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TurboGNN: Improving the End-to-End Performance
for Sampling-Based GNN Training on GPUs
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Abstract—Graph Neural Networks (GNN) have evolved as pow-
erful models for graph representation learning. Sampling-based
training methods have been introduced to train large graphs with-
out compromising accuracy. However, it is challenging for the
existing GNN systems to effectively utilize multi-core accelerators,
especially GPUs, due to a large number of atomic operations and
unbalanced workload originating from the serial execution of mul-
tiple GNN processing stages. In this paper, we propose a combina-
tion of optimization techniques to accelerate the end-to-end perfor-
mance of the sampling-based GNN training process. Specifically,
we propose an adaptive shared memory-based sampling technique
and a degree-guided thread block scheduling strategy to optimize
the graph sampling. Further, based on the observations of resource
demand in different training stages, we propose an asynchronous
pipeline-based scheduling method, which accelerates the GNN
training by decoupling different training stages into a pipeline and
therefore improves the GPU resource utilization significantly. The
experimental results show that compared with the existing work,
the proposed methods can achieve up to 5.6X performance speedup
in the end-to-end performance.

Index Terms—GPU, graph neural networks, parallelism
optimization, scheduling.

I. INTRODUCTION

B ECAUSE of the ability to learn both the structure and
attributes of the graphs at the same time, Graph neural

networks (GNN) is widely used in many fields such as node clas-
sification and link prediction in recommendation systems [1], so-
cial networks [2], biomedical science [3], knowledge graph [4],
[5]. Since training GNN is a very time- and resource-consuming
task [6], general-purpose graphics processing units (GPUs) are
often used to accelerate the training process. Several general
GNN learning frameworks have been developed, such as [7],
[8], [9].

The core computations in GNN training come from the con-
tinuous information gathering from neighboring vertices and

Manuscript received 17 July 2022; revised 27 November 2022; accepted 9
February 2023. Date of publication 15 March 2023; date of current version
9 August 2023. This work was supported in part by the National Key R&D
Program of China under Grant 2020AAA0108501, and the Key R&D Program of
Hubei under Grant 2020BAA020. Recommended for acceptance by S. Kaxiras.
(Corresponding author: Xuanhua Shi.)

Wenchao Wu, Xuanhua Shi, and Hai Jin are with the National Engineering
Research Center for Big Data Technology and System, Services Computing
Technology and System Lab, Cluster and Grid Computing Lab, School of Com-
puter Science and Technology, Huazhong University of Science and Technol-
ogy, Wuhan 430074, China (e-mail: wcwu@hust.edu.cn; xhshi@hust.edu.cn;
hjin@hust.edu.cn).

Ligang He is with the Department of Computer Science, University of
Warwick, CV4 7AL Coventry, U.K. (e-mail: ligang.he@warwick.ac.uk).

Digital Object Identifier 10.1109/TC.2023.3257507

updating the vertices’ feature vectors through a neural network.
Multiple such layers can be stacked to aggregate multiple hop
messages. Usually, a GNN has 2-3 layers. Challenges still
remain to train GNN efficiently. First, many real-world social
graphs are of huge size with rich attribute information. For
example, ogbn-papers100M [10] has 111 M vertexes, 1.6B edges
with 53 GB of vertex feature, while the memory capacity of com-
mercially available GPUs is usually tens of GB, (e.g., 16 GB for
NVIDIA P100 GPU). Second, the multi-layer stacking structure
like a deep learning network increases the memory footprint of
the full graph-based training. To solve the scalability problem,
the method of sampling-based training is proposed [11]. In the
sampling-based training, subgraphs are extracted by starting
from the training vertexes and continuously sampling the neigh-
boring vertices within L-hops. A fixed number of neighbors are
selected (sampled) in each layer based on specific sampling
strategies such as random sampling, weighted sampling, and
random walk. The sampling can reduce both computations and
memory requirements in one iteration. Finally, all the training
vertices are processed in mini-batches, and the model parameters
are updated iteratively until the model converges.

In the sampling-based training, the existing systems such as
DGL [7], PYG [9] and PinSage [1] adopt the hybrid CPU+GPU
mode. In this mode, the whole training process is divided into
three stages: i) subgraphs sampling, ii) feature extraction and
transmission, and iii) the actual GNN training. First, the structure
and feature data of the graph are stored in the CPU memory.
The CPU is responsible for sampling the graph and generating
subgraphs for training. Next, the sampled subgraphs and the
collected features are transferred to the GPU, where the GNN
training is performed. As the CPU memory capacity is usually
much larger than that of GPUs, this mode can support the training
of huge graphs in the single- or multi-GPU setting. However, the
feature transmission and the CPU-based sampling may become
the performance bottleneck due to the low PCIe bandwidth but
fast GPU training, which leads to low GPU utilization since the
GPU may have to wait for sampled subgraphs.

To address the data transfer bottleneck, the GPU-based feature
caching [12] and the UMA (unified virtual memory)-based fea-
ture fetching techniques [13] are proposed. The feature cache
policy takes advantage of different probabilities that a vertex
is sampled. PaGraph [12] proposes the degree-guided feature
caching policy to cache the nodes with a high out-degree in
the GPU memory in advance, assuming those vertices are more
likely to be frequently sampled. Pytorch-direct [13] proposed the
UMA-based, GPU-oriented communication kernel to fetch the
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features, which can improve the transfer efficiency significantly.
To relieve the bottleneck of CPU sampling, the previous work [7]
proposed a GPU-based sampling algorithm based on the fact that
the topological data of a graph only accounts for a small portion
of the entire graph data (comparing to the feature data of a graph).
Therefore the topological data can be easily transferred to the
GPU, which then utilizes its vast parallel power to perform fast
sampling.

The optimization techniques discussed above aim to address
the problems in the first two stages of the entire GNN training
process, i.e., sub-sampling and data transfer. However, we found
that although the subgraph sampling is moved from CPU to
GPU in the previous work, there is still big room to improve
the efficiency of the GPU sampling (as an essential stage of the
GNN training, the GPU sampling stage currently occupies 45%
of the processing time on average in an iteration). Moreover,
none of the previous works attempts to improve the end-to-end
performance of the GNN training which is affected by all the
processing stages including sampling, feature extraction, and
training. Our studies show that there exist inefficient operation
scheduling and executions, which affect the end-to-end per-
formance. Specifically, multiple threads often have to save the
sampling results to the same location in global memory. To avoid
data race among threads, the existing GPU sampling algorithms
run a large number of atomic operations, which is very inefficient
and expensive [28]. In addition, it does not take into account the
unbalanced distribution in the degrees of the sampled vertices,
which may result in low bandwidth utilization and severe load
imbalance. Moreover, the existing methods ignore the difference
in GPU resource requirements between the GPU-based subgraph
sampling stage and the actual GNN training stages. They adopt
a serial execution approach to schedule the relevant operations,
which we found may lead to long end-to-end training time and
low resource utilization.

To address the inefficiency caused by the atomic operations
during subgraph sampling, we propose an optimization method
to transfer the atomic operations in global memory to shared
memory. However, when the atomic operations are performed
in shared memory, a consequent problem arises: the shared
memory contention may increase, which in turn compromises
the concurrency degree of thread blocks since the shared mem-
ory is shared by the thread blocks running in an SM (Stream-
ing Multiprocessor). To address this problem, we propose an
adaptive, degree-guided policy when applying the optimization
method. Namely, as the GNN training progresses, only the
atomic operations on the vertices with high degrees, which are
regarded as being more ”valuable,” are transferred to the shared
memory. This novel policy improves the performance without
compromising the concurrency.

