, our proposed mechanisms consist of the following four
main steps: (1) Obtain the model partition points with minimum
latency and the lowest energy consumption, along with their
corresponding partition points. Moreover, estimate the latency
of edge server to complete the computing task offloaded by
the end device (lines 1-3); (2) Estimate the inference latency
and energy consumption when the end device complete the
computing task alone, obtain the ability to reduce latency and
improve energy efficiency that the edge server collaborate with
the end device to complete computing task (lines 4-18); (3) A
bargaining game based on the above information is established,
then obtain Nash equilibrium FLOPs with satisfactory latency
and energy consumption (line 19); (4) Obtain the partition point
through PDM (line 20).

A. Game-Based Adaptive FLOPs Decision Mechanism

The purpose of GAFDM is to obtain the Nash equilibrium
FLOPs that reduce latency and improve energy efficiency at
same time. As shown in Algorithm 2, one player of the game
first gives its bid, that is, the FLOPs F7. The other player gives
the FLOPs Fj. In each round of the game, both players aim
to reach a Nash equilibrium with respect to FLOPs by making
certain concessions until the difference between their strategies
is less than or equal |F;, — Fy| < 1073, We discuss the follow-
ing two cases, when o = 3 = 1, the concession function of two
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Fig. 3. Game-based adaptive FLOPs and partition point decision mechanism.

Algorithm 1 Game-based adaptive FLOPs and partition point
decision mechanism (GAFPD)

Algorithm 2 Gamed-based adaptive FLOPs decision mecha-
nism (GAFDM)

Input: The end device u;, the F LOPs; that u; need to com-
plete, the output data size D; = {d},d?,...,d?} of each
partition point of the selected DNNs model, the regression
model P;.

Output: Partition point s;.

1: Ty, sT < get minimum latency and partition point;

2 E;, sF < get lowest energy consumption and partition

point;

t7 < get the inference latency of S;

: BT < get energy consumption and latency when u;

completes the inference task alone;

50 if t¥ > T2 then

6: < 1,08+ 0;

7: else

8: if T; > T} then

9: a <+ 0;

10:  else

11 a+—1-T;/T%

12: end if

13:  if E! > E then

14: B4+ 0;

15:  else

16: B+« 1—E;/E®

17:  end if

18: end if

19: FN < GAFDM (a, ,B,FLOPS,,E,,SZ LTy, sT);
20: S; ePDM(FLOPsl,DZ,F Pg, 28 );
21: return s;.

players of the game is f(r) = F'/[(a + ) + e~2("= 1], where
r denotes the number of rounds in the game, and F’ = Fy — F}
in every round of the bargaining process. In particular, when
0 <a<1land0<a <1, after one round of the game, the two
players reach an agreement on the FLOPs value according to
Theorem 1, resulting in Fy = Fy + F'(1 — 3)/(1 — af). Fi-
nally, the two players determine the Nash equilibrium FLOPs
for u; with satisfactory latency and energy consumption, which
is F1 + min(FE, FT)

Input: «, 5, E;, s , T, s ,and FLOPs;.

Output: Nash equ111br1um FLOPs Fy + min(Fg, Fr).

1. F1 =0; Fo =max(Fg, Fr) — min(Fg, Fr); F'=F, —
Fi;r=1;

2: while Ay, Ay~ MAX to A; <1073 or Ay <1073 do

33 ifa=1and =1 then

4: Calculate Fy = Fy + f(r), Fo=Fy— f(r) where
fr)=F'/l(a+B) +e 2~ 1)] and Ay = |F1Fy —
(Fg — Fp)?

50 else

6: F=FR+FQ1-p8)/1-apb);

7: F=F—-Fp1-a)/l-ab);

8:  end if

9: A1:|F17F2|,F/:F27F1,7”':7’+].;

10: end while
11: return F + min(Fg, Fr).

B. Partition Point Decision Mechanism

As shown in Algorithm 3, after getting the Nash equilibrium
FLOPs allocated to the end device u;, we first calculate the Nash
equilibrium degree for the partition points between s and s7.
Then, we calculate the ratio of each partition point’s Nash equi-
librium degree to the maximum Nash equilibrium degree among
these partition points. Subsequently, we obtain the normalized
Nash equilibrium degree for each partition points. Similarly, we
normalize the FLOPs allocated to uZ and the output data size
at each partition point between s” and s7. Next, we use the
regression model Pf to calculate the ﬁtness for each partition

point. Fmally, we sort Pf in non-decreasing order and select
the point s " with the minimum Pf , as the final partition point.

