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Energy-Efficient Exposed Datapath Architecture
With a RISC-V Instruction Set Mode

Kari Hepola , Joonas Multanen , and Pekka Jääskeläinen

Abstract—Transport triggered architectures (TTAs) follow the
static programming model of very long instruction word (VLIW)
processors but expose additional information of the processor
datapath in the programming interface, which enables low-level
code optimizations but results in lower code density. Multi-
instruction-set architectures add flexiblity via their ability to
switch instruction sets during execution. The added flexibility
is interesting for VLIW-style processors because it enables
reducing the large instruction stream energy footprint by using an
instruction set with enhanced code density in regions with limited
opportunities for exploitation of instruction level parallelism.
In this article, we introduce a dual instruction-set architecture,
“Dual-IS”, that implements both RISC-V and TTA instruction
sets with shared datapath resources by means of a lightweight
microcode unit. In order to utilize the flexible architecture
automatically, we introduce a compilation method that is able to
independently target code for both instruction sets based on static
code analysis and a microarchitectural model of the processor.
Compared to a single-ISA TTA processor, we were able to lower
the instruction stream energy consumption 45% on average in the
best design point, which resulted in a total energy consumption
reduction of 26% and a 0.4% lower run time.

Index Terms—Exposed datapath, instruction level paral-
lelism, multi-instruction-set architecture, transport triggered
architecture.

I. INTRODUCTION

IN recent years, architecture designers have had to introduce
more elaborate ways to increase performance of digital de-

signs [1] as advancements in process technologies have begun
to stagnate [2]. At the same time, a larger emphasis has been
placed on energy consumption [3], especially in embedded use
cases with a limited energy budget. The end of Moore’s law
has made custom hardware a viable option to meet the ever
rising performance and energy efficiency targets as applications
become more complex. The trade-off with custom hardware
is in portability and programmability that requires more effort
from the compilation framework.

Very long instruction word (VLIW) processors can exploit
instruction level parallelism (ILP) energy-efficiently due to
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static compiler-oriented control, which simplifies the hardware
implementation. The main drawback of VLIW processors is
high instruction stream energy consumption due to low code
density caused by the use of no-operations (NOPs) when in-
struction packets cannot be fully utilized in code regions with
limited ILP. Transport triggered architectures (TTAs) follow
the static VLIW-style programming model but expose the dat-
apath to the programmer to enable low-level code optimiza-
tions, which makes scaling of multi-issue processors easier due
to a modular structure and reduced register file traffic. The
low-level programming interface, however, requires even wider
instructions than a traditional VLIW architecture due to the
additional state data on the processor datapath being exposed
to the programmer.

Multi-instruction-set architectures, such as Nvidia Denver
[4], are more flexible thanks to the option of switching the
programming interface of the processor. Traditionally, pro-
grammable accelerators are tightly coupled to a host processor
that can execute general-purpose code efficiently. Incorporat-
ing multiple instruction sets increases flexibility and therefore
efficiency of executing general-purpose code on standalone ac-
celerators, which reduces the need for using a separate host
processor. Using a standalone accelerator over a multiprocessor
system reduces the amount of dark silicon [5], leading to a
smaller area utilization. In addition, expensive data copying is
reduced as the program context is shared in the register file and
cache hierarchy.

With VLIW architectures, multiple instruction sets enable
opportunities for instruction stream energy optimizations by
the use of an instruction set with a higher code density when
ILP is scarce. In TTA’s case, this can be taken even further
by supporting an instruction set with a higher-level program-
ming interface, such as a reduced instruction set computer
(RISC) based instruction set. This approach helps to reduce the
overhead of exposing the processor datapath as its use is more
closely targeted.

The article makes the following novel contributions:
• A novel dual-mode architecture composing of an exposed

datapath VLIW and RISC-V instruction sets for static
exploitation of instruction level parallelism with reduced
instruction stream impact.

• A microcoded control logic based RISC-V implementation
for sharing datapath resources with the exposed datapath
instruction set.

• A compilation method for generating code with
fine-grained instruction set mode switching to utilize
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the multi-issue capabilities in parallel code regions but
optimizing for code density in control-oriented parts.

This article extends our preliminary work published in a
conference paper [6] with the following new contributions: 1) A
novel compilation method that is able to utilize both instruction
sets in generated code based on static code analysis and a
microarchitectural model of the processor. 2) An interface for
switching instruction set modes during run-time and analysis
of its effect on the processor pipeline. 3) Improved pipeline
structure for the RISC-V microarchitecture, with support for
pipeline flushes. 4) Comparison to a popular optimized 3rd
party RISC-V processor.

By supporting multiple instruction sets, we can significantly
improve the flexibility of the programmable processor, as the
system has a binary compatibility with the RISC-V instruction
set architecture (ISA). The compilation method introduced in
this work utilizes both the static multi-issue capabilities of TTA
and the compact instructions of RISC-V without the user having
to acknowledge the compiler’s use of multiple instruction sets.
Thanks to the added flexibility, the processor has a lower energy
consumption than a single-ISA TTA processor while benefiting
from higher performance compared to a single-ISA RISC-V
design. The dual-mode architecture can be viewed as an instruc-
tion stream optimization to a TTA processor, but from another
point of view, as a means of adding support for static instruction
level parallelism to the RISC-V instruction set, which is another
novel aspect of this work.

We implement our proposed multi-instruction-set architec-
ture in a register-transfer level (RTL) description, synthesize
it with a modern 28 nm ASIC technology and simulate the
synthesized netlist with 8 CHStone [7] benchmarks, EEMBC
Coremark [8] and the Opus audio codec [9]. Opus is signifi-
cantly larger than the other benchmarks, which makes it possi-
ble to evaluate the applicability of the system for large-scale em-
bedded applications. All benchmarks were compiled with the
proposed compilation flow to support fine-grained instruction
set switching. The acquired instruction set flexibility reduces
instruction stream energy consumption by 45% on average in
the best design point, which reduces total system energy con-
sumption by 26% and lowers run time by 0.4% compared to a
single-ISA TTA processor with a similar datapath. The added
hardware to support multiple instruction sets does not affect the
maximum clock frequency but increases area utilization by 13%
compared to a single-ISA TTA core.