Further, we propose the new scheduling policies to address
the problem of resource demand imbalance between the graph
sampling stage and the GNN training stage. The scheduling
optimization is two-fold. On the one hand, we propose a degree-
based task assignment policy to run thread blocks. On the other
hand, we propose a novel asynchronous, pipeline-based GNN
training method based on our observations of the different but
complementary nature of resource demands in different GNN

training stages and also workload imbalance within the same
stage. The proposed asynchronous, pipeline-based scheduling
method can fully overlap the executions of different operations
(no matter from different stages or the same stage) by organizing
them into a pipeline-based execution, which improves the GPU
resource utilization significantly. In summary, there are the
following contributions in this paper.

First, we find the inefficiency in the existing GPU-based
sampling method due to the high cost of atomic operations
in global memory and the workload imbalance between thread
blocks. Subsequently, we find the difference in GPU resource
demand between the GPU-based sampling stage and the GNN
training stage. The serial scheduling adopted by the existing
methods does not take into account such a difference and may
cause low GPU resource utilization.

Second, to address the inefficiency of memory access in the
existing GPU-based subgraph sampling, we develop an opti-
mization method to reduce the atomic operations in global mem-
ory by adaptively selecting the atomic operations on high-degree
nodes and placing them in the shared memory. This way, the
inefficiency of atomic operations is mitigated while maintaining
a high degree of thread block concurrency.

Third, to address the problem of workload imbalance, we de-
velop the scheduling policies to i) optimize the task assignment
for thread blocks for the sampling kernel and ii) organize the
operations in different stages into a pipeline and run the oper-
ations simultaneously for the whole iteration, which improves
the overall resource utilization significantly.

Finally, we implement the above optimization techniques
into DGL and develop an efficient GNN learning framework
called TurboGNN. We have conducted extensive experiments.
The results show that TurboGNN can improve the end-to-end
training performance by up to 5.6x.

The rest of this paper is organized as follows. The background
information related to this work is presented in Section II. The
proposed optimization techniques as well as the architecture and
implementation of TurboGNN are detailed in Section III. The
experimental results of TurboGNN are discussed in Section IV.
Related work is discussed in Section V. Finally, the conclusions
and future work are presented in Section VI.

II. BACKGROUND

A. GNN

For a graph G = (V,E), v ∈ V represents a vertex (node) in
the graph G with the feature set denoted by fv, and the edge be-
tween two vertices represents the relationship between them. A
GNN model learns the high-dimensional feature representation
of each node by gathering the information from its neighboring
nodes in the previous layer and updating its feature vector
following the topology of the deep network (such as Multilayer
Perceptrons) iteratively. The core computations in a GNN layer
can be divided into two stages: message aggregation and feature
transformation, which can be modeled by the formula 1, where
hk
v is the feature vector of vertex v in layer k andN (v) is the set

of neighboring vertices of vertex v. The difference between the
GNN models mainly lies in the aggregation and the updating
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functions (e.g., AGGREGATE and UPDATE in formula 1).
Many such layers can be stacked to enhance the distance of
information extraction and model accuracy

a(k)v = AGGREGATE (k)
({

h(k−1)
u | u ∈ N (v)

})

h(k)
v = UPDATE (k)

(
h(k−1)
v , a(k)v

)
(1)

B. Sampling-Based Training

In the layer-stacked GNN training model, processing every
node in a graph is not viable for large graphs due to the large com-
putation and memory footprint. Also, not every node in a graph
is labeled for computing the loss and the gradient and updating
the model parameters. Inspired by mini-batch-based training in
deep learning, sampling-based training is introduced [11]. At
each iteration, the nodes in a mini-batch are randomly shuffled
and selected as seed nodes in training. Starting from the seed
nodes, a fixed number of neighboring nodes are sampled from
all neighbors. This process iterates for K times in a K-layer
GNN. In each iteration, a subgraph is generated (e.g., bipartite
graph blocks in DGL). A subgraph consists of the destination
vertices, which are the source vertices from the last iteration, and
their neighbors that are sampled (the sampled neighbors become
the destination vertices of the subgraph in the next iteration).
This way, each vertex has the same number of edges in the
subgraphs, which reduces the computation complexity in GNN
training and improves the regularity of the message aggregation
for the subgraphs. It has been shown that the sampling-based
methods can achieve accuracy competitive with the training of
the full graph [14], [15], [16].

In the sampling-based training, the hybrid CPU+GPU com-
putation mode is widely adopted in previous GNN systems [1],
[7], [9]. In this mode, an iteration in the GNN training can be
further divided into three stages: i) CPU sampling, ii) subgraph
and feature transfer; iii) GNN training. The time spent by the
CPU in sampling the subgraphs and in transferring the high-
dimensional vertex features dominates the entire GNN training
process, which forms a severe performance bottleneck [12], [13].
Usually, a GNN uses a shallow network structure with less than
four layers. Given the limited bandwidth of PCIe (usually less
than 16 GB/s) and the large amount of feature data that needs
to be transferred (e.g., 53 GB for the ogbn-papers100 M graph),
the huge communication cost can hardly be hidden by GNN
computations in such shallow network structures.

To reduce the communication cost, the GPU-based caching
technique is proposed in a system called PaGraph [12]. PaGraph
caches as many features of the high-degree vertices as possible
in the GPU memory. The caching technique has been shown to
be effective, especially on large graphs where the node degree
follows the power-law distribution [17].

C. GPU based Sampling

Since the CPU-based subgraph sampling (the supply of the
subgraphs) cannot keep up with the consumption of subgraphs
in GPU training, especially in multiple GPU settings, the GPU-
based sampling is introduced in the GNN systems such as in the

Fig. 1. The proportion of sampling time in the overall time of an iteration.
The X-axis is different models, batch size (denoted by B), and datasets, and the
Y-axis is the ratio of the GPU sampling time to the overall iteration time.

latest version of DGL [7]. The data describing the graph structure
will be loaded into the GPU memory before training. In each
iteration, a mini-batch is sampled on the GPU. Next, the CPU
extracts the features of the sampled vertices and transfers them
to the GPU memory. Finally, the GPU trains a GNN model with
the sampled vertices and features. Usually, the graph structure
data is much less than the vertex feature data, and therefore can
be easily stored in the GPU memory, while the feature data are
cached in the rest of the GPU memory as much as possible.

III. METHODOLOGY

As discussed in the introduction, the end-to-end GNN training
process includes three stages: sampling, feature transfer, and
training. In this section, we first elaborate on the problems in the
end-to-end training process, which are also the motivation of this
work. Then we propose a combination of optimization methods
for improving the end-to-end performance of GNN training.

A. Motivation

To demonstrate the problems in the existing GNN training sys-
tems, we integrate the GPU-based sampling and graph caching
technique proposed by PaGraph [12] into DGL(V0.8.1) [7] to
build a state-of-the-art system (called DGL-SOTA in this paper).

We conducted the experiments with two typical GNN net-
works (GCN [18] and GraphSage [11]) on four datasets
(Reddit [19], ogbn-products [10], ogbn-arxiv [10], ogbn-
papers100M [10]). More detailed configurations are presented
in Section IV. Though DGL-SOTA achieves significant per-
formance improvement compared with DGL equipped with
GPU-based sampling when the feature cannot be fully stored
in GPU memory (e.g., an average of 2.5X speedup on the above
two models and the ogbn-papers100 M dataset), we still found
the following issues.

