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Abstract—Dynamic Task Scheduling is an enticing program-
ming model aiming to ease the development of parallel programs
with intrinsically irregular or data-dependent parallelism. The
performance of such solutions relies on the ability of the Task
Scheduling HW/SW stack to efficiently evaluate dependencies
at runtime and schedule work to available cores. Traditional
SW-only systems implicate scheduling overheads of around 30K
processor cycles per task, which severely limit the (core count,
task granularity) combinations that they might adequately handle.
Previous work on HW-accelerated Task Scheduling has shown
that such systems might support high performance scheduling
on processors with up to eight cores, but questions remained
regarding the viability of such solutions to support the greater
number of cores now frequently found in high-end SMP systems.
The present work presents an FPGA-proven, tightly-integrated,
Linux-capable, 30-core RISC-V system with hardware acceler-
ated Task Scheduling. We use this implementation to show that
HW Task Scheduling can still offer competitive performance at
such high core count, and describe how this organization includes
hardware and software optimizations that make it even more
scalable than previous solutions. Finally, we outline ways in which
this architecture could be augmented to overcome inter-core
communication bottlenecks, mitigating the cache-degradation
effects usually involved in the parallelization of highly optimized
serial code.

Index Terms—Parallel programming, hardware acceleration,
Task Scheduling, RISC-V, custom ISA, FPGA.
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I. INTRODUCTION

PARALLEL programming is widely considered to be more
challenging than sequential software development. Both

correctness and high performance are difficult to achieve in
parallel programs, and validating parallel code can be partic-
ularly challenging due to the added indeterminism arising from
multiple simultaneous workers. This can lead to low-probability
but critical errors that may not be identified during preliminary
testing. Such challenges are further compounded by the use
of relaxed memory models in many modern high-performance
parallel architectures such as ARM, PowerPC, and RISC-V.

Achieving high performance requires evenly partitioning
computation among workers across the whole application ex-
ecution, such that idleness is minimized. Workloads such as
matrix multiplication, n-body analysis, and much of image pro-
cessing can be made to comply with this requirement without
much effort, but applications not falling into the data parallel
category can have control-flow constraints that hamper their
ability of being partitioned into program segments (function
calls, loop iterations, etc) taking about the same amount of
compute time. Keeping multiple compute units busy with such
irregular program segments might then require more complex
coordination, such that compute units get dynamically fed with
available work as they finish their previous assignment.

Additionally, maximizing the utilization of all available com-
pute units may demand not only correct and efficient work
coordination, but also that such work be partitioned as finely as
possible, such that, at any moment during the program exe-
cution, there are enough pieces of available work to feed all
units. Nevertheless, fine-grained work partitioning poses its
own threats to application performance, since it amplifies data
traffic and related issues. The work in [1], for instance, illus-
trates both the potential and hurdles of exploring fine-grained
parallelism in a HW-accelerated graph mining workload, with
substantial speedups being achieved only after great care had
been taken to minimize greater orchestration and communica-
tion overheads.

Several parallel programming frameworks were proposed
to improve programmer productivity under the previously
discussed constraints. Such frameworks might vary substan-
tially in their level of abstraction, target hardware, and sup-
ported programming models, as discussed next. Pthreads [2],
MPI [3], and CUDA [4] offer fine-grained control over data
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and computation distribution, but require ad hoc implementa-
tion of work distribution logic for each application [5], [6].
Frameworks such as OpenMP [7], Intel oneAPI [8], and
OmpSs-2 [9] map more abstract parallel constructs to these
lower-level libraries, making applications easier to validate.
Other frameworks, such as TensorFlow [10] and PyTorch [11],
offer even higher levels of abstraction but are specific to
certain application domains, such as machine learning. More
abstract frameworks often make it easier for programmers to
validate their applications by reliably implementing lower-
level mechanics that would otherwise need to be developed
and debugged.

The OpenMP, oneAPI, and OmpSs-2 frameworks support
various parallel programming models, including OpenMP’s
concise data-parallel constructs, oneAPI’s pipeline and graph-
based parallelism, and OmpSs-2’s dynamic Task Parallelism.
The latter programming model allows data dependency
relationships between tasks to be detected at runtime,
permitting available workers to execute tasks in parallel in any
order that respects these relationships. This allows for more
thorough parallelism exploitation than pipeline or traditional
graph-based models, as there are parallelization opportunities
that only occur for specific inputs and must be handled
conservatively by programming models that make decisions at
compile time.

While programmer-defined data and computation distri-
bution schemes require minimal runtime overhead, making
dynamic decisions during execution can lead to significant
penalties. These penalties can include tens of thousands of
cycles for every scheduled task [12] and additional memory-
related delays due to increased instruction cache pressure or
the use of data synchronization barriers in relaxed-memory
systems. As a result, dynamic Task Scheduling may not be as
effective as other parallelization strategies in certain scenarios.
The more workers available, the larger the tasks must be to
ensure cores receive a new task before the previous one has
finished, avoiding idleness.

Previous work filled that literature gap by providing evidence
that HW-based Task Scheduling can dramatically outperform
SW-only solutions at scheduling fine-grained tasks to general
purpose CPUs, showing that a HW Scheduler tightly integrated
to a 8-core processor can reduce scheduling overheads by up to
300x with respect to that baseline, leading to substantial appli-
cations speedups. Still, such core count was somewhat limited
compared to what can be found in high-end SMP systems. The
present work thus builds upon that foundation to deliver com-
parable advantages for larger processors, and describes further
optimizations that make this new version even more capable
than its original form. Alongside these extensions, this paper
essentially contains the following main contributions:

• the description of a hardware architecture providing
low-latency access to HW-accelerated Task Scheduling
through custom instructions, bypassing DMA and OS-
driver overheads;

• Phentos, a purpose-built, lightweight, user-level software
runtime providing highly efficient access to hardware Task
Scheduling acceleration;

Fig. 1. Sample code leveraging OpenMP 4.0 task constructs.

• a roofline model for Task Scheduling performance cen-
tered on the Maximum Task Throughput metric.

II. BACKGROUND AND TERMINOLOGY

A. Task Scheduling

In the context of this article, Task Scheduling involves the
scheduling of elementary computational units called tasks to
processor cores according to data dependency relationships be-
tween them. This paradigm resembles the out-of-order behavior
of many modern processors, but allowing function calls (tasks),
rather than instructions, to be automatically dispatched to dif-
ferent computational units [13].