II. RELATED WORK

Due to the importance of code density and binary compatibil-
ity, previous work has researched forming more compact com-
pressed instruction sets of base instruction set architectures.
These compressed instruction sets constrain the instruction set
so that instructions can be packed into a narrower instruction
format by limiting the amount of operations, immediate values
or register file addressing. ARM Thumb [10] is an example of
such an instruction set. It reduced the standard 32-bit ARM
instruction format to 16-bits. The mode could be switched
by the programmer, and the compiler would use instruction

set modality on a function-level. In addition to a function-
level granularity, methods [11], [12], [13] using a more fine-
grained granularity have been proposed for compressed instruc-
tion sets. The Thumb approach differed from mixed instruction
set approaches such as the RISC-V C extension that could use
both normal and compressed instructions without implementing
multiple modes. The limitation with these approaches is that
they cannot explore code generation between completely dif-
ferent instruction sets that have more architectural differences
compared to a subset of the same instruction set.

Karaki et al. [14] proposed a dual instruction-set architecture
that combined x86 and ARM instruction set modes via a hard-
ware interpreter that translated x86 instructions to ARM micro-
operations during run time. Their approach is interesting from
instruction set modality point of view because it combines both
a RISC and a complex instruction set computer (CISC) that
have a different ISA design philosophy.

VLIW processors have been interesting for multi-instruction-
set architecture research due to their wide instructions that cause
a high instruction stream energy footprint in sequential code.
Lin et al. [15] proposed a dual mode RISC and VLIW mode pro-
cessor that relied on hierarchical instruction encoding to specify
the mode. Hou et al. [16] implemented a multi-instruction-
set processor with both VLIW and superscalar modes. How-
ever, their processor did not have a compiler that could tar-
get both instruction sets and therefore relied on precompiled
VLIW libraries.

Multi-instruction-set architectures have seen some commer-
cial success with Nvidia’s project Denver [4]. Denver imple-
mented both a superscalar out-of-order (OoO) dual-issue mode
and a static 7-issue microcode mode. Code was targeted for
the standard ARM instruction set and optimized dynamically
during run time for the microcode mode that would bypass the
out-of-order scheduler and directly forward optimized micro-
operations to the in-order scheduler. While the concept of Den-
ver is close to the processor proposed in this work, we take
a different approach with static code generation and use of
microcoded control logic that is able to combine an exposed dat-
apath and a RISC architecture with shared hardware resources.

Samsung reconfigurable processor [17] implemented both
VLIW and a coarse grained array (GGA) modes. The proces-
sor had two instruction formats, where the CGA format was
wider to support a higher amount of parallelism. In addition
to these two modes, Samsung reconfigurable processor was
used together with different power modes [18] where the pro-
grammer could insert macros into the code in order to switch
power modes in different code regions, which would power gate
unused hardware resources.

Heterogeneous multicore systems can employ multiple dif-
ferent ISAs per core to utilize different architectural features,
which enables migrating the application execution to the most
suitable core based on computational needs. Composite-ISA
[19] is an example of such an approach that supports con-
figuring architectural features, such as register file depth and
predication. This allows using the same superset ISA for all
cores to lower process migration overhead. While heterogenous
multicores can use multiple ISAs to increase flexibility, they
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Fig. 1. An example of the transport triggered programming model where
operand moves are visible to the programmer on the exposed datapath.

cannot utilize fine-grained mode switching within the applica-
tion or share datapath resources with different instruction set as
done in our work.

III. TRANSPORT TRIGGERED ARCHITECTURES

Transport triggered architectures are statically scheduled ar-
chitectures that follow the VLIW-style instruction level par-
allelism paradigm, where the programmer is responsible for
explicitly stating which operations are executed in parallel.
Compared to traditional “operation-triggered” [20] VLIW pro-
cessors, TTAs have a lower-level programming interface due
to their datapath and connectivity being exposed to the pro-
grammer. The programming interface is based on moves that
describe operand transportations on the datapath interconnec-
tion (IC) network and operations that are triggered as a side
effect. In the TTA programming model, function unit ports act
as registers that are able to store operand values over clock cy-
cles, which increases the amount of state data. Fig. 1 describes
how move instructions transport operands between the register
file and function units, which executes operations as a side
effect. Socket encodings in the TTA instruction format control
the interconnect multiplexers, which allows the programmer to
specify sources and destinations for operand transportations.
After an operation is triggered, its value is stored into the output
port of the function unit after a design-time specified amount
of clock cycles, which allows pipelining operations.

With VLIW architectures, no-operations are used when the
wide instruction packets cannot be fully filled due to depen-
dencies between the operations. Exposing the datapath to the
programmer creates additional state data, which leads to even
wider instructions than with traditional operation-triggered
VLIW architectures [21]. Wider instructions lower code den-
sity, which is the main drawback of transport triggered archi-
tectures. The main benefits of TTAs are related to register file
accesses that are reduced with the following low-level code
optimizations acquired by the additional instruction scheduling
freedom:

• Operand sharing [22] happens when an operand has been
previously transported to the function unit input register,
which enables the following operations to share it.

• Software bypassing [23] allows the programmer to ex-
plicitly bypass operands without routing them through the
register file.

Fig. 2. A description of a TTA instruction format. Each move slot is split
into destination and source fields that describe immediate, socket and register
file encodings.

Fig. 3. Structure of the Dual-IS processor with a microcode unit between
instruction fetch and decode.

• Dead result elimination eliminates a writeback to the
register file when a variable is no longer alive.

Hoogerbrugge and Corporaal [24] showed that transport trig-
gered architectures need 0.5 read and 0.35 write ports per op-
eration on average, while a traditional RISC operation, such
as a register add, requires two register input operands and one
output operand. Reducing both the amount of register file ports
and interconnect connectivity is important with wide processor
architectures, as otherwise they quickly hit the ILP complexity
wall [25] due to the amount of connectivity on the proces-
sor datapath. TTAs’ modular structure allows heavy pruning
of the interconnection network due to programmer-directed
operand transportations, which enables easy scaling from high-
performance [26] to small energy-efficient TTA designs [27].

Fig. 2 describes an example of a TTA instruction template for
an architecture with five busses. The example template consists
of two formats, one of which specifies a 32-bit immediate
value. In the format, each bus is assigned a move slot field
that is split into destination and source subfields. Depending
on the datapath connectivity, each subfield can encode short
immediates, sockets and register file indexes. If a bus has the
capability to trigger an operation, the move slot field will also
contain operation encodings that are passed to the function unit
when the triggering operand is transported.