Inefficient GPU-based sampling stage due to load imbalance
and a large number of global atomic operations. Fig. 1 shows
the experimental results with regard to GPU-based sampling.
It can be seen that the sampling time occupies 28%-65% of
the whole iteration time. We examined the sampling implemen-
tation on DGL(V0.8.1) in detail. It is based on the Reservoir
algorithm [20] to select the k-hop random neighboring vertices.
The sampling process is illustrated in Fig. 2. The sampling task
for each vertex (such as vertices 1, 5, and 9) is assigned to a
GPU warp to increase the efficiency of the memory access to
the edge lists and reduce thread divergence. The 32 threads in



2574 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 9, SEPTEMBER 2023

Fig. 2. The sampling process.

a warp sample a fixed number of edges (the number is 3 in
Fig. 2) for the sampled vertex. The complexity of the sampling
task for each warp is related to the degree of the sampled vertex
being assigned, which may cause a severe load imbalance when
a power-law graph is processed. Moreover, the threads in a
warp need to concurrently modify a global array that stores
the sampling results. This introduces a large number of global
atomic operations in order to maintain the data consistency,
which is expensive and inefficient [28]. As the NVIDIA Visual
Profiler [21] shows in our experiments, the average memory
bandwidth is only 40% of the peak value. Therefore, it is
critical to avoid the overhead of global atomic operators and
achieve workload balance in a sampling kernel. We propose
three optimization techniques in Section III-B to address these
issues.

Low GPU resource utilization in the end-to-end training
process due to serial executions of the three GNN stages in
the same iteration. We used the NVIDIA Visual Profiler [21]
to obtain the resource usage of GPUs in a whole training
epoch. The results show that the GPU resource utilization is
low (the detailed experimental results are presented in Section
IV). For example, in the experiments with the GraphSage on the
ogbn-papers100 M dataset with a batch size of 4000, the average
GPU utilization is 53%, while on the ogbn-products dataset,
it is 63%. Note that for the ogbn-products dataset, the entire
graph and features can be cached in the GPU memory, which
eliminates the data transferring cost completely. Even so, the
GPU utilization is still unsatisfactory. Increasing the batch size
cannot solve this problem, but may even reduce the convergence
speed [22]. Therefore, we try to tackle this issue from another
direction, which is to optimize the scheduling policies of GPU
operations to achieve the objective of improving the average
GPU utilization in the whole GNN training process without
compromising the training accuracy. In particular, we propose an
asynchronous pipeline scheme to schedule and execute multiple
stages concurrently (in section III-C).

In summary, in this paper, we aim to improve the perfor-
mance of the end-to-end GNN training process, which includes
the sampling stage, feature transfer stage, and training stage.
We identified two causes in the existing GNN systems that
affect the end-to-end performance: i) the inefficient sampling
stage itself due to expensive atomic operations and workload
imbalance among threads, and ii) the inefficient serial executions
of the three stages. To improve the performance of the sampling
stage, we propose a shared memory-based data placement policy

to address the problem brought by atomic operations. However,
we found that using too much shared memory will affect the
concurrency of threads. To address this issue, we further propose
the degree-guided adaptive shared memory optimization tech-
nique. Moreover, to address the problem of workload imbalance
among threads, we propose the degree-guided thread block
scheduling method. To overcome the inefficiency caused by the
serial executions of the three stages, we propose an asynchronous
pipeline-based scheduling method to process different stages in
different iterations concurrently. In the following sections, we
will present each optimization technique in detail.

B. Adaptive Shared Memory-Based Sampling

Shared Memory-Based Data Placement. The existing sam-
pling algorithm incurs a large number of atomic operators in the
global memory to avoid the data race among threads. Specifi-
cally, to prevent the threads from producing repeated sampling
results, the threads in a warp first generate a random number
modulo edge index to get a position index, num, if num is
less than the fanout (the number of neighbors to be sampled for
each vertex), then the edge is chosen to insert to the result array
indexed by num. Since different threads in the warp may get
the same index, the AtomicMax function is required to ensure
consistency when multiple threads write the data concurrently
at the same location in global memory. However, the atomic
operators in global memory are costly [28]. The number of such
operations is related to the number of iterations in the innermost
loop for the edges of nodes, which is further proportional to
the degree of the nodes. Even worse, a power-law graph has
a skewed degree distribution, and the high-degree vertices can
introduce high costs of atomic operations on the global memory,
which leads to low utilization of memory bandwidth and severe
workload imbalance.

To reduce the amount of global atomic operations, we propose
a shared memory-based data placement policy. Specifically, we
use the shared memory, which is software-controlled and has
much higher bandwidth and lower latency, as the cache for the
threads to store the sampling results. The pseudo-code of the
optimized kernel is presented in Algorithm 1. Before a warp
samples a vertex, we use all the threads in a warp (thread
cooperation) to write the initial sample results (lines 9-11 in
Algorithm 1). This process is efficient since the threads in a
warp read consecutive addresses in the global memory and write
the results to the consecutive addresses in shared memory. The
coalesced global access can combine multiple global memory
accesses into a single memory transaction, while the consec-
utive writes in shared memory also avoid the bank conflict.
Then, a warp synchronization instruction (instead of a block
synchronization instruction), syncwarp(), is used to ensure the
data dependency of the writes from the whole warp with the
minimal synchronization overhead (line 12). Next, the warp
travels all the edges for the sampled vertex iteratively and uses
theAtomicMax function to concurrently write the results to the
shared memory (lines 14–20). Note that an atomic operator in the
shared memory is much cheaper than that in global memory [28].
Last, the sampling results are written back to the consecutive
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addresses in global memory by the threads in a warp, which is
once again the coalesced access to global memory (lines 23-28).

Degree-Guided Adaptive Shared Memory Optimizations.
Usually, exploiting the shared memory in GPU can improve
the data access efficiency, especially when the data have to be
frequently reused. However, the shared memory is very limited
(e.g., 3.6 MB in NVIDIA P100 while the average memory
demand of training the ogbn-products dataset is as high as 48 MB
when batchsize = 200000, fanout = 30). Moreover, allocating
large shared memory space to a thread block will affect the
concurrency degree of the thread blocks, which has been demon-
strated by the experiments in Section IV. Therefore, simply
transferring the atomic operations from the global memory to
the shared memory may not bring significant performance gain
especially when the fanout is large (the shared memory demand
is proportional to the value of the fanout). As mentioned before,
the number of atomic operators is related to the degree of the
sampled vertex. This means that the benefit brought by caching
the sampling results in the shared memory is determined by
the degree of a vertex. Since a real graph usually follows the
power-law distribution, i.e., only a small number of vertices
in the graph have very high degrees. Therefore, we only need
to cache a few high-degree vertices, which not only reduces
the global atomic operations effectively but also reduces the
consumption of the scarce shared memory resource.

Inspired by this idea, we propose a degree-guided, adaptive
method to optimize the usage of shared memory. In this method,
we first sort the sampling vertices by their degree and then
divide the vertices into two partitions based on a threshold
(denoted by Dthreshold, the value of which is determined by the
GPU hardware resource, the graph structure, and the number of
sampled vertices). One partition (called high degree partition)
holds the vertices whose degree is equal to or greater than
Dthreshold, while the other partition holds the rest vertices. The
sampling results obtained for the vertices in the high-degree
partition are cached in the shared memory, while the results for
other vertices are written using the native algorithm (written into
the global memory). Finally, the sampled results from the two
partitions are merged. Both partitions use a optimized thread
block scheduling strategy, which is to be presented next. As
illustrated in Fig. 2, the sampling process for vertex 9 from the
high-degree partition is conducted in the shared memory, while
it is performed in the global memory for vertices 1 and 5 from
the low-degree partition.