C. A Working Example

We illustrate how GAFDM determines the Nash equilibrium
FLOPs and PDM determines the final partition point through
the following example. There are four computing tasks that
require the end device and edge server to complete, the FLOPs
allocated to the end device with the lowest energy consumption
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Algorithm 3 Partition point decision mechanism (PDM)

Input: FLOPs;,D;,FN P!, sE, sT.

7 s
Output Partition point s;.

1: s =min(s lE,sﬁ) s¢ = max(sF, st);

2 foreachs in (s7,s5) do
s fi =|F/ - FN).
4; end for
s: Normalize of {F?, FS .. Fe}, {ds,diT, ..., d¢} and
+1
(e e S 1
6: for each s/ 1n( sf,s5) do
7. Pl PI(F . 1),
8: end for
f ; f f fo.
9: Sort P’V? according to Py, < P; 4 <. < P 3
10: 85 =57 3
11: return s;.
TABLE 1T
RELATED INFORMATION AND RESULTS ABOUT BARGAINING
Task | Fg(FLOPs) | Fr(FLOPs) | (o, ) | Bargaining reslut

1 ™M 05 M LD 0.75 M

2 15M M (1,0.8) M

3 ™ 05 M 03.0) ™

7 oM ™ @D 15 M

and minimum latency are presented in Table II. Besides, we
use the binary group (v, 3) to denote the ability of model
partitioning to reduce latency and energy consumption. After
obtaining the Nash equilibrium FLOPs, we use the PDM to
determine the partition point, and the required information is
presented in Table III. In Table II and Table III, task refers to
computing task.

As shown in Table II, we take the computing task 1 as an
example to illustrate the bargaining, the FLOPs of the end de-
vice with the lowest energy consumption and minimum latency
respectively are 1 M and 0.5 M. The two players will play the
game on the FLOPs that allocated to the end device, and the
concession function of the game is f(r) = 0.5/(2 + e~ 2("=1).
First, the player with the lowest energy consumption proposes
that the FLOPs allocated to the end device are 5/6 M, while the
acceptable FLOPs for the player with the minimum latency are
2/3 M. Therefore, the two players cannot reach an agreement
and need to continue the game. According to Algorithm 2, after
a certain number of rounds of the game, the two players finally
reach an agreement on 0.75 M. As for the computing task 2,
because « and [ are not simultaneously equal to 1, they reach
an agreement on 1 M after one round of game according to
Theorem 1. Similarly, for the computing tasks 3 and 4, the final
results of the games respectively are 1 M and 1.5 M.

As shown in Table III, taking the computing task 1 as an
example, we illustrate how to determine the final partition point.
First, we calculate the Nash equilibrium degree of the partition
points from the minimum latency to the lowest energy con-
sumption, and the Nash equilibrium degree of partition points 1,
2, and 3 of computing task 1 respectively are 0.25, 0, and 0.25.
Then, we normalize the FLOPs, Nash equalization degree, and
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TABLE III
RELATED INFORMATION AND RESULTS ABOUT PDM

Partition point FLOPs(M) Output data size
Task 1 | Task 2 | Task 3 | Task 4 | Task 1 | Task 2 | Task 3 | Task 4
0 0 0 0 0 0.25 0.25 0.25 0.25
1 0.5 1 0.5 1 1 1 0.75 2
2 0.75 1.5 1 1.5 0.25 1.5 1.25 2.5
3 1 2.5 1.5 2 1 2.5 2 3

output data size of the partition points. The normalized results
of the above three values corresponding to the partition points 1,
2, and 3 of computing task 1 respectively are (0.22, 0.33, 0.45),
(0.5, 0, 0.5), and (0.45, 0.1, 0.45). Finally, using the regression
model to evaluates the fitness of each partition point. Here,
we assume that the regression model is P = P+ f1+dy,
where F}, f1, and d; respectively represent normalized results
of FLOPs, Nash equilibrium degree, and output data size. The
fitness of partition points 1, 2, and 3 of computing task 1 are
(1.15,0.43, 1.4). Therefore, the final partition point of comput-
ing task 1 is 2. Similarly, we can get that the final partition point
of computing task 2, 3, and 4 respectively are 1, 2, and 2.