IV. DUAL-IS PROCESSOR

The proposed Dual-IS processor implements a multi-
instruction-set architecture designed around the popular
open-standard RISC-V and TTA-based instruction sets. The
processor structure is described in Fig. 3, where the exposed
datapath, with its connectivity and function units, is connected
with the rest of the processor pipeline and a microcode unit
implementing RISC-V control logic.
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Fig. 4. Overview of the microcode unit structure. The microcode unit translates and sequences RISC-V instructions to TTA micro-operations that are decoded
in the native TTA decoder. Instruction set mode is switched with a custom instruction that controls the output multiplexer inside the microcode unit, which
enables to either translate the fetched instruction via the microcode or directly pass it to the native TTA decoder.

The microcode unit described in Fig. 4 is important from
the instruction set modality point of view because it contains
a large majority of the hardware responsible for connecting
the two instruction sets. The microcode unit translates RISC-
V instructions to TTA moves for the exposed datapath and
sequences them. In addition, the microcode unit implements
dynamic RISC features that are not found in TTAs, such as
control and data hazard detection.

A. Move Look-Up Table

Translating RISC-V instructions to TTA instructions in hard-
ware during run time requires a move look-up table (MLUT)
that maps RISC-V instructions to moves for the exposed dat-
apath. The structure of the move look-up table must be care-
fully considered to minimize the hardware overhead of the mi-
crocode. Unlike with traditional microcode, we do not require
the microcode to be programmable, and therefore we implement
all look-up tables with combinatory logic.

Implementing the move look-up table in a way that takes the
whole RISC-V instruction as input is unfeasible due to the wide
immediate and register file encodings that would require a high
amount of entries in the look-up table. Instead, we slice only the
opcode and funct fields from the RISC-V instruction formats,
which reduces the input size between 7 and 17 bits out of which
only 38 encodings are used in the base instruction set. Based on
the opcode and funct fields, we can construct the correct socket
and operation encodings that are stored in the look-up table.

After the correct socket and operation encodings are read
from the move look-up table, missing register file fields are
directly inserted from the RISC-V instruction word to the trans-
lated TTA instruction. To support TTA instruction sets with
narrower immediate value support, the microcode unit passes

the immediate values directly to the interconnect by bypass-
ing the TTA decoder. This approach allows saving encoding
space in the TTA instruction set and adds flexibility to the
TTA instruction set design, as both instruction sets can support
different ranges for immediate values.

B. Micro-Operation Sequencing

Due to the low-level programming interface of TTAs, merely
translating the RISC-V instructions for the TTA decoder is not
sufficient. The translated instruction must be broken to multi-
ple micro-operations that are sequenced separately. To achieve
minimal hardware overhead and minimize the amount of cycles
per executed instruction, input operands should be moved to the
function unit input ports in parallel, which triggers the operation
execution in the function unit.

For single-cycle operations, the result move must be passed
to the TTA decoder one cycle later to make sure the function
unit has executed the operation before the result operand is
moved to the register file on the datapath. As described in Fig. 4,
this is implemented by first slicing the result operand move
from the translated intermediate instruction and registering it
in the micro-operation sequencer. On the following cycle, the
result move is passed to the TTA decoder from the result move
register, which creates a one cycle delay in the decoding of
the move.

For multi-cycle operations, the control logic follows simple
in-order behaviour and bubbles the pipeline until the function
unit has executed the operation. This is implemented by gen-
erating a look-up table that stores operation latencies of multi-
cycle operations, which enables the control hardware to bubble
the pipeline based on the executed operation without it being
exposed to the programmer. Listing 1 describes how a 2-cycle
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multiply operation causes one bubble in the pipeline as the
operation is sequenced in the microcode unit.

Listing 1. Sequencing of a 2-cycle multiply operation

mul x3 , x1 , x2 =⇒
0 : RF . 1 → MUL. in2 , RF . 2 → MUL. i n 1 . mul
1 : . . . (NOP)
2 : MUL. o u t → RF . 3

C. Pipeline Hazards

Pipeline hazards are a major concern when implementing the
microcode due to the very static nature of the TTA programming
model. In addition to the actual microcode itself, the microcode
unit must be embedded with hardware that implements data and
control hazard detection.

Control hazards can happen during the execution of control
instructions when a branch decision is not yet known in the
pipeline. In the TTA programming model, these instructions
would have programmer-visible delay slots that are set to match
the pipeline depth. This enables inserting useful instructions
into the pipeline slots that could be otherwise bubbled. The
RISC-V ISA was designed to minimize the amount of microar-
chitectural details [28] and therefore has no delay slots, which
leads to dynamic hardware that solves control hazards in the
processor pipeline.

To overcome this mismatch between the instruction sets, the
processor is embedded with control logic that stalls or flushes
the pipeline when needed during the execution of control in-
structions. To implement pipeline flushes, the control unit of the
core is extended with additional control signals that can discard
the function unit and register file triggers on the datapath. These
control signals are set when a taken RISC-V branch instruction
enters the control unit, which discards any instructions that were
fetched before the branch decision was known.

The TTA programming interface used in this work does not
utilize pipeline flushes and instead exposes the delay slots to
the programmer. This approach is very useful for loop regions
because during loop iterations the branch is taken, and the delay
slots are utilized statically. Pipeline flushes are, however, highly
beneficial in control-oriented code regions, which is the use
case for the RISC-V instruction set in this work. In addition
to conditional branches, the programming interface differences
between the instruction sets yield benefits in the execution of
direct jump instructions. In the RISC-V programming interface,
direct jumps can be executed immediately after decoding the
instruction as there are no dependencies to the later stages of the
pipeline, such as register file reads. With the TTA, direct jumps
still require the explicit move on the datapath, which induces a
higher latency for the operation.

Solving data hazards in pipelined RISC implementations
requires either stalling the pipeline or bypassing the result to
the execute stage. Since TTAs control the bypass network in
software, they lack dynamic data hazard detection hardware.
Implementing dynamic bypasses in the microcode unit requires
data hazard detection hardware and additional look-up tables

storing moves that utilize the bypass connectivity between func-
tion units. In addition, a look-up table is required to trans-
late function unit IDs for operations, which is crucial when
constructing the bypass move between the source and target
function unit during a data hazard.

The standard RISC-V instruction formats support a max-
imum of two register input operands. As a data hazard can
occur in either or both of the register operands, the microcode
unit requires two look-up tables that store bypass moves from
function unit output ports to function unit input ports. During
each move translation, the look-up table storing function unit
IDs is read, and stored in a register. If a data hazard is detected
for the following instruction, the function unit ID is passed
to the two-dimensional bypass look-up table together with the
opcode to construct the bypass move. After the bypass move is
constructed, the operand move from the register file is discarded
on the data hazard bus and the bypass move is inserted instead.