Degree-Guided Thread Block Scheduling. In addition to the
aforementioned optimization for memory access, we design
an efficient task assignment policy dedicated to the hardware
scheduling mechanism of GPU. Because real graphs usually
obey the power-law distribution, the sampling vertices produced
by the random shuffling of training sets will also have such a
distribution. The latest sampling algorithm in DGL (V0.8.1)
assigns the consecutive sampled vertices to the consecutive
warps without considering the degree of the vertices. Since the
complexity of sampling each vertex is proportional to its degree,
we found that this algorithm caused a severe load imbalance
among the warps and the thread blocks. In view of this, we
propose a task reassignment strategy to balance the workload for

each warp in a thread block. It can also prioritize the execution
of thread blocks with high workloads and overlap the execution
of high-workload thread blocks with low-workload ones.

Specifically, the proposed task reassignment strategy first
sorts the sampled vertices in decreasing order by their degree.
If the number of sampled vertices is small (e.g., for low layers
in a GNN model), the number of thread blocks required is also
small. The sorted vertices are then assigned to each thread block
in an interleaved way. For example, assuming that there are m
thread blocks and m× k vertices, vertices 1 to m are assigned
to thread blocks 1 to m; then vertices m+ 1 to 2m are assigned
to thread blocksm to 1. The assignment goes on in an interleaved
manner until all vertices are assigned to the thread blocks. This
interleaved assignment can help balance the workload among
thread blocks.

When the number of the sampled vertices is large (for the
higher layers in GNN), a block of consecutive vertices is as-
signed to a thread block in a round-robin manner. In a vertex
block, the vertices are assigned to the warps in a thread block in
the interleaved manner described above. In this way, the work-
load within the same thread block is balanced among multiple
warps (within a vertex block, the degree of vertices changes more
evenly, and the interleaved vertices assignment makes it easier
to achieve load balance among warps). Although the workload
may not be balanced among different thread blocks, this assign-
ment is still effective for two reasons. First, the workload of
each warp in a thread block is balanced due to the interleaved
assignment. Thus, the warps can complete the task at almost
the same time. Consequently, the entire block can retire timely,
releasing the occupied resources to other thread blocks. Second,
Our experiments show that (and also noted by [36]) the hardware
scheduling unit 1 appears to schedule the thread blocks in the
order of the thread block ID (the thread blocks with lower IDs are
scheduled first). Our task assignment policy sorts the vertices in
the descending order of their degree and assigns the processing
of vertices to each thread block in the descending order of vertex
degree. The thread blocks with low IDs get the heavy-load task
(high-degree vertexes). This means that the priority is given
to the heavy-loaded thread blocks inexplicitly and they will
be scheduled to run first. Moreover, since the number of the
sampled vertices is large, a large number of thread blocks are
used to run the above vertex blocks. Consequently, even if a
heavy-loaded thread block has not completed the task, GPU can
always find other thread blocks to run. As the result, other more
lightly-loaded thread blocks are more likely to run concurrently
with the heavy-load thread blocks, which can improve GPU
resource utilization.

The pseudo-code for the entire scheduling procedure is pre-
sented in Algorithm 2. The sampled vertices are first sorted in
decreasing order by their degrees (line 1). The vertices are then
divided into two partitions: the high-degree and the low-degree
partitions (line 2). For each partition, if the number of thread
blocks needed for processing the partition is small, the inter-
leaved vertices assignment is applied for each thread block (lines

1The schedule of the thread blocks can hardly be changed via software but is
controlled by hardware, and little information is released to the public.
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Algorithm 1: Atomic Operator Optimized Sampling
Algorithm.

Input: G: the graph CSR; N : the number of vertices to be
sampled; T : the number of tasks per thread block;
fanout: the number of neighbors to be sampled for each
vertex; input_sampledv_array: the batch of sampled
vertices.

Ouput: result: the sampled graph.
1: extern __shared__ int sm_sample_result[]
2: startV← blockIdx.x*T+threadIdx.y
3: endV← min((blockIdx.x+1)*T, num_rows)
4: index← threadIdx.y*fanout
5: while startV < endV do
6: sampledv ←input_sampledv_array[startV]
7: degree← compute degree of sampledv.
8: if degree > fanout then
9: for idx = threadIdx.x; idx < fanout; idx+=32

do
10: sm_sample_result[index+idx] = idx
11: end for
12: syncwarp()
13: idx← fanout+threadIdx.x
14: while idx < degree do
15: generate rand number num
16: if num < fanout then
17: AtomicMax(sm_sample_result+ index+

num, idx)
18: end if
19: idx+=32
20: end while
21: syncwarp()
22: idx← threadIdx.x
23: while idx < fanout do
24: position←sm_sample_result[idx+index]

+G.inptr[sampledv]
25: result.rows[out_index+ idx]← sampledv
26: result.cols[out_index+idx]←G.index[position]
27: idx+ = 32
28: end while
29: end if
30: startV += WarpPerBlock
31: end while

4-6). Otherwise, the blocks of consecutive vertices are assigned
to the thread blocks while within each vertices block, the vertices
are assigned to the warps in the interleaved manner (lines 7-14).
Next, the high-degree partition uses the shared-memory-based
sampling kernel (line 16) while the low-degree partition uses
a native sampling kernel (line 17). Finally, the results obtained
from the two partitions are merged (line 18).

C. Asynchronous Pipeline-Based Scheduling

The GPU-based sampling training can be divided into three
stages. We first analyze the resource requirements of different

Algorithm 2: The Whole Sampling Process.
Input: G: the graph to be sampled; fanout: the number of
neighbors to be sampled; vertex_array: the array of
sampled vertices; N : the number of sampled vertices;
Dthreshold: degree threshold; Bthreshold: thread block
number threshold;

Ouput: result_graph: the sampled subgraph.
1: sorting vertex_array in descending order of degrees
2: divide the sorted vertex_array int two array P1 and

P2 with Dthreshold.
3: for (p∈ p1,p2) do
4: if (size(p)< Bthreshold) then
5: Map interleaved vertex to different thread blocks
6: end if
7: if (size(P)>= Bthreshold) then
8: Map consecutive vertex partition to different

thread blocks
9: for block ∈ threadblocks do
10: for warp ∈ block do
11: map interleaved vertices for warp
12: end for
13: end for
14: end if
15: end for
16: sample1←apply shared-memory-based kernel to p1
17: sample2←apply global-memory-based kernel to p2
18: result_graph← merge(sample1, sample2)

stages, which motivate us to design the asynchronous pipeline-
based scheduling technique.

GPU Sampling Stage. The sampling stage mainly traverses
the edges. Like traditional graph computation tasks (e.g., PageR-
ank, BFS), the sampling stage has a low computation/memory
ratio. Therefore the memory bandwidth is the major performance
bottleneck.

Feature Extraction and Transfer Stage. This stage is con-
ducted on the CPU. In this stage, the feature rows missing in
the GPU cache are collected from the CPU’s main memory.
Those features are scattered over different locations in the feature
array. The collected features are then transferred to the GPU
memory through PCIe. Usually, this stage is memory- and
communication-hungry [13]. The workloads (i.e., the features
that are missing in the cache and have to be collected) depend
on the size of the GPU cache, cache policy [12], and the structural
properties (e.g., degree distribution) of the graph. If all the
feature data can be cached in the GPU or the cache mechanism
works well for the graph structure and the access pattern, this
stage incurs low cost or even no cost at all.