Task dependencies are such that task B is said to depend on
some task A if, and only if, B is generated after A and at least
one of the following propositions is true:

• Task A writes to some memory position p and B reads from
p (RAW dependency)

• Task A writes to some memory position p and B writes to
p (WAW dependency)

• Task A reads from some memory position p and B writes
to p (WAR dependency)

Fig. 1 exemplifies how OpenMP 4.0 pragmas [14] can be
used to spawn tasks. In that example, every time the outer
loop is executed, one task encapsulating the fun1 procedure
is generated, while the inner loop generates tasks encapsulating
fun2. The fun3 call is not encapsulated by any task. The
IN (read), OUT (write) and INOUT (read and write) constructs
indicate how the tasks interact with their pointer parameters.
Fig. 1 also contains the task graph for N = 3. Node labels reflect
the order at which tasks are submitted.

In software, pointer-based dependency relationships can be
evaluated in several ways. One solution relies on holding task-
specific arrays of accessed pointers, so that one might eas-
ily check which pointers are touched by any particular task,
and pointer-to-task hashmaps, for efficiently determining which
task (or group of tasks) accesses any particular pointer. A
hardware accelerator for doing the same might employ similar
data-structures.

A detailed description of how dependency resolution is per-
formed by the specific dependency-resolution accelerator em-
ployed in this work can be found in [15], while an account of
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how the Nanos6 Runtime solves the same problem in software
can be found in [16].

B. Maximum Task Throughput (MTT)

The number of tasks that a given task scheduling system is
able to retire per unit of time, considering all scheduling over-
heads and assuming that task payloads are instantly executed
by worker processors.

C. Internal Speedup

Measure of the average core utilization by task contents. In
a system with N cores, core utilization will vary between 0
and N . It is closer to the maximum value whenever runtime
overheads are negligible in comparison to task size and there is
enough parallelism to maintain all cores occupied.

III. PROPOSED ARCHITECTURE

A. Architecture Overview

Our work adds native Task Scheduling support to a Rocket
Chip [17] processor by integrating it with the Picos Task
Scheduling accelerator. This involves the introduction of two
significant Chisel [18] modules: Picos Manager, which is in-
stantiated once in the system and accessible to all cores, and the
Picos Delegate module, instantiated once in each core. Fig. 2
provides an overview of the system.

Picos Delegate instances expose Task Scheduling capabilities
to individual cores by implementing custom instructions. These
instances interact with Picos through Picos Manager, which
arbitrates the distribution of ready-to-run tasks to cores, ensures
transaction atomicity, buffers Picos-CPU transactions to con-
ceal downtimes, and conciliates the different queue interfaces
used by Picos and other modules.

The TileLink module in the above figure is a system-wide
bus synthesized automatically by the Rocket Chip generator,
providing cache-coherent memory accesses to all connected
agents. A Tile refers to a block consisting of a single core along
with its accelerators and caches.

Further discussion of the nature and functionality of Rocket
Chip, Picos, Picos Manager, and Picos Delegates can be found
throughout the rest of this Section.

B. Rocket Chip

We take benefit of Rocket Chip to generate a 30-core RISCV
processor with Linux support and cache parameters that maxi-
mize cache size within our FPGA resource constraints. We use
its RoCC interface to define custom instructions that allow user-
level programs to interact with the Picos HW task Scheduler,
as we discuss in Subsection III-G.

Our FPGA prototype includes Rocket Chip instances with
relatively large1 private L1 caches (128 KB for data, 64 KB

1For comparison, the L1 data and instruction caches are, respectively, 4
and 2 times the size of those found in an AMD 7950x processor. Their large
size aims to minimize, under the FPGA resource constraints, the need for
higher-level caches.

Fig. 2. Overview of the Picos + Rocket Chip system architecture.

Fig. 3. Format of RoCC instructions.

for instructions) but no L2 caches, allowing us to fit many
more cores than if a shared L2 cache was added. As a re-
sult, workloads issuing memory accesses with poor locality or
exceeding L1 capacity should perform poorly in this system.
In any case, this system characteristic makes it very capable
to detect memory locality regressions that could be caused by
the various evaluated Task Scheduling runtimes. Furthermore,
since more realistic systems with shared L2 or L3 caches can
perform inter-core communication in a much more efficient
way, the scalability results we collect with our system can be
aptly understood as lower bounds for what could be achieved
by less constrained configurations.

C. RoCC Interface

This interface, present in all Rocket Chip cores by default,
allows compliant accelerators to make cache-coherent mem-
ory accesses and be exposed to user programs through cus-
tom instructions. The RoCC instruction format is described by
Fig. 3. There, fields rs1 and rs2 indicate the two optional
operand registers; rd encodes the optional destination register;
operands xd, xs1, and xs2 indicate whether rs1, rs2, or rd,
respectively, are used; opcode stores the instruction opcode;
finally, funct7 encodes the desired behavior, allowing in-
structions with identical opcodes to trigger distinct accelerator
functionalities.

A Rocket Chip Tile might include zero or more RoCC ac-
celerators alongside its core and caches. In the system here
described, all Tiles include a single instance of the Picos Dele-
gate accelerator, which implements the task-related instructions
described in Subsection III-J.
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D. Picos

Picos is a Hardware Task Scheduling accelerator developed
at the Barcelona Supercomputing Center supporting multiple
worker classes (SMP cores, accelerators, etc) and nested task
scheduling. In our system, Picos is configured to only feed SMP
cores, and, for simplicity, all benchmarks are implemented in
such a way that avoids nested tasks.

This accelerator has undergone a major revision since it was
first integrated to a RISC-V system as reported in [12]. This
revision changed its signal interface and packet API, requiring
hardware modules handling Processor-Picos communication to
be rewritten, but allowing scheduling overheads to be sub-
stantially reduced as a result of a more compact task packet
representation.

E. Phentos

Phentos is a highly-optimized, light-weight, header-only C++
library that abstracts our custom Task Scheduling instructions,
allowing for easier interaction with Task Scheduling software,
and enabling tasks to be transparently distributed to workers
from a fixed pool of threads.

While Phentos heavily relies on macros and inline functions
for minimizing memory operations, its impact on instruction
caches is very small compared to larger runtimes such as
Nanos6 and OpenMP. In fact, compiling a Task Scheduling
program with support for Phentos only impacts its binary size
by less than 15 KB, while interaction with the shared libraries
from those two non-accelerated runtimes requires several extra
megabytes to be loaded to memory.

Phentos does not prevent context switches in any way. Also,
to avoid deadlocks, Phentos allows task creation actions to be
interleaved with task execution when submission is blocked,
such as when Picos internal memory is full.