D. Instruction Fetch Unit

Instruction fetch (IF) unit is a crucial component in multi-
instruction-set architecture design due to the differing instruc-
tion widths between the instruction sets. To minimize any hard-
ware overheads, we choose to bundle multiple RISC-V instruc-
tions into a packet that corresponds to the 64-bit instruction
width of the TTA instruction set mode. This way, two instruc-
tions are fetched every other cycle by the instruction fetch unit
when running in RISC-V mode. In order to keep full compati-
bility with the RISC-V ISA, the RISC-V instruction set mode
must support branches to non-bundle aligned addresses. While
this does not cause any significant overhead in the hardware
implementation, it results in excess instructions being fetched
from the instruction memory hierarchy.

E. Mode Switch Support

To increase programmability of the processor, we implement
mode switching with the use of custom instructions. For the
RISC-V instruction set, we utilize one of the free opcode fields
that are intended for custom instructions in order to maintain
full compatibility with the RISC-V specification. In an alter-
native approach, the instruction set mode could be explicitly
specified for each instruction packet, but this would result in
a lower code density due to the additional encoding space.
Furthermore, the acquired benefit from specifying the mode for
each instruction packet would be minimal, since the instructions
should be scheduled on a basic block level in any case in order
to exploit an adequate amount of instruction level parallelism.

Since, the mode switch simply toggles the instruction set, we
can leave other bits besides the opcode field to a don’t care state
to simplify decoding of the instruction. For the TTA, we add a
custom operation into the control unit in order to generate a
unique encoding for the mode switch instruction. As a means
to preserve the correctness of the instruction fetch addresses
during a mode switch, we add hardware into the instruction
fetch stage that recognizes the TTA mode switch instruction.
Thus, we can minimize the overhead of switching modes, as the
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instruction fetch unit can keep fetching valid instructions into
the pipeline.

Due to the lack of hazards, switching the instruction set
mode does not induce any overhead in terms of clock cycles
in the pipeline, meaning the pipeline will continue to process
instructions on the new instruction set the following cycle the
mode switch instruction is detected. When switching from TTA
to RISC-V mode, the mode switch instruction toggles the mode
state register that controls the microcode output multiplexer.
The following cycle after the mode switch instruction, a RISC-
V instruction packet enters the microcode unit where it is trans-
lated and sequenced accordingly. When switching from RISC-
V to TTA mode, alignment of the code sections must be consid-
ered due to different instruction word sizes. The programmer
must guarantee that TTA instructions are aligned in memory,
which results in the use of RISC-V no-operations in regions
where RISC-V and TTA segments are placed side by side.

V. MULTI-INSTRUCTION-SET COMPILATION FLOW

Programming complex architectures manually can produce
highly efficient code but requires high effort, which reduces
the general-purpose usability of the architecture. For multi-
instruction-set architectures, writing machine code becomes
even less desirable as the programmer would have to know
beforehand which instruction set is more efficient for the code
region, which leads to a high programming effort. To this end,
we propose a novel compiler that is able to automatically target
code between RISC-V and TTA instruction sets based on static
code analysis and microarchitectural models of the different
instruction set modes. Thanks to automatic code generation,
the architecture can be efficiently programmed with the C
programming language without the user having to modify the
application source code to control toggling between the instruc-
tion sets.

A. Mode Switch Granularity

Considering the granularity in which the instruction set
modes are switched is important for utilizing the benefits of
a flexible architecture. One approach is to generate code for
the processor with the native compilers of each instruction set.
This whole-program granularity simplifies code generation and
works well for programs with limited complexity, but leaves
the architecture underutilized for complex programs that benefit
from both control-oriented and parallel execution.

Function-level granularity is the next logical level, which
is also the approach chosen for the Thumb [10] mode. This
already enables targeting different code regions with differ-
ent instruction sets based on their characteristics, such as the
amount of available instruction level parallelism. A function-
level granularity, however, can be too coarse-grained for large
functions that contain both control-oriented and parallel code
regions that should be targeted with different instruction sets.

For fine-grained granularity, basic blocks could be targeted.
In our approach, thanks to the custom instructions that explic-
itly toggle the mode, it is possible to support a basic block

granularity for the mode switches. However, due to the over-
head of switching modes, it is not ideal to target individual
basic blocks that are executed only once. Loop regions form
hot spots in the execution runs, which makes them important
for static code analysis. The added benefit of targeting loop
regions is that the generated code has a high static density when
performance-wise less crucial code regions are executed with
the more compact instruction set, which leads to smaller instruc-
tion images. Due to the lack of locality, it is encouraged to prefer
a high code density over instruction level parallelism in non-
recurring code regions to minimize the number of misses to the
instruction cache.

In our static code analysis, we focus on loop regions. The
mode is switched to TTA mode by using a mode switch in-
struction in the entry block of the loop. A second mode switch
is inserted into the exit block of the loop to return to RISC-V
mode after the loop has been executed. This keeps the overhead
of switching modes low, as multiple iterations are executed
in a single mode switch cycle. With the mode switches in-
serted into the loop entry and exit blocks, the basic blocks
contained in the loop body can be converted into TTA code
with a guarantee that the mode is switched back to the RISC-V
mode upon exiting the loop. Complex loops can have multiple
entry and exit blocks, which increases the modifications to the
loop structure.

B. Compiler

The compilation flow is built on top of the OpenASIP [29]
RISC-V compiler that relies on the LLVM project. As de-
scribed in Fig. 5, the compiler utilizes the standard LLVM C
language frontend (Clang), middle-end optimizer and RISC-V
backend, leaving all dual instruction-set specific targeting to the
OpenASIP LLVM backend. Due to this structure, instruction
selection and register allocation are already done in the RISC-V
backend before OpenASIP is loaded into the compilation flow
as a dynamic library. The hook into the OpenASIP LLVM back-
end is implemented as a pre-emit pass that iteratively passes
machine code functions to the OpenASIP LLVM backend.

In order to retarget code to the TTA instruction set, the
RISC-V backend generated machine code must be converted
to the OpenASIP program object model for instruction schedul-
ing. In this step, RISC-V machine code instructions are trans-
formed into sequential code that describes the required operand
moves and operations in the TTA programming model format.
During this step, instructions can be freely constructed with
moves without following the restrictions set by the RISC-V
instruction formats.