Model Training Stages. Unlike full-graph-based training,
whose computations in the training are dominated by sparse
matrix multiplication, the core kernels for sampling-based train-
ing are dense matrix multiplication. These kernels have been
actively optimized in the GPU libraries implemented by the
hardware manufacturers (such as CuBlas [23], CuDNN [24]) and
the academic community (such as [25]). The core mechanisms
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Fig. 3. Workload distribution between different stages and inside a stage in an
iteration (model: GCN, dataset: ogbn-products, batch size: 8000). The number
above the bar stands for the number of source or destination vertices of the
subgraph in a layer.

are data tiling, shared memory reuse, register optimization, and
instruction scheduling [24], [25]. Based on these optimizations,
the dense matrix multiplication is computation hungry due to its
high computational intensity, very friendly data access pattern,
and large data reuse in the cache (such as shared memory and
registers) [25]. Also, it can be effectively accelerated by the
Tensor Cores from the new generation GPU.

Based on the above analysis, we made the following observa-
tions. On the one hand, different stages have markedly different
resource requirements, and the resource demands between dif-
ferent stages are often complementary. On the other hand, the
computation inside a stage is not balanced between different
layers (steps), which is illustrated in Fig. 3. As mentioned in
Section II-B, K subgraphs are sampled for a K-layer GNN over
iterations. The number of vertices in the subgraphs sampled in
each iteration (hence the workload) increases exponentially. The
increase rate is determined by the fanout. Namely, the number
of the sampled vertices for the i-th layer in a mini-batch is near
fanout times that of the (i− 1)-th layer. These K subgraphs
are the input of the next forward propagation stage. But the
K subgraphs are processed in the forward stage in the reverse
order. Namely, the subgraph sampled in the last iteration of
the sampling stage will be processed first by the first layer of
the GNN model. Therefore, the workload between different
layers in the forward stage decreases exponentially. Moreover,
the workloads of different layers in a stage have to be run strictly
in sequence due to data dependency. Therefore, GPU utilization
tends to increase or decrease greatly in a stage.

Therefore, we propose an asynchronous pipeline-based
scheduling technique to accelerate the execution process. We
decouple different stages and run them in different processes.
These processes communicate via the queues, and the processes
and the queues form a pipeline. This way, different processes
can execute different stages concurrently in the same GPU.
More specifically, the sampling process fetches a mini-batch
of vertices as the seed vertices, conducts the sampling in the
GPU, and pushes the sampled subgraphs into the sampling
queue. At the same time, the feature extraction process fetches
the subgraphs from the sampling queue, performs the feature
extraction, and pushes the extracted feature into the GPU. It then
puts the subgraphs that are ready to be trained in the training
queue. The training process obtains the input from the training

queue and executes the forward and backward computation of
the GNN model.

The rationale behind this asynchronous pipeline-based
scheduling is explained as follows. First, GPUs are now
equipped with a large number of computing units and various
on-chip memory units, even heterogeneous computing units
(such as tensor cores). Since different stages have different
resource requirements (such as cores, shared memory, and mem-
ory bandwidth) and are often complementary, the mechanism of
asynchronous pipeline-based scheduling can improve the degree
of parallelism and increase overall resource utilization. Second,
due to the workload imbalance between different layers in a
stage and that the layers in a stage must be executed serially, the
low-workload layers from either the sampling or training stage
can hardly utilize the GPU resource fully and resulting in low
utilization. With our asynchronous pipeline-based scheduling,
the layers from different stages can be executed concurrently,
which reduces the load imbalance and consequently increases
GPU utilization.

It is worth mentioning that in asynchronous pipeline-based
scheduling, different stages are run in different processes. The
traditional way of implementing concurrent executions on GPU
is to use multi-threading with multiple streams and place each
stage in an individual stream. However, Python multi-threading
is not efficient. This is because Python implements the global
interpreter lock (GIL) and the GPU events such as dynamic
memory allocation, which is very common when the subgraphs
are generated in the sampling stage, can cause implicit synchro-
nization among multiple streams. Therefore, we chose to use the
multi-process approach.

However, the consequent challenge of adopting the multi-
process approach is the high data serialization cost in inter-
process communication. For example, the sending process (such
as the sampling process) needs to serialize the information in
the class instances of the generated subgraph, which includes
the metadata of vertices and edges and the topology data of the
subgraphs (e.g., the edge list of a subgraph), and sends it to
the receiving process (such as the feature extraction process).
The receiving process then needs to deserialize the received
data into the classes. We adopt the following method to reduce
the data serialization cost. Specifically, we find that a large
proportion of the data for a subgraph comes from the edge-list
tensors. The edge list tensors are read-only and have a very
simple format. Therefore, we decouple this part of the data
and exploit the direct tensor sharing in Pytorch, which calls
torch.multiple.simpleQueue, to share the edge list directly
among the sampling and training processes. Since the volume
of the vertices metadata of a subgraph is much less than that
of its edge list, most data serialization cost is avoided. Note
that torch.multiple.simplQueue only supports simple tensors,
so we cannot use it to share the entire subgraph class among
processes.

Usually, the pipeline mechanism is most efficient when the
progress of each pipeline stage is relatively balanced. Therefore,
another challenge in pipeline-based execution is to maintain such
balance and avoid resource contention where one process occu-
pies too much GPU resource, which may stall other processes’
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Fig. 4. The Architecture of TurboGNN.

progress. We address this issue by introducing a Runtime Mon-
itoring and Dynamic Scheduling (RMDS) mechanism, which
aims to balance the number of tasks run by different processes.
The RMDS mechanism exploits the CUDA MPS (Multi-Process
Service) [27] to set the best MPS configuration based on the
historical data or the results of several initial iterations of run-
ning. At runtime, it dynamically controls the pace of different
stages. For example, if the number of subgraphs in the sampling
queue keeps increasing for more than a certain period (e.g., five
iterations), it indicates that the training process cannot consume
in time the subgraphs generated by the sampling process. The
sampling process is then deemed to be running too fast. When
this happens, the RMDS mechanism sets a limit to the speed at
which the subgraphs are generated. The GPU sampling process
will check this limit before starting a new sampling iteration.
If the limit has been reached, the sampling process sleeps for a
period of time. With the RMDS mechanism, all processes can
maintain a steady state.

D. Architecture and Implementation of TurboGNN

We have implemented the proposed optimization techniques
for the GPU sampling and training to DGL-SOTA and developed
a highly efficient GNN training framework called TurboGNN.
There are six core modules in TurboGNN, as shown in Fig. 4:
main scheduling module, performance monitoring module, GPU
sampling module, feature transfer module, GPU training mod-
ule, and GPU caching module. In the following, we present some
implementation details of the six modules.

Main Schedule Module is in the master process, which spawns
multiple other processes responsible for other modules such
as the GPU sampling module and the GPU training module.
Next, the multiple queues in the asynchronous pipeline-based
scheduling are created. Then, the main schedule module starts
all the processes and queries the Performance Monitoring mod-
ule to control the running pace of different processes using
the RMDS mechanism proposed in the asynchronous pipeline-
based scheduling.

Performance Monitoring Module. This module is run by a
process and collects the values of the performance metrics such
as the number of subgraphs generated by the sampling process
per second, the number of subgraphs trained by the training
process per second, the lengths of the queues between the
processes in the asynchronous pipeline-based scheduling and
the cache miss rate of the GPU caching module. Then, these
metrics values are passed to the main schedule module through

the message queue, which in turn controls the pace of different
processes.