A mechanism must be in place to make sure that, after a
task is submitted to Picos, the software runtime keeps track
of its metadata (related function pointer, input parameters, etc)
up to the point when Picos sends the task to a worker, which
will require such metadata to execute the task. Picos could
be configured to hold that information in memory, but doing
so might considerably increase its on-chip resource utilization.
Our integrated system thus implements two different software-
based mechanisms for that, leading to two Phentos APIs
(ORD-Phentos and FAST-Phentos), which only differ in their
submission procedure, but not on other actions (such as
work-fetching, task-waiting, signaling of task completion, etc).
We shall detail their nature and tradeoffs in the following
two Subsections.

1) ORD-Phentos: ORD-Phentos stores all task metadata
on a custom-typed cache-aligned array such that each of its
elements can hold a 64-bit task function pointer and either 7 or
15 input parameters. The 15-input version of this array takes
2 cache lines per element, doubling the requirements of the
7-input version, so the shorter version is used whenever the
system does not include any task with more than 7 inputs, which
is not rare, considering that constant scalar parameters might be
held as global variables.

The 7-input configuration will thus generate one cache line
write per submission, one cache miss per ready task fetched (not
considering the loading of function instructions), and one cache
line write for making the array entry as empty once the task
finish executing. In total, for the 7-input configuration, 3 cache
transactions are required for every task managed by the system,
compared to 5 transactions for the 15-input configuration.

2) FAST-Phentos: The FAST-Phentos API was designed
with the goal of substantially reducing the number of cache
transactions required for managing task metadata, although re-
strictions apply to when it might be used, as shall be explained
next. When a task application is amenable to it, FAST-Phentos
might be used to reduce the number of metadata-related cache
transactions per task by up to 100% when compared with ORD-
Phentos, depending on the memory access patterns of the par-
allelized task kernels.

FAST-Phentos derives its benefits from two facts:
1) Task Parallel programs usually have very few different

functions encoded as tasks.
2) Often, task inputs are of the kind (base_pointer +

constant * index), where the index can often be
encoded with not more than 20 bits.

Observation (1) suggests that task function pointers might
be stored in a global shared array, rather than being repeatedly
propagated from the submission thread to worker threads for
every task. Given that such tasks are very few, holding all
their pointers on shared memory might not require more than
one or two lines in the data caches from every core (up to
8 64-bit pointers might be held per 64 byte cache line). This
allows function pointers, under certain conditions, to be directly
fetched from L1 cache, rather than leading to a compulsory
cache miss as with ORD-Phentos.

To understand and the significance of Observation (2), it
is useful to acknowledge how ORD-Phentos identifies cor-
respondences between ready-tasks made available by Picos
and the metadata entries stored in processor memory during
submission. This is achieved by simply having Picos refer to
ready tasks using a 64-bit identifier provided by Phentos during
task creation.

It is worth noting that the validity of Observation (2) depends
solely on the workload being executed, not the processor bit-
width. It is valid, for example, for workloads such that each of
their task parameters is sampled from an array of no more than
one million positions, where each of these array positions has
some arbitrary constant size.

But as both Observations (1) and (2) indicate, using 64-bit
identifiers for tasks (as defined by Picos API regardless of pro-
cessor bit-width) is frequently very wasteful, as the number of
combinations of task function pointers and input values is very
limited. This allows FAST-Phentos to encode all the metadata
from each task within 64-bits, in the form (function_idx,
input1_idx,..., inputn_idx)2. Whenever this is not

2This is possible even if one of the fields takes more than the 20-bits
suggested by Observation (2), provided that the remaining ones are small
enough to still fit in a Picos-compliant 64-bit submission packet.
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possible for all functions, Phentos-based applications might
simply fallback to the ORD-Phentos API.

Compressing input values as indicated before might require
additional shared variables to be kept in memory, such as when
these inputs index some shared array. While that allows for a
worst-case scenario where FAST-Phentos generates even more
cache misses during work-fetches than ORD-Phentos (one for
the function retrieval plus one per compressed input, compared
to exactly one miss for 7-input ORD-Phentos), the fact that
there are usually very few different memory regions indexed
by these inputs frequently allows all of them to be kept within
a single cache line. As a result, whenever task execution does
not thrash all private data cache contents, work-fetching might
recover both function address and input base pointers without
incurring on any cache miss.

Furthermore, while ORD-Phentos requires, for each com-
pleted task, a memory write for marking its defunct metadata
element as free to be overwritten, FAST-Phentos does not, given
that it does not hold any task-specific data structure in memory.

Under the optimal scenario, FAST-Phentos eliminates all task
handling cache misses, even though that is only possible when
data touched by compute kernels fit in L1 cache. In the worst
case, FAST-Phentos issues one cache miss per compressed task
datum (input or function pointer).

Regardless of FAST-Phentos ability to hold arbitrary task
metadata in cache for any given application, it never requires
memory writes during task creation or termination, with favor-
able performance implications. RISC-V has a relaxed memory
model, so inter-core data propagation requires explicit memory
barriers that can impact unrelated memory operations, degrad-
ing performance. ORD-Phentos must store task metadata in a
way that is visible to all worker cores, requiring such a bar-
rier at the end of each submission and consequently limiting
task creation rate. The same is not true for FAST-Phentos,
so its task creation latency should be strictly lower than that
of ORD-Phentos.

In summary, FAST-Phentos should display higher average
performance than ORD-Phentos, even though performance
degradation might be triggered in some cases.

F. The Nanos-RV Hardware Accelerated Runtime

Nanos-RV is a variant of the Nanos Task Scheduling Run-
time where most SW-based dependency management code is
replaced with calls to our HW-accelerated Task Scheduling
instructions. Such use of hardware acceleration allows this
variant to substantially outperform its non-accelerated baseline.
At the same time, our experience with it suggested that its
inherited Nanos complexity greatly impacted Task Scheduling
throughput. Our work with this runtime thus motivated the
design of a clean slate alternative, eventually materialized as
Phentos. Given that the latter generally outperforms Nanos-RV
by a large margin, the remaining of this work will mostly focus
on Phentos.

G. The Software Interface

The main goal of this work was to develop a system with
as little scheduling overhead as possible. To this effect, we not

TABLE I
CUSTOM TASK SCHEDULING INSTRUCTIONS SUPPORTED BY THE SYSTEM

Name Description

Initiate Task
Informs the system about the swID and
number of dependencies of a new task.

Add Info
Allows the runtime to inform Picos about task

metadata relevant to nested task scheduling.

Send IN Dep
Used during task submission to encode a single

64-bit memory pointer referring to an IN
dependency.

Send IN Deps
Used during task submission to encode two

64-bit memory pointers referring to IN
dependencies.