In the second step, the sequential program object model is
passed to the OpenASIP TTA instruction scheduler. During this
stage, TTA-specific optimizations are applied, such as software
bypassing, dead result elimination and operand sharing. In ad-
dition, the scheduler will exploit instruction level parallelism
by scheduling the moves in parallel when possible, resulting in
multiple operations being executed concurrently. The scheduler
emits the function with the same control flow structure as it was
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Fig. 5. Compiler flow from a C program down to compiled code.

passed to help the further code analysis between the original
RISC-V code.

In the third step, scheduling results are analyzed for loop
regions in order to automatically choose which loops should be
converted to the TTA instruction set. During the loop analysis,
TTA scheduling results are compared against the original RISC-
V machine code. Due to data dependent control flow, accurate
cycle counts cannot be calculated for either instruction set. The
analysis takes into account all basic blocks contained in the
loop body and estimates cycle counts with a static profile. More
accurate estimates could be acquired by passing the compiler
dynamic profiling data. However, we argue that this would
decrease the general purpose applicability of the compilation
flow and make the code generation quality data dependent. It
is also clear that with heavily control-oriented loops, exploiting
instruction level parallelism becomes difficult, which favors the
use of the RISC-V instruction set and makes the accuracy of the
performance model less important.

In the final stage, loop regions to be executed on the TTA
are chosen automatically by the compiler based on the static
analysis. The compiler will discard a loop if i) cycle count
estimations are higher on TTA than RISC-V mode based on the
static analysis or ii) the scheduled loop code does not fit in the
instruction cache. It is important to inspect the performance es-
timations, because loops with a large amount of data and control
dependencies can execute slower when converted to TTA due
to RISC-V’s more efficient execution of control instructions.
The size of the scheduled loop code is also an important factor,
as converting a loop that does not fit into the instruction cache
will cause an overhead in terms of performance and energy con-
sumption due to the increased cache misses. The code example
in Fig. 5 is converted to TTA code because it is compact enough
for the instruction cache and the scheduled code is faster than
the original RISC-V machine code.

With nested loops, the loop analyzer can choose to convert
the entire nested loop or an arbitrary number of the inner
loops contained inside the top loop. The chosen loop structures
are converted to the TTA instruction set as described in Sec-
tion V-A. In order to generate executables from the generated
code, the TTA code regions are emitted amidst the RISC-V

assembly as a raw instruction binary. This way, the standard
RISC-V toolchain can be used to form the final executable for
the processor.

Sufficient code generation quality can be achieved using
the RISC-V backend for both instruction sets, as the TTA in-
struction set of Dual-IS closely follows the standard RISC-V
instruction set architecture. Using a larger register file for the
TTA mode would require reimplementing register allocation
on the OpenASIP side to avoid unnecessary spilling, but it
would enable using the OpenASIP register renamer that can
resolve anti-dependencies during instruction scheduling to add
opportunities for exploitation of ILP.

VI. EVALUATION

After integrating the RTL generation and compilation flow
into OpenASIP, we used the toolset to generate the RTL and
program binaries for both the Dual-IS processor and the base-
line designs. For evaluation, we synthesized the designs with
a 28 nm ASIC technology and ran the synthesized netlists in
gate-level simulations to generate cycle counts and switching
activity information for power estimation with Synopsys De-
sign Compiler. We evaluated the processors with the CHStone
[7] benchmark suite, EEMBC Coremark [8] and the Opus audio
codec [9] in order to focus on embedded applications using
integer computation, which is the targeted use case for the
evaluated processors.

A. Evaluated Designs

With OpenASIP, we generated three designs: Dual-IS, OA-
RISCV and TTA. As an external baseline, we used CV32E40P
(formerly known as RI5CY [30]) version 1.3.1 [31]. Table I
describes architectural and microarchitectural properties of the
processors. Dual-IS implements both a TTA and a RISC-
V (RV32IM) instruction set. It has a peak 3 operations per
cycle TTA mode and a single-issue in-order RISC-V mode.
OA-RISCV implements a single-issue RV32IM datapath via
microcoded control logic. It has the same microarchitectural
functionalities as Dual-IS in RISC-V mode. TTA has the
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TABLE I
FEATURES OF THE EVALUATED PROCESSORS

CV32E40P Dual-IS OA-RISCV TTA
Issue width 1 1/3 1 3
RF ports 3r2w 2r1w 2r1w 2r1w
RF size 32 32 32 32
Branch lat. 3 4 4 4
ICache assoc. DM DM DM DM
ICache size 0.5-2 kB 0.5-2 kB 0.5-2 kB 0.5-2 kB

same datapath as Dual-IS but utilizes absolute branch ad-
dressing and only implements the TTA instruction set with-
out any RISC-V-specific instructions. All of the three gen-
erated designs have the same pipeline configuration without
any additional latency added to support the RISC-V or mode
switch hardware.

As an external baseline, we used CV32E40P (formerly
known as RI5CY [30]) version 1.3.1 [31] that is optimized,
similar to the proposed Dual-IS architecture, for embedded
use cases, such as internet of things (IoT) endpoint devices.
The pipelines of the generated cores modeled the structure of
the CV32E40P core as closely as possible, with some excep-
tions. The cores generated with OpenASIP had a two-cycle
multiplier, while the CV32E40P used a single cycle multi-
plier. The difference was due to the exposed datapath structure
that would cause an unnecessarily long combinatorial path to
the design if the multiplier unit (supporting mulh operations)
was directly connected to the interconnect. This would cause
a combinatorial path that would go through the register file
read, interconnect multiplexers, multiplier execute and ending
in the multiplier result register. In the CV32E40P, the mul-
tiplier path went through the multiplier execute and register
file writeback. Similar pipeline difference was implemented
with control flow instructions. With OpenASIP generated de-
signs, signals in the instruction memory interface were reg-
istered, as connecting them to the interconnection network
would cause a long combinatorial path. This increased the delay
of taken branch instructions by one cycle compared to the
CV32E40P core.

Another important difference was in the load operation
pipelines. All implementations had a load operation latency of
two clock cycles. When running on the TTA instruction set,
these operations had a programmer-visible delay slot that the
compiler could fill with operations that have no dependencies
to the load result. CV32E40P pipelines these operations in
hardware and used a second register file write port to support
the load store unit pipeline. With the OpenASIP RISC-V im-
plementations, multi-cycle operations were always stalled to fit
the operation latency, which happened both with multiply and
load operations.