GPU Sampling Module. The GPU sampling module inte-
grates our shared memory-based data placement, degree-guided
adaptive optimizations, and degree-guided thread block schedul-
ing technique into the sampling kernel and performs the GPU
sampling iteratively. The sampled vertices are sorted using
cub :: DeviceRadixSort from the NVIDIA CUB and are di-
vided into two partitions: high-degree partition and low-degree
partition. Each partition is run in an individual kernel and
stream to exploit the concurrent execution based on the degree-
guided thread block scheduling. We run the two partitions
in different kernels because the data about the high-degree
partition need to be placed in shared memory while the data
about the low-degree partition is in the global memory. We
encapsulate the subgraph sampling module, which includes
sorting of vertex degree, partitioning of high- and low-degree
vertices, graph sampling, and merging of the sampling results
from the two partitions, as a function with the same inter-
face and parameters as in the default sampling function (i.e.,
CSRRowWiseSamplingUniform()) in DGL. This newly
implemented sampling function replaces the default sampling
function in DGL while other parts of the implementation in DGL
remain unchanged.

Feature Transfer Module. The feature transfer module is
responsible for feature collection and transfer to GPU memory.
This implementation of this module is the same as that in
PaGraph [12].

GPU Training Module. This module queries the training
queue and conducts the training using the user-defined model.
We reused the common graph aggregation operations and the
optimized kernel implementation of SPMM and SDDMM from
DGL [7].

GPU Caching Module. This module caches frequently ac-
cessed vertex features in the GPU memory. It first collects
the memory footprints for several iterations, which include the
graph data size and the workspace size in sampling and training.
By subtracting the size of the collected memory footprint and
reserved space from the total GPU device memory, the cache size
for storing the graph features is determined and the cache space is
then allocated accordingly. Next, according to the cache policy,
the frequently accessed features are identified and copied to the
allocated cache space. The reason why we implement the GPU
caching as a separate module is because this way the caching
policy can be decoupled from the main execution control. The
users can customize their own caching policies if they want to.

IV. EVALUATION

We developed TurboGNN with all the proposed optimization
methods. In this section, we compare it with DGL(V0.8.1), a
popular GNN training system with the message passing model
to facilitate usurers’ programming. Since DGL does not support
the GPU cache yet and the feature extraction dominates the
time of training large graphs [12], we integrated the GPU cache
optimization [12] into DGL (called DGL-SOTA) and uses it as
the performance baseline for a fair comparison in this section.



WU et al.: TURBOGNN: IMPROVING THE END-TO-END PERFORMANCE FOR SAMPLING-BASED GNN TRAINING ON GPUS 2579

A. Experiment Setup

Cluster Configuration: We conducted our experiments on a
platform equipped with two eight-core Xeon-2670 2.60 GHz
CPUs with 264 GB memory. The platform is installed with
Ubuntu 16.04, and GCC 6.5.0. We used CUDA 10.1 together
with CuDNN V7.4.2. All the experiments were conducted on
a single NVIDIA P100 except for the experiments in Fig. 10,
which were performed on P100 and V100.

Workload Configuration. Our experiments used six datasets
(four homogeneous datasets and two heterogeneous datasets)
which are popular for GNN training. (1) Reddit [19]. Reddit is a
post-to-post graph and each vertex stands for a post while an edge
connects two posts commented by the same users. It has 232,965
vertexes, 114,615,892 edges with an average degree of 492, and
a feature dimension of 602. (2) Ogbn-products [10]. The Ogbn-
products dataset represents an Amazon product co-purchasing
network with 2,449,029 vertices and 61,859,140 edges. (3)
Ogbn-arxiv [10]. Ogbn-arxiv is a directed citation network graph
for CS papers with 169,343 vertices 1,166,243 edges, and a
feature dimension of 128. (4) Ogbn-papers100M [10]. Ogbnn-
papers100 M is a directed citation graph with 111,059,956
vertices 1,615,685,872 edges and a feature dimension of 128.
(5) BGS [29]. BGS is a geological measurements graph in Great
Britain with 94,806 vertices, 672,884 edges, and 96 edge types.
(6) AM [29]. AM describes the information about the artifacts
in the Amsterdam Museum. It has 881,680 vertices, 5,668,682
edges, and 96 relations. We tested TurboGNN with four repre-
sentative GNN models. (1) GCN [18]. It is a basic model for
the GNN network with three-layer neighbor aggregation. (2)
GraphSage [11]. It is an inductive GNN learning model to learn
the general aggregation functions (such as sum, mean, pool,
and LSTM) for different layers. (3) GAT [30]. It is the first
work that introduces the attention mechanism to the aggrega-
tion process of graph convolutional networks. (4) R-GCN [31].
R-GCN is the first GCN model for modeling relational
data.

B. Evaluation of the Sampling Kernel

We first evaluate the optimization techniques developed for
the sampling kernel (the adaptive shared-memory-based data
placement policy with the thread block scheduling method;
the corresponding kernel is called kernel-opt) and compare the
sampling time with that of the original GPU implementation
based on DGL-SOTA (called kernel-ori). The time of kernel-opt
includes the extra overhead such as vertex sorting. We run the
experiments with two datasets (Reddit and ogbn-products). The
number of sampled vertices (called batch size) tested in the
experiments is 4 K, 8 K, 16 K, 32 K, 40 K, 80 K, 100 K, and
200 K, while the number of neighbors to be sampled for a vertex
(i.e., fanout) is 10 15 and 30. These are common configurations
in the default GNN networks and training process [11], [18].
All the results reported in the figures or the tables are averages
over 500 iterations. The experimental results are shown in Fig. 5.
Our method (kernel-opt) outperforms kernel-ori in all the cases
and achieves up to 1.35x speedup while the average usage of
the memory bandwidth increases to 87% of the peak value.

Fig. 5. One sampling iteration time for different datasets, batch size, fanout
(F). The X-axis is the different kernel and batch size, and the Y-axis is the time
of one sampling iteration in milliseconds.

When the number of sampled vertices (i.e., batch size) is small,
our method achieves less performance gain (e.g., 1.15X for the
ogbn-products dataset with batchsize = 4000, fanout = 15).
This is because the small number of thread blocks cannot fully
utilize the massively parallel power of the GPU while other
costs such as kernel launch still exist. Since the sampling time
for the higher layers (which contain more vertices) dominates
the first stage execution (e.g., the batch size for the third layer
on ogbn-products is 335753 while the batch size for the first
layer is only 8000), performance optimization is especially
needed for large batch sizes. When the batch size increases,
the performance gain increases compared with kernel-ori (e.g.,
increases from 1.15X to 1.28X when the batch size increases
from 4000 to 200000 on the ogbn-products dataset and fanout
= 15). This is because when the number of sampled vertices
increases, more thread blocks are needed, and consequently
kernel-ori experiences a more severe load imbalance among
the thread blocks and the warps in a block. Moreover, more
atomic operations are performed in kernel-ori as the number of
atomic operations is positively related to the number of sampled
vertices. In this situation, our method optimizes the kernel’s
efficiency in accessing memory and scheduling thread blocks.
Therefore, kernel-opt shows a more prominent advantage.