Send OUT Dep
Used during task submission to encode a single

64-bit memory pointer referring to an OUT
dependency.

Send OUT Deps
Used during task submission to encode two
64-bit memory pointers referring to OUT

dependencies.

Fetch SW ID
If the ready queue of the execution core is not

empty, it returns the SW ID relative to the
front element of the queue.

Retire Task
Informs the system about the retirement of the

task with the Picos ID given.

Fetch Picos ID

If the ready queue of the execution core is not
empty and the SW ID relative to the front

element of the queue has already been fetched,
it returns the Picos ID of the same element and

pops the queue.

Ready Task
Request

Requests the system to move one more Ready
Task packet from the global Ready Queue to

the queue of the executing core.

only leverage the power of Picos to track task dependencies
much faster than software runtimes but we also try to keep
communication latencies between Task Scheduling applications
and Picos to a minimum. In our system, communication laten-
cies are limited by the use of low-latency Picos-CPU dedicated
datapaths bypassing system memory and by the provision of
custom processor instructions for requesting Task Scheduling
functionality. The existence of such instructions simplifies the
construction of middleware to connect task applications to the
underlying Task Scheduling hardware, thus avoiding additional
software overheads.

While designing Picos Manager and the auxiliary RoCC
accelerator, we opted for making all the new instructions non-
blocking. In this context, blocking instructions are those that
only return after the corresponding transaction between Picos
Manager and the core executing the instructions has completed.
Making all instructions non-blocking gives more freedom for
the runtime programmer to decide what to do in cases where
Picos might not be able to accept a new task or reply with
a new ready task. If the system is not able to service any of
these requests, the instruction returns a failure flag value and
the program is free to keep trying. By quickly replying with
these failure values, our system allows the runtime programmer
to ask the core to sleep for a certain amount of time, saving
energy; to perform alternative work actions; or even to request
a context switch to the operating system. Additionally, having
non-blocking instructions eases the development of deadlock-
free systems, as we discuss in Subsection III-H.

All instructions implemented by the Picos Delegates are de-
scribed by Table I.
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H. Averting Deadlocks With Non-Blocking Instructions

As previously mentioned, ensuring that submission
and work-fetching instructions are non-blocking eases the
development of deadlock-free systems. In the following lines,
we present two scenarios where blocking instructions could
lead to deadlocks and discuss ways to avoid them.

Deadlock Scenario 1: blocking submission instructions: Let
us suppose that some thread T might execute ready tasks and
that it is the only allowed to submit new tasks to Picos. Let us
also suppose that it successfully executes Ready Task Request
while trying to fetch a new task but fails to get one by running
Fetch SW ID. Finally, let us suppose that just after the latter
instruction was executed, Picos Manager fills the core-specific
ready queue of T with a new descriptor. Then, if for some reason
T blocks while running any submission-related instruction, it
might never recover from it.

This can happen because of the two following facts:
(1) submissions fail when buffers and other data structures in
Picos or Picos Manager become full; and (2) it is possible
that more space might be available in these buffers and data
structures only after the task descriptor now sitting in the core-
specific ready queue of T is executed.

Consequently, if T blocks while performing a submission-
related operation in a situation where it can only succeed after
T consumes at least one element of its own core-specific ready
queue, the system stalls.

Deadlock Scenario 2: blocking work-request instruction: As
before, let us suppose that thread T might execute ready tasks
and that it is the only one allowed to submit tasks to Picos.
Let us further suppose that just prior to the execution of Ready
Task Request by T , the centralized ready task request queue
in the Work Fetch Controller3 is full. In this case, the Ready
Task Request instruction issued by T will block until writing
to that routing queue is possible again. Nonetheless, if it is also
true that there are no ready task descriptors in Picos, the routing
queue will never be depleted — since there are no ready tasks
to distribute — and the Ready Task Request being executed by
T will never return. Ready tasks will only be available after a
new task submission succeeds, but a new submission can only
take place after at least one ready task is fed to Picos Manager.
Since these two events depend on each other, none of them will
never happen, leading to a deadlock.

These deadlock scenarios can be avoided in several manners.
In our system, we opted for making all instructions (related
to submission, work-fetching, and retirement) non-blocking,
which allows a thread holding the responsibilities of both gen-
erating and running tasks to freely switch between these roles.

I. Avoiding Load Imbalance

Load imbalance refers to the uneven distribution of work
among computation units (such as processor cores), often lead-
ing some of them to spend time idling, reducing average uti-
lization rates and limiting maximum speedups with respect to

3This module, shown in Fig. 4, arbitrates ready task requests coming from
all cores into a single routing queue, whose data determines the order at which
requests are fulfilled.

Fig. 4. Internals of the Picos Manager module.

Fig. 5. Block diagram of the Submission Controller, a module instantiated
by Picos Manager for carrying out transmission of new task descriptors to
Picos.

serial execution. Our system avoids these problems by storing
ready tasks in a single shared queue that all cores are allowed
to fetch work from. Such work-pull operations are triggered
by the Ready Task Request instructions described in Segment
Section III.J.5.

Although the system allows for buffering of ready tasks by
the cores, both our Nanos-RV and Phentos implementations
avoid having multiple pending Ready Task Request operations,
such that whenever such requests are fulfilled by Picos, the core
receiving the new ready task immediately starts executing it. In
this manner, the situation whereby a core keeps a ready task
to itself while other cores starve for work is made impossible,
and work stealing never becomes necessary. The core-private
buffers thus behave as passthrough channels.

J. The RoCC Accelerator

The ISA extension defined by our architecture is imple-
mented by the RoCC-compliant Picos Delegate modules instan-
tiated in every core, as described in what follows.

1) Initiate Task: The Picos Delegate RoCC accelerators
implement this instruction by pushing swID and dependency
count values to independent buffers implemented within the
core-specific Submission Handler corresponding to the core
executing this instruction (see Fig. 5). If both buffers can simul-
taneously accept the insertion, the instruction returns a success
flag. Otherwise, a failure flag is issued.

2) Add Info: This instruction implements support for nested
tasks by allowing tasks to be described as children of previous
tasks. This is achieved by letting tasks be assigned a parentID.

This instruction is implemented in a way similar to that of
Initiate Task: it leads the Picos Delegate handling the instruction
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to write parentID information to a buffer in the core-specific
Submission Handler related to the core issuing the instruction.
If the transaction succeeds, the instruction returns a success flag.
If not, the failure flag is produced.