The register file implementation differed due to the
CV32E40P load store unit pipeline and the custom instruction
set extensions, which increased the register file port amount
to three read ports and two write ports. OpenASIP-generated
cores used a traditional 1w2r configuration, and the TTA
instruction sets exploited instruction level parallelism via the
TTA programming model without adding register file ports.

TABLE II
AREA BREAKDOWN OF THE CORES

CV32E40P Dual-IS OA-RISCV TTA
Area (μm2) 20600 16200 12600 14400
RFs 31% 27% 33% 31%
IFetch 7% 13% 10% 8%
FUs 37% 44% 47% 48%
Decoder 12% 4% 2% 4%
CS registers 11% - - -
IC - 9% 5% 9%
Microcode - 3% 2% -

It is notable that a traditional “operation triggered” 3-issue
VLIW design with support for similar parallel execution as
Dual-IS (ALU+LSU+JUMP / 2xALU+JUMP) would require
a minimum of 2 write and 4 read ports in the register file.
Other differences were extra functionalities not needed to
run the benchmarks, such as interrupt support, debuggers
and custom instructions that were not implemented in the
OpenASIP-generated cores.

We added an L1 instruction cache [32] to the designs to lower
instruction stream energy. The cache implemented a direct-
mapped (DM) structure to mimic the filter cache [33] approach,
with a line size of 64 bytes that is a reasonable choice for
the evaluated cache sizes of 512 and 2048 bytes [34]. The
instruction cache was connected to a 1 MB SRAM (enough to
fit all benchmarks) that consisted of 64-byte wide banks, which
enabled to fill a cache line in one fetch cycle, making the miss
penalty two cycles. On the data side, the load store units were
directly connected to a 256 kB SRAM that was large enough
for all benchmarks.

B. Synthesis Results

With the OpenASIP generated processors, Dual-IS, OA-
RISCV and TTA, the critical path formed in the two-cycle mul-
tiply unit limiting the maximum clock frequency to 1.61 GHz.
With the CV32E40P, using an instruction cache size of 512
bytes caused a critical path in the datapath, which limited the
maximum clock frequency to 1.54 GHz. Using a 2 kB instruc-
tion cache caused the critical path to move to the instruction
fetch stage due to combinatory paths from the core propagating
into the instruction cache, which limited the maximum clock
frequency to 1.35 GHz.

The areas of the cores synthesized with the 512 byte cache
configuration are listed in Table II. Compared to the single-
ISA TTA core, Dual-IS used approximately 13% more area.
This was affected by the more complex instruction fetch and
the additional hardware in the microcode unit. In addition, the
extra hardware removed timing slack from non-critical paths,
which lowered the usage of smaller low power cells, increasing
area even further. The OA-RISCV core had the smallest area
usage due to the simple single-issue datapath, utilizing 22% less
area than Dual-IS. CV32E40P utilized the most area due to the
more complex register file and additional hardware that was not
implemented in the other cores, such as control and status (CS)
registers, which caused the CV32E40P core to utilize 27% more
area than Dual-IS.
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TABLE III
ANALYSIS OF DUAL-IS PROGRAM EXECUTION

TTA Execution* Mode Toggles Total Cycles*
adpcm 51% 800 96903
aes 18% 226 33832
blowfish 12% 524 777166
gsm 45% 10 18277
mips 2% 4 26823
motion 96% 6 11318
sha 98% 1544 664650
jpeg 11%† / 17%‡ 1074† / 1356‡ 2721285† / 2632802‡

coremark 27% 642 570497
opus 24%† / 45%‡ 494† / 664‡ 962086† / 859560‡

∗Stall cycles caused by instruction cache misses are discarded.
† 512 instruction cache.
‡ 2 kB instruction cache.

C. Performance

Table III describes the amount of clock cycles Dual-IS ex-
ecuted in TTA mode with different benchmarks, as well as
the amount of times the instruction set was toggled during
execution. Stalls cycles caused by misses to the instruction
cache were discarded to describe the use of the instruction sets
from a computational viewpoint, otherwise instruction mem-
ory hierarchy changes would affect mode utilization even if
the program remained the same. It is clear that the more the
benchmark relies on concentrated (parallel) loop kernels, the
more time the processor will execute in TTA mode due to the
compilation flow targeting loop structures that also form hot
spots in the program execution. Except for jpeg and opus, the
compiler did not convert more loops with the larger 2 kB cache
compared to the 512 byte instruction cache that is capable of
storing a 64 instruction loop body in TTA mode. On average, the
TTA instruction set was utilized 40% of the time. Out of the ten
benchmarks, sha and motion were primarily run in TTA mode,
while mips favored the RISC-V instruction set due to its heavily
control-oriented kernel structure. The ratio between amount of
mode toggles and total amount of execution cycles showed that
the mode switching overhead was insignificant compared to the
total run time as described in Table III.

Run times relative to the CV32E40P baseline with different
instruction cache sizes are listed in Fig. 6. With the 512 byte
instruction cache, the OA-RISCV core had, on average, 13%
higher run time than the CV32E40P due to the bottleneck
caused by the lack of a load operation pipeline and one cy-
cle longer multiply and branch latency. The same execution
bottlenecks existed for Dual-IS when running code in RISC-
V mode due to the similarities in the microarchitecture. With
the larger cache size, OA-RISCV had, on average, the same
performance due to the more pipelined structure, which pre-
vented the critical path from moving to the instruction fetch
stage. Dual-IS benefited from the static multi-issue capabilities,
which reduced run times 5% and 18%, on average, compared
to CV32E40P.

Compared to the single-ISA TTA instruction set, Dual-IS was
0.4% faster both with the 512 byte and 2 kB instruction cache.
The speed-up was mainly achieved by fewer misses to the in-
struction cache due to a higher code density, as well as the more

efficient execution of control code thanks to the RISC-V mode.
With blowfish, the single-ISA TTA processor was significantly
faster due to one of the program hot spots consisting of a large
loop that would require a 4-kB instruction cache to fit the loop
body. The Dual-IS compiler discarded such loops and executed
them in RISC-V mode to eliminate the bad energy-delay trade-
off caused by cache misses. Motion was a clear outlier in the
benchmarks due to a 2 kB array copy assignment which took a
majority of the run time. The TTA instruction set aggressively
utilized the delay slots to fill the copy operation, which lowered
the loop body execution by half per iteration compared to the
OA-RISCV core. Mips did not favor the use of the TTA in-
struction set due to the control-oriented kernel structure, which
led to similar results as with the single-ISA RISC-V instruction
sets but lowered the run time by 25% on average compared
to the single-ISA TTA processor. Similarly, in coremark, the
acquired benefit from the TTA mode was limited due to the
lack of available instruction level parallelism. The opus appli-
cation included encoding and decoding an audio sample, which
experienced a balanced use between the RISC-V and TTA
instruction sets.