We also find that the speedup increases when fanout increases.
For example, we achieve 1.28X, 1.30X, and 1.35X speedup
for fanout 10, 15, and 30 respectively on the ogbn-products
dataset with batchsize = 200 K. This is because when the
fanout increases, more atomic operations are required. Our
optimization method uses the shared memory in GPU to cache
the intermediate results in sampling, which effectively reduces



2580 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 9, SEPTEMBER 2023

Fig. 6. Running time of one sampling iteration for different combinations of
individual optimization policies on (a) the Reddit dataset and (b) ogbn-products
dataset; fanout = 30. ”B” stands for threads block scheduling policy, ”S” stands
for naive shared memory optimization, and ”A” stands for adaptive shared
memory optimization.

the number of global atomic operations and therefore improves
the performance.

To evaluate how much each optimization policy contributes to
the performance gain, we conducted experiments with different
combinations of individual optimization policies. The break-
down of the contribution is shown in Fig. 6. Note that the extra
overheads such as vertex sorting are included in the final result.
When only the policy of the degree-guided block scheduling is
applied, kernel-opt achieves the 1.20X speedup compared with
kernel-ori (on the Reddit dataset, batchsize = 100 K, fanout
= 30). When the naive shared memory-based caching policy,
which caches everything in the shared memory without incorpo-
rating the degree-guided adaptive policy, is added, the speedup
further increases to 1.22X. This further speedup is small, which
suggests that simply applying the shared memory-based caching
policy cannot improve the performance significantly due to
other factors such as block resource contention. If we further
add the degree-guided adaptive policy, the speedup increases
to 1.31X, which suggests the effectiveness of our adaptive
policy.

Moreover, it can be observed from the figures that differ-
ent optimization policies bring different performance improve-
ments for different configurations and graphs. For example,
for ogbn-products, which exhibits more power-law distribution,
the degree-guided block scheduling policy achieves more im-
provement than Reddit. For large values of fanout, the adaptive
shared memory optimization in conjunction with thread block
scheduling brings more benefits (1.28X and 1.35X speedups
for fanout 10 and 30 respectively with ogbn-products and the
batch size of 200 K). This is because, with a larger fanout, a
large shared memory footprint is needed for each thread block,
which may decrease the degree of concurrency. Adaptive shared
memory optimization only assigns the shared memory for the
set of ”the most valuable” vertices, which not only reduces
the number of global atomic operations but also reduces the
contention for the limited shared memory.

We also compared our kernel optimization methods with
the latest work, NextDoor [32], in the multiple-hop sampling.
The results are presented in Fig. 7. Our method outperforms
NextDoor [32] and achieves up to 1.48X speedup. It should
be noted that NextDoor [32] targets the complicated sampling
algorithm with multiple sampling paths and utilizes the transit-
parallel paradigm, which is not suitable for the bipartite graph-
based computation paradigm in DGL.

Fig. 7. The sampling kernel speedup compared to NextDoor [32] on (a) the
Reddit dataset and (b) the ogbn-products dataset with different batchsize and
fanout.

Fig. 8. Running time of one epoch of GCN, GraphSage, GAT, and R-GCN on
different datasets.

C. Evaluation With Asynchronous Pipeline-Based Scheduling

To evaluate the efficiency of asynchronous pipeline-based
scheduling, we conducted experiments to compare TurboGNN
with DGL-SOTA in terms of the end-to-end time of one
training epoch. The experimental results are shown in Fig. 8.
Our proposed methods outperform DGL-SOTA in all cases
and can achieve up to 5.6X speedup. The speedup on ogbn-
papers100M [10] is less than that on ogbn-arxiv because all
feature data of ogbn-arxiv can be cached in the GPU memory,
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Fig. 9. Speedup of different batchsize for different datasets and models
compared to DGL-SOTA.

which eliminates the bottleneck caused by the feature transfer.
On ogbn-papers100 M, which has a large feature transfer cost
(occupying about an average of 37.1% of the entire training time
of an epoch), our methods can hide the graph transfer cost with
the GPU sampling, which utilizes the idle GPU resources to
sample more subgraphs for the next iteration or use the training
stage to hide the graph transfer needed for next iteration.

Note that the speedup of GCN is more than that of GraphSage.
For example, we obtain 2.5X and 1.9X speedup for GCN and
GraphSage respectively on ogbn-arxiv with the batch size 4 K.
This is because GCN has more layers (3 versus 2 in GraphSage)
and consequently more workload imbalance inside a processing
stage. In this case, our asynchronous pipeline-based scheduling
method can improve GPU resource utilization when a layer in a
stage cannot fully utilize the parallel resources in GPU. Also, the
speedup on R-GCN and GAT is more than that on GraphSage
models (e.g., 2.6X, 3X, and 1.9X respectively for the three
models). Since R-GCN has heterogeneous edges and multi-level
aggregation modes, while GAT has more complicated inter-
leaved computation from vertices and edges, the workload in the
sampling and training process is more diverse and unbalanced.
Our pipeline scheduling can help tackle such imbalance and
improve resource utilization.

Fig. 9 shows the speedup when the batch size increases on
the four datasets. TurboGNN has different performances on
different datasets and models. For GCN on ogbn-arxiv, the
speedup is 2.3, 2,5, 2,6, and 2.9 respectively when the batch size
is 2000, 4000, 8000, and 10000. ogbn-arxiv is a very sparse graph
and so each stage has very small kernels that can hardly fully
utilize the GPU resources. When the batch size increases, there is
a more severe load imbalance between the layers within a stage.
Therefore, there is more room for our asynchronous pipeline-
based scheduling method to run the computations of the layers
from different stages concurrently (e.g., the sampling and the
training stage). For ogbn-products and ogbn-papers100 M with
the GCN model, the speedup increases first and then decreases.
For example, the speedup is 4.6, 5.6, 5.1, and 4.8 respectively
when the batch size is 2000, 4000, 8000, and 10000 on the
ogbn-products dataset. There is such a trend because when the
batch size increases, our method can bring more benefits with
an increasingly unbalanced workload (just as in ogbn-arxiv).
When the batch size increases further, the workload of all the
kernels in every stage increases, and there are fewer chances to
run two (bigger) kernels concurrently. More resource demand
and contention caused by multiple processes may even harm
performance, which causes a decrease in speedup.

Fig. 10. Speedup of TurboGNN on different GPUs.

We also tested the effectiveness of the proposed method
on different GPUs. Fig. 10 shows the speedup of TurboGNN
with GCN and GraphSage on two GPUs (NVIDIA P100 and
V100 GPU). The two GPUs are from different generations of
architecture (Pascal and Volta) and have different computation
capacities. The batch size is 4000. TurboGNN achieves better
performance on V100 (an average of 29% increase) since V100
is equipped with higher computation and memory capacities. It
suggests our sampling and pipeline-based scheduling optimiza-
tion can better use the parallelization opportunity provided by
more powerful GPU devices.

Though our methods mainly target medium-scale graphs, on
which the sampling and training can run concurrently in a single
GPU and the cache works effectively, we compared our method
with GNNLab [41], which mainly optimizes the cache invalidity
caused by big graphs in the multi-GPU scenario. We simply
extend our method to multiple GPUs with data parallelism. The
results are presented in Fig. 12. In a single GPU, our method
achieves better performance thanks to the optimized sampling
kernel and pipeline-based scheduling. In the scenario of multiple
GPUs, when the vertex feature can be fully or mostly cached by
the GPU (e.g., the cases of Reddit, ogbn-product, ogbn-arxiv),
our method still achieves better performance because there is
less inter-GPU communication. For large graphs (e.g., ogbn-
papers100 M), the working space of sampling will compromise
the cache efficiency due to memory shortage, and the feature
transfer will impose more impact on the training time. Because
of the decoupled design in GNNLab for better cache efficiency,
our method is worse than GNNlab (e.g., the speedup is 0.7 for
GCN). It is worth noting that the GPU memory is becoming
increasingly bigger in new generations of GPU (e.g., A100
is equipped with 80 GB memory), our method will work for
larger graphs in those GPUs. We also plan it as our future
work to develop special optimization techniques for multi-GPU
scenarios and larger graphs.