3) Send IN / OUT Deps: These two instructions are im-
plemented by sending the two 56-bit pointers provided by the
instruction caller, alongside a two-bit token indicating their IN,
OUT, or invalid nature, to a core-specific buffer similar to those
from Initiate Task. If that is possible, a success flag is returned.
Otherwise, the failure flag is generated.

4) Send IN / OUT Dep: These are single-dep versions of
the instructions in Section III.J.3.

5) Ready Task Request: Our RoCC accelerators do not have
direct access to the single ready queue of Picos. Rather, each
of them is allowed to pop contents of its core-specific ready
queue inside Picos Manager. On the other hand, Picos Manager
only forwards ready packets from Picos to these private queues
after being requested to do so. RoCC accelerators issue such
requests upon the decoding of Ready Task Request instructions.
After receiving such request R from a core ci with ready queue
Qi, Picos Manager is guaranteed to only answer later work-
fetch requests by any core after having satisfied R. Thus, Picos
Manager distributes ready-to-run tasks in the same order that
work-fetch requests come from the cores.

6) Fetch SW ID: Suppose that core ci, with private ready
queue qi, issues a Fetch SW ID instruction. If qi is empty, the
RoCC accelerator instance in that core fulfills the instruction
by returning a failure value; otherwise, it returns the SW ID
encoded by the front element of the queue and setting an internal
success flag. In either case, it does not pop qi.

7) Fetch Picos ID: Suppose that core ci, with private ready
queue qi, issues a Fetch Picos ID instruction. If qi is empty, the
RoCC accelerator instance in that core fulfills the instruction
by returning a failure value; otherwise, if qi is not empty and
a previous Fetch SW ID instruction succeeded at retrieving
the SW ID encoded by the front element of qi, it fulfills the
instruction by returning the Picos ID encoded by the front
element, popping qi, and resetting the internal flag marking the
success of a previous Fetch SW ID instruction.

8) Retire Task: The RoCC accelerator fulfills Retire Task
instructions by pushing the payload of the operand register to
the Retirement Controller in Picos Manager (see Fig. 4). If
that operation might be completed within a single cycle, the
instruction succeeds and a success flag is produced as a return
value; otherwise, a failure flag is returned.

K. Picos Manager

Picos Manager arbitrates all data communication between
Picos and individual cores. It serves as a protocol converter
between the interface defined by core-specific Picos Delegates
(which implement the custom RoCC instructions) and Picos
itself. By virtue of that, in the event that the Picos interface
is ever changed, only changes to Picos Manager are required,
not to the cores.

1) Interface: As shown by Fig. 2, Picos Manager is con-
nected to Picos and each of the core-specific RoCC accelerators

(here called Picos Delegates). Its core-specific interface, which
is replicated for each core, includes (1) a ready queue,
(2) a retirement queue, (3) three submission queues, and
(4) a work fetch request queue; its Picos-facing interface
includes (5) a ready queue, (6) a retirement queue, and (7) a
submission queue.

2) Structural elements: As described by Fig. 4, Picos
Manager comprises three basic components: the Work-Fetch
Controller, the Retirement Controller, and the Submission Con-
troller. In the following lines, we will discuss the behavior and
inner mechanics of each of them.

Submission Controller: This component — shown in detail
by Fig. 5 — is the module that handles processing of submis-
sion packets in behalf of Picos Manager. It serves two main
purposes: (1) making sure that submission packet sequences
coming from cores are not interleaved, given that Picos requires
task submissions need to happen atomically; (2) implement
protocol crossing logic to ensure that communication between
the various cores and Picos comply with Picos interface.

Picos Manager instantiates a Core Submission Handler for
each core in the system. Each of these instances consumes
data from the elementary submission queues coming from its
corresponding core to build packet sequences compliant with
Picos interface. Additionally, they interact with arbiters instan-
tiated within the Submission Controller to secure permission
for atomically sending data to Picos.

The routingInfoOuter interface from each Core Sub-
mission Handler contains a submission request describing the
length of the corresponding submission sequence. The Guided
Arbiter forwards data from the core whose submission request it
receives through the Round Robin Arbiter, ensuring that packets
from different submissions are never interleaved. The Round
Robin Arbiter selects submission requests from the cores in
round-robin fashion.

The Guided Arbiter does not send data directly to Picos,
but to a Resubmission Handler, which allows submission ac-
tions to be re-attempted whenever Picos issues a negative ac-
knowledgment signal indicating that it has not been able to
handle the latest submission. That usually only occurs when
internal Picos memories do not have space for additional
in-flight tasks.

Each of the three elementary submission queues connected
to each Core Submission Handler transmit data from a different
class of submission instruction ({Initiate Task}, {Add Info}, or
{Send IN Dep(s), Send OUT Dep(s)}).

Work-Fetch Controller: This module is responsible for dis-
tributing ready-to-run task descriptors to cores according to the
total-order at which they requested such data.

Retirement Controller: This unit arbitrates retirement data
coming from each core in the system. Collisions are frequent
whenever core utilization is high and tasks are relatively small.
When a collision occurs, this controller picks one core to
send data in round-robin fashion and causes other cores to
retry the retirement operation. This module is also respon-
sible for converting single-packet retirement streams coming
from the cores to three-packet retirement streams expected
by Picos.
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IV. EXPERIMENTAL SETUP

A. System Characteristics

Each experiment is executed on a FPGA instantiation
of the system described by Table II. As discussed in
Subsection III-B, this system has several characteristics
that make it very sensitive to excessive inter-core data traffic,
such as having no shared caches, only one MSHR per core,
as much as 30 cores, and employing a snoop-based coherence
protocol rather than a directory-based one. As a result, the
hardware-based Task Scheduling acceleration here described
is likely to display even higher scalability in systems with
more performant multi-core cache configurations.

The Linux 5.10.7 environment that all evaluated applications
depend on is built using Buildroot 2021.8.1, which generates an
initramfs (a memory-only file system) with the Linux kernel,
system packages, and our benchmark binaries. The Linux ker-
nel and basic packages are compiled from source by Buildroot,
while the compilation of our binaries is handled separately.
All ORD- and FAST-Phentos applications are built with RV-
enabled GCC 10.3.0, while Nanos applications are compiled
by Mercurium 2.3.0 [19], which transpiles application code into
C and C++ temporary files that are finally compiled by GCC
10.3.0 as well.

All cores include a floating-point unit and custom RoCC
instructions enabling interaction with Picos, being all symmetri-
cal with respect to their HW Task Scheduling capabilities. Even
so, to eliminate the effects of thread migration on application
behavior, threads are locked to cores in all program executions
in a way that cores [1, N − 1] are limited to task execution while
core 0 is left to handle both task creation and execution, where
N is the number of cores.