D. Code Density

Another interesting phenomenon was the code density ben-
efit acquired from the multi-instruction-set approach. Table IV
describes the sizes of the instruction images with different
architectures. With the 2 kB instruction cache, Dual-IS needed,
on average, 21% larger instruction images than the single-
ISA RISC-V instruction set. However, the Dual-IS had, on
average, 43% smaller instruction images than the single-ISA
TTA instruction set. The significantly lower code size is es-
pecially important in resource constrained embedded systems
that have small memories, which can limit the set of applica-
tions the system can run. The multi-instruction-set architecture
approach enables restricting the use of the static multi-issue
capabilities to the degree where the generated instruction image
can fit the instruction memory, which adds more flexibility to
the system.

E. Energy Efficiency

For energy evaluation, we ran the synthesized netlists in
gate-level simulation to produce switching activity interchange
format (SAIF) files that were passed to Design Compiler to
generate power estimates for the core and the instruction cache.
For the instruction and data memories, we used Cacti [35] to
generate access energy estimations that were used to estimate
energy consumption based on the access traces gathered in
simulations. Energy consumption relative to the CV32E40P
baseline with different instruction cache sizes is described
in Fig. 7.

The main benefit of Dual-IS in terms of energy compared to
the single-ISA TTA processor was a lower instruction stream
energy consumption that was achieved by a reduced amount
of misses to the instruction cache. Compared to the single-ISA
TTA processor, Dual-IS had a 40% smaller instruction stream
(instruction cache + instruction SRAM) energy consumption
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Fig. 6. Run times relative to the CV32E40P baseline with different instruction cache sizes.

TABLE IV
CODE SIZES

Benchmark RISC-V Dual-IS TTA
adpcm 11 kB 14 kB 21 kB
aes 20 kB 21 kB 38 kB
blowfish 11 kB 11 kB 19 kB
gsm 5 kB 6 kB 12 kB
mips 2 kB 2 kB 7 kB
motion 5 kB 8 kB 9 kB
sha 3 kB 4 kB 7 kB
jpeg 14 kB 16†/18‡ kB 31 kB
coremark 12 kB 15 kB 24 kB
opus 294 kB 311†/315‡ kB 775 kB

† 512 instruction cache.
‡ 2 kB instruction cache.

with a 512 byte cache and 45% with the 2 kB cache. Com-
pared to the CV32E40P processor, the instruction stream energy
was 17% and 12% higher on average due to more bits being
fetched from the instruction cache and memory due to lower
code density. The longer pipeline structure caused the RISC-V
mode to fetch more instructions compared to the CV32E40P
core, which increased power consumption of the instruction
stream further.

The single-ISA TTA core was the most energy efficient out
of the evaluated designs in terms of energy consumed by the
core alone. It boils down to the lack of dynamic hardware
because compared to Dual-IS the main power consumption
difference was in the instruction fetch unit and microcode, as
seen in the power breakdown in Table V. Compared to the
single-ISA RISC-V cores, the TTA had a marginally more
complex datapath with more connectivity between the func-
tion units and an additional reduced ALU for exploitation of
ILP, which increased power consumption. On average, Dual-
IS core consumed 22% more energy compared to the single-
ISA TTA core. Compared to the OA-RISCV, Dual-IS consumed
only 5% more energy and 17% less than the CV32E40P. The
higher energy consumption of the CV32E40P core compared
to OA-RISCV was driven by the additional hardware, mainly
the control and status registers that were not implemented in the
other cores.

In terms of total energy consumption of the system, Dual-
IS consumed 6% more energy with the 512 byte cache and
3% more with the 2 kB cache compared to the OA-RISCV
processor. Compared to CV32E40P, the energy consumption
was 4% higher with the 512 byte cache and 4% lower with the
2 kB cache. The difference to the single-ISA TTA processor was
more significant due to the high instruction stream overhead of
TTA, which made Dual-IS 29% and 26% more energy efficient
than the single-ISA TTA processor.

Energy delay product (EDP) [36] is a metric that describes
the trade-off between energy consumption and performance.
EDP results relative to the CV32E40P baseline are listed in
Fig. 8. Dual-IS had the lowest average EDP out of all processors
with all configurations. Compared to the single-ISA TTA pro-
cessor, the difference was the most significant due to similar
level of performance but reduced instruction stream energy,
which led Dual-IS to have 29% lower EDP with a 512 byte
cache and 26% lower with the 2 kB cache. Compared to the
OA-RISCV core, Dual-IS had 10% and 14% lower EDP. With
the CV32E40P core, the difference was 1% and 20%.

F. Comparison to Previous Work

Table VI lists properties of published RISC-V implemen-
tations that are targeted for energy-efficient embedded appli-
cations. As the processors were implemented with different
process technologies and estimated under different operating
voltages, we used a scaling model [37] to scale them to 32 nm
0.95 V that is the closest point in the model compared to
our 28 nm 0.95 V evaluation. Based on the power estimations,
Dual-IS is approximately 3 times more power-efficient than
RISC-V2 at a similar operating frequency. Compared to the
energy-optimized zero-riscy, Dual-IS has 5 times higher oper-
ating frequency but 35 times higher power consumption.

HAMSA-DI [38] is an extended version of the CV32E40P
core with improved microarchitecture that supports in-order
dual-issue execution. Adding a second issue slot to the pro-
cessor increased the area by 65% compared to the baseline
CV32E40P. A 58% performance improvement and 22% energy
consumption reduction are reported over the CV32E40P core
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Fig. 7. Energy consumption relative to the CV32E40P baseline with different instruction cache sizes.

for the embench [39] nettle-aes benchmark that has a high
amount of parallelism. Our measurements showed a 60% per-
formance increase and a 38% reduction in the core’s energy
consumption over the CV32E40P when running nettle-aes on
Dual-IS, while utilizing 21% less area. We evaluated the av-
erage power consumption of the HAMSA-DI core based on
the nettle-aes, coremark and dot product benchmarks reported
in the publication and scaled them based on our CV32E40P
evaluation. The estimated average power consumption was ap-
proximately 10 mW, which is 40% higher than with Dual-IS.
In HAMSA-DI, additional hardware was added to dynamically
schedule two instructions per cycle and the register file was
extended to feature five read and three write ports. In Dual-IS,
the hardware complexity is lower thanks to the static exposed
datapath multi-issue mode, which does not require dynamic
hardware for instruction scheduling or extensions to the register
file structure.