D. Theoretical Analysis

For any end device u; and edge server .S, the computational
complexity of getting T}, s, E;, s¥ B¢, T?, and TS is con-
stant. In addition, the computational Complex1ty of obtaining
the ability to reduce latency and improve energy efficiency that
edge devices complete computing task is also constant. Subse-
quently, we obtain Nash equilibrium FLOPs with satisfactory
latency and energy consumption through gaming. When o = 1
and =1, we can get the Nash equilibrium FLOPs in ten
rounds of game. Otherwise, we can get the Nash equilibrium
FLOPs in one round of game. In other words, the computational
complexity of u; obtains Nash equilibrium FLOPs is constant.
Then, we calculate and normalize the Nash equilibrium degree
of the partition points between s” and s!, the computational
complexity is O(n). Similarly, the computatlonal complexity
of normalizing the FLOPs allocated to uZ and the output data
size at each partition point between sZ and s7 is also O(n).
Next, we calculate the fitness of the aforementloned partition
points through the regression model P ;.; and sort the results, the
computational complexity is O (7 - logn) There are a total of m
end devices in the coverage of S. Therefore, the computational
complexity of selecting partition points for edge devices is
O(mn - logn).

In summary, our proposed GAFPD can select the opti-
mal partition point that reduces latency and improves energy
efficiency with polynomial complexity, that is, it is computa-
tionally feasible.

V. EXPERIMENT EVALUATIONS

In this section, we first give a brief introduction to the ex-
perimental settings, mainly including experimental parameters,
DNN models, dataset, benchmarks and so on. Then, we verify
the feasibility of our proposed mechanism through a series of
simulation experiments. Here, we mainly focus on the opti-
mization of latency and energy consumption, adaptability to
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TABLE IV
LATENCY SPEEDUP AND ENERGY CONSUMPTION SAVE OF DIFFERENT
MECHANISMS COMPARED TO END-ONLY
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TABLE V
LATENCY SPEEDUP AND ENERGY CONSUMPTION SAVE OF DIFFERENT
MECHANISMS COMPARED TO NEUROSURGEON-L

ResNet18 MobileNet VGG16 ResNetl18 MobileNet VGG16
e Energy . Energy o Energy Energy i Energy Energy
Latency consumption Latency consumption Latency consumption Latency consumption Latency consumption Latency consumption
End-only 200 ms 0.203 ) 100 ms 0.173 ) 610 ms 2.296 J Neurosurgeon-L 200 ms 0.203 J 100 ms 0.173 ) 292.109 ms 0.096 J
Edge-only +94.406% | -36.946% | +93.406% | -63.006% | -52.113% | -95.818% End-only 0 0 0 0 +108.826% | +2291.667%
Neurosurgeon-L 0 0 0 0 52.113% | 95319% Edge-only 194406% | -36.946% | +93.406% | -63.006% 0 0
Neurosurgeon-E | +94.406% | -36.946% | +93.406% | -63.006% | -52.113% | -95.819% Neurosurgeon-E_| +94.406% | -36.946% | +93.406% | -63.006% 0 0
GAFPD +29568% | -14.286% +1.806% 50.867% | -52.113% | -95.819% GAFPD +29.568% [ -14.286% +1.806% -50.867% 0 0
changes in bandwidth, the impact of the number of end devices
TABLE VI

on performance, and the impact of the transmission power on
performance. Finally, we deploy GAFPD on an EI system based
on robots to verify its effectiveness.

A. Experiment Settings

We consider the scenario where a single server combines
multiple end devices to provide intelligent services to users.
In this scenario, the number of end devices are randomly dis-
tributed in [1,100], and the bandwidth resources of edge devices
is B =40 MHz. The computing task can be completed by the
end device with f}* =[0.1,2.1] GHz, and the energy consump-
tion per unit of computing resource is ¢(f*)? = [0,4 x 1077]
J. When the end device offloads the computing task to the edge
server, the transmission power is P; = 0.1 W, the noise power
No=10"" W, the channel gain h; is uniformly distributed
in [107°,1073], and the transmission rate is R! = [0, 5] Mb/s
[42]. Then, the edge server completes the offloaded computing
task with f° = [0.1,2.1] GHz, and the energy consumption per
unit of computing resource is ¢(f*)*=[0,1.5 x 107°] J. In
addition, the number of computing resources consumed by the
end device and edge server to complete one FLOP respectively
are C}* = 1/32 and C = 1/32. That i, the end device and edge
server are capable of performing 32 single-precision floating-
point calculations per clock cycle.