Internal speedups (average core utilization by task kernels
rather than runtime overheads) are measured according to the
following formula, where T is the set of all tasks of a program
P , and W (x) is the wall-time of x, in cycles:

Si(P ) =

∑
t∈T W (t)

W (P )

The wall-time of a task refers to the number of processor
cycles elapsed during a task execution. It is measured by issu-
ing rdcycle instructions immediately before and after the task
payload (which is always a function) is called, to evaluate the
difference between these cycle counts. All time-consuming op-
erations are taken into account: cache misses, context switches,
page faults, etc.

B. Benchmarks

System performance is evaluated with programs from four
different domains, as described next:

1) The blackscholes application, from the Financial Analy-
sis domain, solves the Black-Scholes partial differential
equation for evaluating how the price of an European-
style option varies as a result of changes to the value of

4MESI implies a write-back policy and usage of snooping protocol.

TABLE II
SUMMARY OF SYSTEM CHARACTERISTICS

Number of Cores 30
Clock 60 MHz
Architecture RV64G
Rocket-Chip version Customized 525ddd37a
Front-end capabilities In-order, single-issue
Number of MSHRs 1
L1 Data Cache size 128 KB
L1 Instruction Cache size 32 KB
L1 cache wayness D-Cache: 16; I-Cache: 4
Cache line size 64 bytes
D-TLB topology Fully associative, 32 entries
I-TLB topology Fully associative, 32 entries
DDR capacity 16 GB
DDR generation DDR4
DDR Clock 1200 MHz (2400 MT/s)
CAS latencies Read: 17 cycles; write: 12 cycles
Number of memory channels 1
OS Linux 5.10.7
Buildroot version 2021.8.1
GCC version 10.3.0
Mercurium version 2.3.0
Cache coherence protocol MESI4

its underlying asset. It is a highly data-parallel application
from Parsec [20].

2) The sparseLU, jacobi, matmul, and dot-product appli-
cations represent the Linear Algebra domain. The first
of them solves pseudo-random sparse linear systems,
the second uses the Jacobi iterative equation solver
for solving the Poisson equation in one dimension, the
third performs block-based matrix multiplication, and
the last implements inner product calculation. Such pro-
grams are derived from the implementations found in
the Kastors Benchmark Suite [21] and the ompss-ee5

Github repository.
3) The stream-deps and the stream-barr programs are

micro-benchmarks that evaluate system performance at
handling routines of very high memory intensity. Exam-
ples of these routines include copying data among mem-
ory positions; adding two arrays and storing the result
in a third; producing scaled versions of an original ar-
ray, etc. The fact that these benchmarks compound these
operations in a complex scheme of data dependencies
make them good targets for parallelization using Task
Scheduling. The implementations of these benchmarks
found at the ompss-ee repository as well.

4) Finally, the nbody benchmark computes N-body
gravitational interactions, representing the physics
simulation domain.

Each benchmark can be executed with inputs of varying task
granularity, which is frequently achieved by partitioning input
matrices in blocks of arbitrary size.

V. RESULTS AND DISCUSSION

A. Comparing Phentos and Nanos

Fig. 6 summarizes how speedups over serial execution vary
with respect to runtime and input selection. We can see that

5https://github.com/bsc-pm/ompss-ee

https://github.com/bsc-pm/ompss-ee
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Fig. 6. Speedups at 30 cores for all benchmarks. Solid bars represent speedups over serial execution, muted bars show effective core utilization.

Fig. 7. Speedups of all applications executed on Phentos, taking benefit of
HW-acceleration, over equivalent SW-only executions on Nanos6.

both Phentos variants outperform Nanos 41 out of 42 times,
frequently by a substantial margin. The same figure also sug-
gests that, as expected, such speedups are usually greater for
larger block sizes. This is generally true up to the largest block
size for which individual tasks do not exceed the data cache ca-
pacity of a single core. Experiments not displayed in this figure
indicate that having tasks with larger work sets can lead to much
poorer performance.

Fig. 7 summarizes the Phentos advantage with respect to
Nanos, which it clearly suggests to be greatest for scenar-
ios with small tasks. The geometric mean Phentos speedup
over Nanos is around 7.5x for ORD-Phentos and 9.4x for
FAST-Phentos. As expected, Phentos-over-Nanos speedups ap-
proach unity as task sizes increase, given that larger tasks
more effectively amortize scheduling overheads and, provided
that applications are sufficiently parallel, might saturate worker
cores even if the Task Scheduling system is only capable
of issuing a comparatively low amount of tasks per unit
of time.

B. Deriving Theoretical Speedup Bounds From MTT

As described in Subsection II-B, Maximum Task Throughput
(MTT) is the maximum number of tasks that a given Task
Scheduling platform might execute per unit of time. This met-
ric is very important for comparing different Task Scheduling
systems, given that it defines constraints for the (task gran-
ularity, number of cores) pairs that such systems are able to
efficiently service.

In fact, in a system with N cores being served by a Task
Scheduling runtime with an MTT ofK, the following inequality
must hold:

Nactive

Texec
≤K,

where Texec is the fixed task size and Nactive is the average
number of cores actively running tasks — rather than waiting to
be fed with more work by the Task Scheduling runtime. Thus,
one might derive a speedup bound MS for that system as a
function of mean task size as the following:

MS(t) =min(N,K × t)

Considering that K = 1
Lo

, where Lo is the mean Task
Scheduling overhead experienced by tasks during their whole
lifetime, MS might then be defined as a function of Lo and
Texec as the following:

MS(Lo, t) =min(N,
t

Lo
) (1)

Having this in mind, for four different workloads, we mea-
sured the mean Task Scheduling overhead of Nanos-RV and
Phentos, as shown by Fig. 8.

Fig. 8 clearly shows to which extent Nanos-RV and Phentos
were able to reduce lifetime Task Scheduling overheads for
varying workloads. In fact, Phentos presents lifetime overhead
reductions of up to 253x with respect to Nanos-SW, while
Nanos-RV shows reductions of up to 3.39x. Such measurements
were taken with two different lifetime-overhead-measuring
benchmarks: Task Free, which generates independent
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Fig. 8. Lifetime Task Scheduling overhead for several platforms, in Rocket
Chip cycles.

Fig. 9. Theoretical MTT-derived speedup bounds for several Task Schedul-
ing platforms with thirty cores.

tasks with any number of monitored pointer parameters
from 0 to 15; and Task Chain, which generates inter-dependent
tasks forming a data dependency chain where all tasks have
the same number of monitored pointer parameters similarly
ranging from 0 to 15.