G. Discussion

For the evaluation, we used the CHStone benchmark suite
that contains complex enough kernels that are beneficial to
divide into different program regions for the instruction sets
via static code analysis. Simple kernels such as matrix mul-
tiplication are not ideal for multi-instruction-set architectures
because the limited program complexity would cause most of
the program to be run on one instruction set while still carry-
ing the overhead of the multi-instruction-set hardware, which
would favor the use of a traditional processor or a fixed function
accelerator.

Instruction stream hierarchy has a major impact on the
system-level performance and energy efficiency, which plays
a key role in the comparisons due to differing code densities
between the instruction sets. The filter cache approach used for
evaluation is simple but enables high energy efficiency for loop
kernels that can fit the cache. Using a loop buffer [40] would
increase efficiency for small loop kernels, which is ideal for the
TTA instruction set as its use is targeted for loop regions and
would complement the concepts introduced in this work.

In the scope of this work, the proposed multi-instruction-set
architecture could be seen as an instruction compression [41]

TABLE V
POWER BREAKDOWN OF THE CORES

CV32E40P Dual-IS OA-RISCV TTA
RFs 10% 13% 14% 15%
IFetch 18% 22% 24% 18%
FUs 19% 28% 27% 35%
Microcode - 6% 8% -
Decoder 23% 16% 11% 18%
CS registers 22% - - -
IC - 12% 13% 12%

scheme that switches to a higher-level programming interface
to improve code density. Traditional instruction compression
methods such as dictionary compression or compressed instruc-
tion subsets, for example, the RISC-V C extension, are orthog-
onal approaches and could be applied on top of this work to
further improve static compression ratios and instruction stream
energy consumption.

The main code generation bottleneck is the limitation to
loop region analysis. With more complex global analysis or dy-
namic profiling, frequently executed code regions could be re-
targeted on a basic-block level outside of loop regions to achieve
higher code generation quality. We also observed that due to
the complex TTA instruction scheduling heuristics, at times
better scheduling results were achieved when using the RISC-V
backend for instruction selection compared to the OpenASIP-
generated compiler backend. The main difference is the lack
of multiple addressing modes for memory operations, which
restricts the RISC-V backend to use only the base + offset
addressing scheme.

VII. FUTURE WORK

The architecture and the implementation of the proof-of-
concept processor were targeted for embedded applications,
such as low-power IoT, where energy efficiency is an important
optimization factor. This was also reflected in the evaluation
that used applications focusing on integer computation. In the
future, we plan to research utilizing the Dual-IS concept on a
high-performance use case, which requires a higher degree of
parallelism and floating point computation.
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Fig. 8. Energy delay product relative to the CV32E40P baseline with different instruction cache sizes.

TABLE VI
COMPARISON OF RISC-V IMPLEMENTATIONS FOR ENERGY-EFFICIENCY CRITICAL EMBEDDED USE CASES

Process Area Frequency Power
Processor Issues Pipeline [nm] [mm2] [GHz] [mW]
Dual-IS single/triple in-order 28 0.016** 1.6** 7**
OA-RISCV single in-order 28 0.013** 1.6** 6**
zero-riscy [42] single in-order 65 0.027* | 0.008† 0.2* | 0.3† 0.4* | 0.2†

CV32E40P [30] [31] single in-order 28 0.021** 1.4** 8**
HAMSA-DI [38] dual in-order 16 0.034‡ 1.4‡ 10‡

RISC-V2 [43] dual out-of-order 45 0.24* | 0.11† 1.0* | 1.7† 23† | 20*

*Based on cited publications.
**Based on our own measurements.
† Scaled to 32 nm 0.95 V.
‡ 28 nm estimation based on [38] and our measurements.

The RISC-V microarchitecture would have to be extended
for high performance computing, which calls for superscalar
and out-of-order execution to achieve high performance in
code regions that are not optimal for static multi-issue exe-
cution. By following the multi-instruction-set architecture ap-
proach, sufficient code generation quality could be achieved
without using complex global code optimizations, such as
trace scheduling [44], as code with limited parallelism can
be targeted for the dynamic multi-issue mode and code re-
gions with a high amount of static ILP can be converted to
the VLIW instruction set. Even in HPC use cases, the pro-
posed dual instruction-set approach could yield benefits by
disabling the complex control hardware that consumes a sig-
nificant amount of energy in out-of-order superscalar proces-
sors [45] or enable a higher degree of parallelism than the
superscalar mode thanks to the better scaling of the exposed
datapath architecture.

VIII. CONCLUSION

In this article, we introduced a dual instruction-set archi-
tecture, “Dual-IS”, that supports both a TTA and the RISC-
V instruction set via a lightweight microcode hardware unit.
To better utilize the flexible architecture, we implemented a
compiler that automatically targets code for both instruction
sets from a high-level programming language. The compiler
performs static code analysis to choose loop regions that are

beneficial to execute on the TTA instruction set based on the
instruction cache size and scheduling results.

We implemented the proposed architecture in RTL and com-
pared it against multiple baseline designs with different in-
struction cache configurations post-synthesis. The additional
hardware of Dual-IS did not affect the maximum clock fre-
quency but caused 13% higher area utilization compared to
a single-ISA TTA core with similar datapath resources. Dual-
IS brought significant instruction stream energy savings due to
the fine-grained use of both the compact RISC-V and multi-
issue TTA instruction sets, which lowered the instruction stream
energy consumption 45% on average in the best design point.
The reduced instruction stream energy footprint translated into
a total system energy saving of 26% compared to a single-
ISA TTA processor. In terms of energy-delay product, Dual-
IS had 26% lower energy delay product on average com-
pared to a single-ISA TTA processor and 20% lower than
the CV32E40P.

The proposed approach enables the benefits of an exposed
datapath in exploitation of static instruction level parallelism
without expensive dynamic hardware of out-of-order super-
scalar processors while minimizing the instruction stream en-
ergy impact in serial regions with the compact RISC-V instruc-
tion set. The results show that the Dual-IS architecture can
significantly improve energy efficiency without inducing sig-
nificant hardware overhead or reducing performance compared
to a single-ISA processor.
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