Then, we select three DNNs models (ReseNet18 [43], Mo-
bileNet [44], and VGG16 [45]) to evaluate the performance of
GAFPD for image classification over CIFAR-10 [39] on the
machine learning platform Pytorch. Moreover, we select the
following benchmarks for comparison.

Benchmarks. (1) End-only: All computing tasks are com-
pleted by the end device. (2) Edge-only: The end device offloads
all computing tasks to the edge server. (3) Neurosurgeon with
optimal latency (Neurosurgeon-L) [11]: The Neurosurgeon se-
lects the partition point with optimal latency. (4) Neurosurgeon
with optimal energy consumption (Neurosurgeon-E) [11]: The
Neurosurgeon selects the partition point with optimal energy
consumption. (5) Autodidactic neurosurgeon (ANS) [17]: The
ANS obtains the partition point with optimal latency through
the built-in learning module.

B. Simulation Results

In this subsection, we analyze the experimental results. It is
important to note that the real execution time of the GAFPD and
benchmarks is between 0 and 1 ms. Compared to the time taken
by edge devices edge devices to complete computing tasks, the

LATENCY SPEEDUP AND ENERGY CONSUMPTION SAVE OF DIFFERENT
MECHANISMS COMPARED TO NEUROSURGEON-E

ResNet18
Energy
consumption
388.812 ms 0.128 J 193.406 ms 0.064 J 292.109 ms 0.096 J
-48.561% +58.594% -48.295% +170312% | +108.826% | +2291.667%
Edge-only 0 0 0 0 0 0
Neurosurgeon-L -48.561% +58.593% -48.295% +170.312% 0 0
GAFPD -33.352% +35.938% -47.362% +32.812% 0 0

MobileNet
Energy
consumption

VGG16
Energy
I iol

Latency Latency Latency

n

Neurosurgeon-E
End-only

real execution time of each mechanism is negligible. In other
words, the real execution time of each mechanism does not
affect the selection of partition points.

1) Latency and energy consumption: We conduct a series of
simulation experiments based on the above experiment settings.
We select End-only, Neurosurgeon-L, and Neurosurgeon-E as
baselines, and the experimental results are shown in Tables IV,
V, and VI. In the Tables, the bold data in the first row repre-
sents the baseline, and we have recorded its latency and energy
consumption. Subsequently, we record the percentage improve-
ment in latency and energy consumption compared to the base-
line for different mechanisms. Among them, positive numbers
indicate the percentage increase in latency and energy consump-
tion compared to the baseline for different mechanisms, while
negative numbers indicate the percentage reduction. Now, we
proceed to analyze the experimental results.

In Table VI, for lightweight DNN models, such as ResNet18
and MobileNet, Neurosurgeon-L has similar latency and energy
consumption compared to End-only. This is due to the end
device’s computing capacity being efficiently handle the com-
puting tasks of these lightweight DNN models. We also find that
the ratio of the increase in latency of GAFPD to the decrease
in energy consumption is 2.07 for ResNetl8, while the ratios
for Edge-only and Neurosurgeon-E are 2.56. Similarly, for Mo-
bileNet, GAFPD is able to trade a 1.806% increase in latency
for a 50.867% reduction in energy consumption. In other words,
GAFPD can achieve greater energy consumption savings with
a lower incremental cost in latency. For DNN models with high
complexity, such as VGG16, completely offloading computing
tasks to the edge server is undoubtedly a superior option.

As mentioned above, in Table V, for lightweight DNN mod-
els, Neurosurgeon-L has similar latency and energy consump-
tion compared to End-only. Therefore, we do not present re-
peated comparisons between Neurosurgeon-L and other mech-
anisms. For VGG16 with high complexity, the latency and
energy consumption of GAFPD are comparable to those of
Neurosurgeon-L, indicating that GAFPD is feasible.
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Fig. 4. Partition point selection of GAFPD and ANS under changing
bandwidths.

In Table VI, for ResNet18 and MobileNet, when compared to
Neurosurgeon-E, GAFPD demonstrates a reduction in latency,
albeit at the cost of increased energy consumption. And com-
pared with End-only and Neurosurgeon-L, GAFPD shows the
smallest percentage increase in energy consumption. Finally,
for VGG16 with high complexity, the latency and energy con-
sumption of GAFPD are the same as those of Neurosurgeon-E,
and the selected partition point is optimal, which shows that
GAFPD is feasible.