Based on the figures for the Task-Free (1 dep) case and on
Eq. (1), we might then evaluate maximum speedup bounds for
the various different Task Scheduling platforms as a function
of mean task size as shown by Fig. 9. That figure shows that
the reduced lifetime overheads of Phentos substantially improve
MTT-based maximum speedup with respect to any other plat-
form for a wide range of mean task sizes. As an example, for
task sizes around 10000 cycles, MTT-based maximum speedups
for FAST- and ORD-Phentos are greater than 30x and 24x,
respectively, while all other platforms have maximum speedups
lower than 0.8x.

Finally, we overlay MTT upper bounds to performance data
collected for each runtime on Fig. 10, where we can see that
MTT curves serve as a strong performance limit for all run-
times, with no over-serial speedup or core utilization datapoint
placed above it.

There, we can see that utilization figures are more likely
to be close to MTT limits than over-serial speedups. This is
mostly due to the fact that over-serial speedups can only exceed
core utilization if the total computation time in the parallel
scenario is smaller than the total computation time of a serial

execution, which only occurs in the somewhat rare case where
the parallel version is more cache amenable than the serial
version. Among all reported datapoints, this only occurs for
the (Nanos, matmul, 64) execution, where over-serial
speedup slightly surpasses utilization. This workload benefits
from the Nanos scheduling optimization that, given some core
c retiring some task T , preferentially assigns tasks made ready
by the completion of T to c, since that new task is likely to
find relevant data produced by T in that core’s cache. If this
optimization is disabled, over-serial speedup drops by around
10% while utilization remains virtually the same.

For all considered benchmarks, both Phentos versions are
generally capable of saturating cores with useful work (reaching
an internal speedup close to 30) when block sizes are large
enough, as suggested by Fig. 6. Nanos, on the other hand, can
only approach doing so for half of the benchmarks, likely as a
result of its lower MTT and its need to occupy worker cores
with task management actions.

Moreover, since our internal speedup (effective utilization)
measures exclude CPU runtime overheads, it tends to be smaller
whenever these overheads take a substantial portion of CPU
time. This is frequently the case for Nanos, since its non-
accelerated nature requires all dependence management to con-
sume CPU cycles both in the submission thread and the worker
threads. This Nanos peculiarity is one reason why utilization is
less likely to approach the MTT bound for this runtime than for
either Phentos variant.

Still, while runtime overheads are generally much lower for
Phentos than for Nanos, the task management overheads of
both Phentos versions is still sensitive to the general mem-
ory behavior of the application being executed. This is be-
cause memory operations performed by either FAST- and ORD-
Phentos to achieve data communication between the submission
thread and the worker threads take different amounts of cycles
to be completed depending on, among other things, average
memory contention.

Finally, it is interesting to note that FAST-Phentos data
in Fig. 10 seems to be, with respect to ORD-Phentos data,
compressed beyond the 1K cycles vertical line. This follows
from the fact that task sizes are also dependent on memory
contention, given that the execution time of most tasks tends
to be dominated by memory operations. Since FAST-Phentos
tends to issue tasks to cores at a higher frequency than ORD-
Phentos, tasks managed by FAST-Phentos tend to cause greater
contention, which then cause these tasks to take more time
to execute. In any case, this does not prevent FAST-Phentos
to outperform ORD-Phentos in the general case or even in
the instances where this effect is most noticeable, such as for
the (FAST-Phentos, sparselu, 1) datapoint, where
FAST-Phentos is able to outperform the other Phentos variant
by more than 2x even with a much larger task size.

C. Resource Utilization

Table III showcases the resource utilization of several
relevant system components. In particular, it shows that,
for any given FPGA resource class, less than 3.8% of the
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Fig. 10. Experimental speedup data of Task Scheduling applications over corresponding serial executions compared with theoretical MTT-derived bounds.
Solid dots represent speedup over serial execution, cross markers depict internal speedups (effective core utilization). Dashed and solid horizontal lines
represent arithmetic and geometric mean speedups, respectively. As it is the case for Fig. 9, MTT values are derived from Task-Free executions involving
fifteen monitored pointer parameter par task.

TABLE III
RESOURCE USAGE BREAKDOWN FOR SINGLE INSTANCES OF VARIOUS

RELEVANT SYSTEM MODULES, INCLUDING SUBMODULES. PERCENTAGE

VALUES FOR ANY RESOURCE CLASS ARE CALCULATED WITH RESPECT TO

FPGA CAPACITY

Module Cardinality LUT FF BRAM
Alveo U-200 - 1182240 2364480 2160

Top level
One per
system

89.8% 24.3% 93.9%

Core 30 2.65% 0.67% 2.73%

FPU
30 (one per

core)
1.03% 0.16% 0.00%

D-Cache
30 (one per

core)
0.44% 0.14% 2.22%

I-Cache
30 (one per

core)
0.07% 0.04% 0.51%

Coherence Bus
One per
system

1.32% 0.06% 0.00%

Delegate
30 (one per

core)
0.04% 0.01% 0.00%

Picos Manager
One per
system

1.49% 0.11% 0.00%

Picos
One per
system

0.69% 0.54% 2.57%

Picos + Picos
Manager +
Delegates

One per
system

3.34% 0.90% 2.57%

whole-design utilization of that resource is due to the Task
Scheduling subsystem (comprising Picos, Picos Manager,
and Delegates). Considering that the CPU cores are in-
order, single-issue, and relatively simple, one expects
that the same set of HW modules would take an even
lower fraction of a production-grade SoC featuring out-
of-order cores with a more complete cache hierarchy.
Moreover, the Task Scheduling subsystem has buffers that
could be scaled down to further reduce resource utilization
if needed.

VI. LIMITATIONS AND FUTURE WORK

While our system significantly reduces Task Scheduling
overheads with respect to solutions without hardware accel-
eration, much opportunity exists for further improving its
memory behavior.

Ideally, tasks should be allocated to cores in a way that
maximizes cache locality, avoiding unnecessary bus contention

and cache misses. In its present form, our system signifi-
cantly departs from that ideal by allocating tasks to cores in
near random fashion, not making any effort to ensure better
data reuse.

The negative impact of random work allocation is greater for
systems with larger numbers of cores. This is partially explained
by the fact that if N idle workers are available, the probability
that any given task will be assigned to the optimal core is
1
N , assuming that no cores have equal allocation fitness for
that task. Consequently, random allocation impairs our system’s
scalability, and should be replaced with a more cache-sensitive
allocation strategy in future revisions of our integration.