2) Impact of bandwidth: The above experimental results
prove that GAFPD can reduce latency and improve energy
efficiency at same time. Furthermore, to prove the adaptability
of GAFPD to changing bandwidths, we perform the image
classification task over CIFAR-10 with AlexNet to evaluate the
adaptability of GAFPD when the bandwidth changes.

First of all, we compare the performance of GAFPD and
ANS under changing bandwidth conditions, the experimental
results are shown in Fig. 4. When the bandwidth is 10 MHz,
the partition point selected by GAFPD and ANS for AlexNet
is 4. When the bandwidth is reduced from 10 MHz to 1 MHz,
GAFPD quickly adjusts the partition point to 22, resulting in
a latency of 78 ms and an energy consumption of 0.105 J.
However, the partition point selected by ANS remains at 4,
resulting in a latency of 278.817 ms and energy consumption
of 0.099 J. Meanwhile, it takes a period of adaptation for ANS
to adjust the partition point to 22. Compared to ANS, GAFPD
achieves a reduction of 72.02% in latency at the expense of only
5.71% increase in energy consumption. Subsequently, when the
bandwidth increases from 1 MHz to 3 MHz, GAFPD promptly
adjusts the partition point to 8, resulting in a latency of 95.752
ms and an energy consumption of 0.07 J. At this point, ANS has
adjusted the division point to 22 through online learning, and
GAFPD can sacrifice a 22.72% increase in latency for a 33.33%
reduction in energy consumption. Finally, when the bandwidth
increases from 3 MHz to 10 MHz, the selected partition point
for GAFPD is 0, resulting in a latency of 38.545 ms and an
energy consumption of 0.019 J. On the other hand, the latency of
ANS is 78 ms, while its energy consumption is 0.105 J. Overall,
when the bandwidth changes, GAFPD not only outperforms
ANS, but also solves the problem of delayed feedback of ANS.
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Latency and energy consumption of AlexNet under different band-

Furthermore, we test the ability of different mechanisms
to adapt to changing bandwidth. According to the analysis
of the results of Tables VI, V, and IV, it can be concluded
that for lightweight DNN models, the latency and energy con-
sumed of Neurosurgeon-L are the same as those of End-only.
And Neurosurgeon-E has the same latency and energy con-
sumption as Edge-only. Therefore, we choose Neurosurgeon-L,
Neurosurgeon-E, and GAFPD to partition the AlexNet when the
bandwidth varies between 0.1 MHz to 5 MHz. The results of
these experiments are shown in Fig. 5.

In Fig. 5, Fig. 5(a) and Fig. 5(b) respectively depict the
latency and energy consumption of different model partitioning
mechanisms under different bandwidths. When the bandwidth
is greater than 1 MHz, the latency of Neurosurgeon-E increases
rapidly, and simultaneously, its the energy consumption de-
creases rapidly. With the increase of bandwidth, the energy
consumption of data transmission becomes lower than that of
the end device completing the computing task alone. So, the end
device offload the computing task to the edge server. However,
the latency introduced by data transmission is much greater
than that of the end device completing computing tasks alone.
With the increase of bandwidth, latency generated by data trans-
mission gradually decreases, and both the latency and energy
consumption of Neurosurgeon-E gradually decrease. When the
bandwidth is greater than 3.5 MHz, the latency and energy
consumption of Neurosurgeon-E become comparable to those
of GAFPD. When the bandwidth is greater than 4.0 MHz, the
latency and energy consumption of the three model partitioning
mechanisms (Neurosurgeon-L, Neurosurgeon-E, and GAFPD)
become comparable, indicating that they have chosen a similar
partition point.

Based on the simulation results above, it is evident that
GAFPD takes into account the impact of latency and energy
consumption on edge devices in selecting the partition point
as the bandwidth changes. In addition, when the bandwidth is
greater than 1.5 MHz and less than 3.5 MHz, GAFPD priori-
tizes energy efficiency over latency, making a strategic tradeoff
between the two. When latency is not a critical requirement
for the computing task, it is a more energy-efficient choice for
end devices with limited energy. based on the results of simu-
lation experiments, it can be observed that GAFPD adaptively
selects the overall optimal partition point in response to changes
in bandwidth.
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Fig. 6. Partition point selection of different mechanisms under different
number of end devices.

3) Impact of the number of end devices: In order to evaluate
the impact of network scale on the performance of GAFPD.
We begin with an initial number of end devices set at 1 and
increment the number of end devices by 5 each time until the
total number of end devices reaches 100. Then, we record the
partition points selected by different mechanisms as the number
of end devices changes. The experimental results are presented
in Fig. 6.