Concretely, we plan to develop a new configuration where
cache-aware task clustering is performed prior to task alloca-
tion, such that tasks sharing substantial amounts of data belong
to the same cluster and tasks from the same cluster are assigned,
when possible, to the same worker, maximizing cache tempo-
ral locality. Strong theoretical and simulation-based arguments
have been made in favor of such approach [22], [23], but its
practical hardware implementation within a SMP system, with
support for fine-grained tasks, remains to be achieved.

Task Scheduling systems hold precise information on the data
dependencies among future tasks, and it should be possible to
leverage that information to design improved cache replacement
policies. Such a policy should be more likely to discard data
that is not going to be used by the next task coming to a
worker, and less likely to evict data that is certainly going
to be needed by that next task. If hints are provided to the
HW Task Scheduler about the size of the various memory
regions accessed by each task, it could even prevent data that
is not going to be re-accessed in the near future from being
cached, making caches strongly resilient to scan and thrashing
access patterns.

Other cache replacement policies exist that provide these
resilience properties [24], [25], [26], [27], [28], but they usually
act in a reactive way, learning memory access patterns after the
fact, and performing poorly until enough data has been gathered
about the current application phase. Task-aware policies should
not suffer from this issue, given that they would be based on
certain or highly-likely future application behavior, and hold
promise to be especially advantageous for applications that
frequently switch between very disparate program stages.
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As described in Subsection IV-A, our system blocks thread
migration. This is in place to reduce execution time variability
and, more importantly, ensure CPU-Picos transactions are not
interrupted by thread movements, possibly corrupting Picos
submission packet sequences. On the other hand, the work
in [29] describes the advantages of supporting untied tasks,
that is, tasks that might resume execution from a different
thread after being interrupted for any reason. Such flexibility
might be beneficial to load balancing, while possibly reducing
data locality and adding context migration overheads. Mini-
mizing such overheads was one of the main contributions of
[29]. Fig. 6 shows that our system already achieves good load
balancing under the described test conditions. Yet, one could
devise scenarios where adversarial software running on the
same processor could impair the Task Scheduling application
by excessively engaging one of the cores (the one holding the
thread creating most tasks, for example). We could prevent
such performance degradation by either adding full support for
untied tasks or by lifting the requirement that Phentos threads
do not move across cores. To ensure the integrity of CPU-Picos
transactions is preserved, this requirement could be relaxed to
ensure threads are fixed to cores during such communication
but allowed to migrate at other times. This should be enough to
reap some of the benefits of supporting untied tasks, but would
still come short from allowing work-first scheduling as de-
scribed in [29]. In the future, we plan to make a more thorough
characterization of typical Task Scheduling workloads to assess
whether the additional complexity required by full untied task
support are justified by any improvements in load balancing it
might uncover.

Picos is built in such a way that, if its task-nesting function-
ality is used, interfacing hardware and software are required to
implement a certain deadlock-avoidance fallback mechanism.
The exact scenario where this behavior must be triggered, as
well as the workload classes that might produce it, are described
in [30]. Whenever that condition occurs, the fallback mecha-
nism will enforce new ready tasks to run on the same thread
where they were created until the deadlock condition is averted.
In the near future, we plan to build this functionality into Picos
Manager and Phentos so that the system might exploit nested
parallelism. No changes would be required to the proposed
ISA extension, and the performance of applications not using
nesting should not be affected [30].

Finally, we note that our current system cannot simultane-
ously handle more than one Picos-enabled application. This is
inconvenient in several ways, and particularly in that it lim-
its system throughput when each application execution does
not have enough intrinsic parallelism to utilize all available
workers. Moved by this, we plan to include basic virtualiza-
tion support to new versions of the system, such that the HW
Task Scheduler might simultaneously hold and process infor-
mation from the disjoint virtual memory spaces of different
applications. This would let the system handle not only context
switches between a single Picos-based application and multi-
ple non-Picos applications, but also between any number of
Picos applications.

VII. RELATED WORK

Our approach for supporting fine-grained Task Scheduling
relies on minimizing the overhead for maintaining a dynamic
task graph. The system proposed in [31] avoids maintaining
such a data structure by allowing tasks to execute specula-
tively, taking benefit of Intel’s Transactional Synchronization
Extensions. Simulated results indicate that it should provide
compelling performance, provided that transactions are fine-
grained enough to avoid high abort rates. One downside of
speculative systems such as this is that abort decisions might
be based on conservative ordering constraints, possibly limiting
parallelism [32]. Also, it might be difficult to simultaneously
achieve fine-grained parallelism and low abort rates for some
applications with many data dependencies per task [33].

Some works have been proposed in the past that also attempt
to reduce Task Scheduling overheads with HW acceleration.
Nevertheless, they come short in either not providing detailed
full system evaluation, with FPGA prototyping or at least RTL
simulation [13], [34], [35], [36]; only being able to feed tasks
to a handful of general-purpose cores [30], or none at all [15];
or having their performance strongly limited by poor CPU-
accelerator communication mediated by main memory [37],
[30], rather than by custom datapaths and instructions as in
our case.

Task Scheduling, as supported by our system, can be under-
stood as a means to approximate dataflow behavior on multicore
CPUs [13]. Special-purpose dataflow architectures find ample
use in machine learning accelerators, and were proven useful
since the first attempts to accelerate CNNs with fixed-function
hardware [38], [39]. Some recent works have attempted to
improve the programmability of CGRA-based dataflow systems
by increasing their ability to handle complex control-flow [40].
Others propose processors with a tree-like microarchitecture
that is specially apt at mapping irregular DAG applications [41].
A holistic Task Scheduling solution is presented in [42], where
a HW task scheduler with the ability to drive CPUs, GPUs,
and FPGAs is described. Other approaches use Task Scheduling
program representations to automatically synthesize equivalent
hardware [43] or configure dataflow systems [44]. These so-
lutions offer substantial energy and latency advantages over
ordinary CPU or GPU execution, but lack the versatility that
these baselines or our proposal offer. Also, some of these works
limit their evaluation to pre-RTL software simulation [42], [44].

VIII. CONCLUSION

This work presents a hardware-software co-designed archi-
tecture allowing for efficient Task Scheduling on large multi-
core systems. By enabling Phentos, a novel light-weight Task
Scheduling runtime, to access HW-acceleration through low
latency custom RoCC instructions, we reduce scheduling over-
heads by up to 253x, affording task parallel workloads with
tasks as short as 10K cycles long to saturate the 30 cores of
our FPGA-based RISC-V multiprocessor. We also point out
the sensitivity of such a system to cache behavior, suggesting
that new revisions of this architecture include cache-aware task
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placement mechanisms for reducing memory contention and
miss frequency.
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