According to Fig. 6, when the number of end devices is less
than 30, the partition point selected by GAFPD corresponds to
that of Neurosurgeon-L or Neurosurgeon-E. The main reason
is that the goal of GAFPD is to select the optimal partition
point that can simultaneously reduce latency and improve en-
ergy efficiency. That is, GAFPD aims to achieve greater energy
consumption reduction or latency reduction, while limiting the
increase of latency or energy consumption. When the num-
ber of end devices ranges between 30 and 45, the allocated
bandwidth per end device diminishes as the number of end
devices increases. Therefore, GAFPD selects the 8-th layer of
AlexNet with smaller intermediate layer output as the partition
point for the newly connected end device to achieve the tradeoff
between latency and energy consumption. When the number of
end devices exceeds than 45, the high load of the edge server
causes higher inference latency. Moreover, communication be-
tween edge devices results in increased latency and energy
consumption. Therefore, GAFPD allocates the computing task
to the end device to achieve the tradeoff between latency and
energy consumption. When the number of end devices exceeds
85, Neurosurgeon-L, Neurosurgeon-E, and GAFPD all choose
to allocate the computing task to the end device. The main
reason is that the latency and energy consumption of offloading
computing tasks to the edge server are much higher than those
of end devices to complete computing tasks alone.

4) Impact of the transmission power: In order to evaluate
the impact of transmission power changes on performance, we
initiate the transmission power of the end device at 0.05 W and
gradually increase it by increments of 0.01 W until it reaches
0.15 W. Similarly, we perform the image classification task
over CIFAR-10 with AlexNet. Then, we compare the latency
and energy consumption of Neurosurgeon-L, Neurosurgeon-
E, and GAFPD to when completing the computing task. The
experimental results are shown in Fig. 7.

From the Fig. 7, when the transmission power is less than
0.09 W, the latency of Neurosurgeon-L is less than that of
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Fig. 7. Latency and energy consumption of AlexNet under different trans-
mission powers.

Neurosurgeon-E and GAFPD. And the energy consumption
of Neurosurgeon-L is higher than that of Neurosurgeon-E and
GAFPD. The main reason is that when the transmission power
is low, the communication latency between the end device and
the edge server is much greater than the latency that the end de-
vice completes the computing task alone. However, the energy
consumption of data transmission is less than that of the end
device to complete the computing task alone. As the transmis-
sion power increases, the communication latency between edge
devices gradually decreases. Therefore, when the transmission
power is greater than 0.09 W, the latency of Neurosurgeon-L
and GAFPD is equal and lower than that of Neurosurgeon-
E, i.e., the partition points selected by Neurosurgeon-L and
GAFPD is the same. At the same time, the energy consumption
of Neurosurgeon-L and GAFPD is equal and higher than that
of Neurosurgeon-E.

With the change of transmission powers, GAFPD compre-
hensively considers the impact of latency and energy consump-
tion on edge devices to select partition points. In particular,
when the transmission power is greater than 0.09 W, GAFPD
is able to exchange a 43.24% increase in energy consumption
for an 81.83% reduction in latency. Therefore, we can conclude
that the GAFPD is able to select the optimal partition point to
reduce latency and improve energy efficiency as the transmis-
sion power changes.

C. Experimental Results on EI System

We deploy GAFPD on an EI system based on the Robo-
Master University Al Challenge (RMUA)?, and then evaluate
its efficacy in terms of latency reduction and energy efficiency
improvement. The EI system based on the RMUA platform is
shown in Fig. 8, which is composed of end devices, a router, and
an edge server. Furthermore, we briefly illustrate the completion
process of the computing task together with Fig. 8. The end
device is equipped with NVIDIA Jetson TX2, and it has a
battery with an initial capacity of 4700 mAh. The edge server
is equipped with an NVIDIA GeForce RTX2060 GPU, one of
NVIDIA’s latest offerings for servers.

1) Latency and energy consumption: Here, we first de-
ploy End-only, Edge-only, Neurosurgeon-L, Neurosurgeon-E,
and GAFPD on the EI system based on the RMUA platform.

Zhttps://www.robomaster.com/zh- CN/robo/icra?djifrom=rmul


https://www.robomaster.com/zh-CN/robo/icra?djifrom=rmu1
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Fig. 8. An EI system based on RMUA. (© The end device captures the
current battle environment through its camera, and then utilizes the GAFPD
deployed on the end device to obtain the partition points. After that, the
NVIDIA Jetson TX2 embedded in the end device performs the corresponding
computing tasks; @ The end device transmits the computing result to the edge
server via the router; @ The edge server completes the remaining computing
tasks and obtains the final inference result, which is to distinguish between
enemy and friendly robots; @ The edge server transmits the final inference
result to the end device via the router.)

TABLE VII
LATENCY SPEEDUP AND ENERGY CONSUMPTION SAVE OF DIFFERENT
MECHANISMS COMPARED TO END-ONLY BASED ON RMUA

MobileNet
The number
of inferences

VGGI16

The number
of inferences
1104 ms 6384
-76.721% | +4844.612%
-76.721% | +4844.612%
-76.721% | +4844.612%
-76.721% | +4844.612%

ResNet18

The number

of inferences
End-only 303 ms 95512 112 ms 98242
Edge-only +190.429% +90.171% +475.892% | +183.327%

Neurosurgeon-L 0 0 0 0

Neurosurgeon-E | +190.429% +90.171% +475.892% | +183.327%
GAFPD +60.726% +27.035% +129.464% +88.885%

Latency Latency Latency

TABLE VIII
LATENCY SPEEDUP AND ENERGY CONSUMPTION SAVE OF DIFFERENT
MECHANISMS COMPARED TO NEUROSURGEON-L BASED ON RMUA

ResNet18 MobileNet VGGl6
Latency Thf: number Latency Th_e number Latency Th_e number
of inferences of inferences of inferences
Neurosurgeon-L 303 ms 95512 112 ms 98242 257 ms 315664
End-only 0 0 0 0 +329.572% -97.978%
Edge-only +190.429% +90.171% +475.892% | +183.327% 0 0
Neurosurgeon-E +190.429% +90.171% +475.892% +183.327% 0 0
GAFPD +60.726% +27.035% +129.464% +88.885% 0 0

Then, we fully charge the end device and count the number
of inferences that each mechanism can complete when the end
device depletes its battery. In addition, we also measure the
latency associated with each mechanism for completing a single
inference. For convenience, we utilize the number of infer-
ences to assess the energy consumption of each mechanism.
Similar to the simulation, we select End-only, Neurosurgeon-L,
and Neurosurgeon-E as baselines. The experimental results are
presented in Tables VII, VIII, and IX. These tables record the
latency of different mechanisms when completing one inference
using various DNN models. They also record the number of
inferences that can be completed with the energy consumption
of the end device with a 4700 mAh capacity. Among them, the
column showing the number of inferences indicates the percent-
age increase (positive) or decrease (negative) of the number of
inferences for different mechanisms compared to the baseline.

Similar to the simulation results, the Neurosurgeon-L and
End-only have similar effects on reducing latency and energy
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TABLE IX
LATENCY SPEEDUP AND ENERGY CONSUMPTION SAVE OF DIFFERENT
MECHANISMS COMPARED TO NEUROSURGEON-E BASED ON RMUA

ResNet18 MobileNet VGG16
The number The number The number
Latency o Latency o N Latency P
of inferences of inferences of inferences
Neurosurgeon-E 880 ms 181636 645 ms 278346 257 ms 315664
End-only -65.568% -47.416% -82.636% -64.705% +329.572% -97.978%
Edge-only 0 0 0 0 0 0
Neurosurgeon-L | -65.568% -47.416% -82.636% -64.705% 0 0
GAFPD -44.659% -33.199% -60.155% -33.333% 0 0

consumption in Table VII. When using lightweight DNN mod-
els like ResNet18 and MobileNet, the percentage increase in
the number of inferences for GAFPD is smaller compared to
Edge-only and Neurosurgeon-E. However, in terms of latency,
GAFPD causes a much smaller percentage increase compared
to both Edge-only and EOPM. The latency generated by the
Edge-only and Neurosurgeon-E is too high for latency-sensitive
computing tasks in the EI system based on the RMUA platform.
GAFPD is a superior choice to reduce energy consumption,
albeit with a certain increase in latency. For VGG16, it is
undoubtedly a better choice to hand over computing tasks to
the edge server, which can not only reduce latency, but also
greatly reduce the energy consumption.

In Table VIII, for ResNet18 and MobileNet, End-only has
the same latency and the number of inferences that can be com-
pleted as Neurosurgeon-L, so we no longer repeat the analysis
of them. For VGG16 with high complexity, compared with the
experimental results in Table VII, the latency of Neurosurgeon-
L is much smaller than that of End-only, and Neurosurgeon-
L can complete 48.45x more computing tasks compared to
End-only. In addition, the GAFPD incurs the same latency and
can complete the same amount of inferences as Neurosurgeon-
E, which is the optimal result, indicating that our proposed
GAFPD is feasible.

In Table IX, it can be seen that the Edge-only has the same
latency and can complete the same amount of inferences as
Neurosurgeon-E. Since computing tasks are handed over to the
edge server, Neurosurgeon-E and Edge-only can complete more
inferences. However, limited by the bandwidth, the inference
latency of Neurosurgeon-E and Edge-only is higher than that
of several other mechanisms. For ResNetl18 and MobileNet,
although the latency of GAFPD is higher than that of End-only
and Neurosurgeon-L, the number of inferences that GAFPD can
complete is higher than that of End-only and Neurosurgeon-
L. Especially for energy-constrained end devices, it is impor-
tant to reduce energy consumption within tolerable latency.
For VGG16, the latency of GAFPD and the number of in-
ferences that GAFPD can complete are comparable to those
of Neurosurgeon-E, which shows that our proposed GAFPD
is feasible.

2) Impact of bandwidth: Next, we evaluate the adaptability
of GAFPD to bandwidth changes. Here, we use AlexNet to
perform image classification over CIFAR-10. Similar to the pre-
vious simulation experiment, we select three model partitioning
mechanisms: Neurosurgeon-L, Neurosurgeon-E, and GAFPD.
We measure the latency and the number of inferences of the
EI system based on RMUA under different bandwidths. The
results are shown in Fig. 9.
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Fig. 9. Latency and the number of inferences of AlexNet under different
bandwidths on the EI system based on the RMUA platform.

In Fig. 9, it can be seen that when the bandwidth is low
(0.5 MHz), the latency and the number of inferences that the
three model partitioning mechanisms can complete on the EI
system based on RMUA are the same. This is because when
the bandwidth is low, data transfer takes a significantly longer
time and consumes a considerable amount of energy. As a
result, all three model partitioning mechanisms opt for the end
device to complete the computing task. When the bandwidth
increases to 1 MHz, the number of inferences that the EI
system can complete gradually increases. At the same time,
the latency of Neurosurgeon-E reaches its maximum value.
With the continuous increase of bandwidth, the latency of
Neurosurgeon-E gradually decreases, and the number of in-
ferences gradually increases. When the bandwidth is greater
than 2.5 MHz, Neurosurgeon-E and GAFPD select the same
partition point. When the bandwidth reaches 5 MHz, the three
model partitioning mechanisms we selected all select the same
partition point. This is because as the bandwidth increases,
the latency and energy consumption of data transmission are
lower, Neurosurgeon-E and GAFPD tend to choose the same
partition point. When the bandwidth is high enough, the latency
and energy consumption of data transmission are lower than
that of end device complete the computing task alone, and the
three model partitioning mechanisms tend to choose the same
partition point.

With the change of bandwidth, GAFPD neither optimizes the
latency separately like Neurosurgeon-L, resulting in an increase
in energy consumption, nor does it optimize the energy con-
sumption separately like Neurosurgeon-E, increasing latency
and affecting the QoS. In addition, when the bandwidth varies
between 1.5 MHz and 4 MHz, GAFPD can trade a small in-
crease in latency off a large increase in the number of infer-
ences (improve energy efficiency). Therefore, it can be seen that
GAFPD can adaptively select the overall optimal partition point
in response to changes in bandwidth.

VI. CONCLUSION

Previous work to optimize latency or energy consumption
through model partitioning has problems with limited adapt-
ability to dynamically changing computing environments and
delayed feedback. In addition, they often neglect the impact of
energy consumption on edge devices when optimizing latency,
or result in increased latency as a consequence of reducing

1111

energy consumption. The computational characteristics of DNN
models demonstrate that the latency and energy consumption
of edge devices in EI are not only related to the FLOPs al-
located to end devices, but are also influenced by the output
data size at each partition point of the DNN model. Therefore,
we propose GAFPD to efficiently find the optimal partition
point that can reduce latency and improve energy efficiency
simultaneously. Theoretical analysis and numerous experiments
have been proved that GAFPD can optimize latency and en-
ergy consumption simultaneously while adapting to changing
environments. Furthermore, the experimental results on the EI
demonstrate the effectiveness of GAFPD in reducing latency
and improving energy efficiency.
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