Table I shows the average GPU resource utilization for train-
ing one epoch on different datasets (the table shows the results
with the batch size of 4000; other batch sizes have similar results
and are not presented due to space limitation). It can be found
from the table that the average GPU utilization is low (e.g., 53%
for ogbn-papers100 M with GraphSage), which is due to the
large feature extraction cost. Even when the feature extraction
cost is eliminated when all the features for ogbn-products can
be cached in GPU memory, the utilization is still only 63%
on average. Our methods achieve much higher utilization (e.g.,
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TABLE I
THE AVERAGE GPU UTILIZATION (%) COMPARISON

Fig. 11. (a) The speedup in the running time of one epoch for different com-
binations of individual optimization methods with (a) GCN and (b) GraphSage.
The batch size is 4000. “S” stands for sampling optimization and “A” stands for
asynchronous pipeline-based scheduling.

Fig. 12. The end-to-end speedup compared to GNNlab [41].

average 95% on ogbn-products for GraphSage), thanks to our
asynchronous pipeline-based scheduling policy. Our scheduling
policy can fully overlap imbalanced workloads from different
stages. Note that since the new generation of GPUs is equipped
with more cores and higher bandwidth memory (e.g., A100 has
80 GB memory and 6912 FP32 cores), more features can be
cached and therefore our methods are expected to show a more
prominent advantage.

To show the contribution breakdown made by the sampling
optimization and the asynchronous pipeline-based scheduling
to the end-to-end performance improvement, we conducted
the experiments with different optimization combinations and
compared with DGL-SOTA. The results are shown in Fig. 11
(the performance of DGL-SOTA is plotted as the value of 1 in the
figure). As seen from the figure, both methods contribute to per-
formance improvement for different models. The performance
improvement brought by the sampling optimization is less than
that by asynchronous pipeline-based scheduling. This is because
the sampling optimization only works for the sampling stage,
which accounts for a part of the entire processing (e.g., the
time spent by the sampling stage occupies about 49% of the
time in one iteration for the Reddit dataset with the batchsize of
4000). In contrast, the asynchronous pipeline-based scheduling
can have more impact on the execution of multiple stages, given
that the resource utilization in GPU is typically not high with
the existing GNN learning frameworks to date. Although graph
sampling only happens in one stage in GNN processing, the

optimization is worthwhile given that sampling is an important
and indispensable stage for graph learning.

D. Cost Evaluation

We also evaluated the cost of our methods. First, for the
sampling optimization, the extra costs lie in the sorting process,
which can be implemented efficiently by the NVIDIA CUB
library. The sorting time is less than 2% of the kernel execution
time. For example, when the node to be sampled increases from
8,000, 80,000 to 1,200,000 on the ogbn-products dataset (with
2,449,029 vertices), the percentage of the sorting time is 1.9%,
0.7%, and 0.3% respectively. The sorting overhead decreases in
percentage because although the workload of both the sampling
kernel and the sorting kernel increase with the batch size, the
sampling kernel is more complicated than the sorting kernel and
increases much faster. For bigger graphs, such as Twitter with
41.7 M vertices, the sorting overhead is less than 0.1%.

Second, for asynchronous pipeline-based scheduling, the ex-
tra costs come from the data serialization and data copying
between the processes. Without our tensor-sharing methods, the
percentage of the overhead is 11% on average. By efficiently
sharing the topology tensor of sampled subgraphs between
different processes, the percentage of the overhead decreases
to only 0.7%. Even on the Twitter graph (41.7 M vertices),
this overhead is less than 1%. Also, our methods promote the
performance not by changing the batch size or the semantics of
the parameter synchronization. Therefore the model accuracy is
not affected.

V. RELATED WORK

Full Graph-Based GNN Training. In full graph-based train-
ing, the core computation kernels are sparse matrix multi-
plication (SpMM) for vertex computation and the sampled
dense-dense matrix multiplication (SDDMM) for edge compu-
tation [33], [34]. Many works have been proposed to improve
the two kernels. Hong et al. [33] propose intra-row reordering
and adaptive tiling to increase cache utilization. [34] further pro-
poses two-phase sorting to increase data reuse. GE-SPMM [35]
proposes the Coalesced Row Caching and the Coarse-grained
Warp Merging to reduce redundant data loading and improve
instruction parallelism. Seastar [36] proposes a vertex-centric
programming model and applies the automatic kernel fusing.
NeuGraph [37] proposes a general programming model named
SAGA and an efficient graph-aware data flow. Huang et al. [38]
propose several optimizations for GNN inference, including
edge grouping, vertex renaming, sparse fetching, and redun-
dant computation reduction. GNNAdvisor [39] proposes the
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neighbor grouping and dimension scheduling for accelerating
the GNN training kernels. To scale to large graphs, DGCL [40]
proposes an efficient communication library that can use hetero-
geneous links effectively. However, those works that target full
graph-based training have scalability issues due to their large
memory demand and the cost of distributed communication.

Sampling-Based Training. By using mini-batches, sampling-
based training can scale to large graphs and has shown accuracy
competitive with the full graph-based training [14], [15], [16].
GraphSage [11] first introduces the fixed-number vertex sam-
pling and proposes the general message aggregation methods
in GNN, such as sum, max pool, average, and LSTM. Pin-
Sage [1] uses the map-reduce style of CPU-GPU cooperation
to scale the training to large recommend systems. Since feature
transfer becomes a performance bottleneck in sampling-based
training, many works have been proposed to solve this problem.
PaGraph [12] proposes the vertex degree-based GPU cache
policy to reduce the feature transfer cost and has shown the
effectiveness for power-law graphs. However, its performance
is affected by the GPU memory capacity, which may not work
for very big graphs. Pytorch-direct [13] utilizes a GPU-oriented
communication kernel to increase the transfer efficiency by
automatic address alignment. However. when the feature trans-
fer time is reduced, another time-consuming stage, CPU-based
sampling, becomes the new performance bottleneck. DGL [7]
introduces GPU-based sampling when the graph data can be
placed in the GPU. GNNLab [41] proposes the factored system
to divide different stages into different GPUs, which may in-
troduce the communication cost and load imbalance problem. It
also proposes a new pre-sampling-based caching policy to adapt
to different graph datasets and sampling algorithms. Our work
mainly focuses on single-GPU training since a GPU is becom-
ing more powerful and is equipped with more high-bandwidth
memory capacity. Its methods are orthogonal to our work when
our method can be easily scaled to multiple GPU settings.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a combination of methods for
optimizing the GNN sampling and training on GPUs, aiming
to improve the end-to-end performance of GNN training. In
particular, to optimize the GPU sampling, we proposed i) a
shared memory-based data placement policy to reduce the num-
ber of global atomic operations. ii) a degree-guided adaptive
caching policy to make the best use of shared memory but not
compromise the concurrency degree of thread blocks, and iii)
a degree-guided thread block scheduling method to achieve
workload balance and optimize thread block execution. As
for end-to-end GNN training, we proposed an asynchronous
pipeline-based scheduling method to improve GPU resource
utilization. Even though the proposed optimization methods
mainly target the GNN training on a single GPU, it can be
further extended to the training on multiple GPUs through data or
model parallelism and multi-GPU unified memory management,
which is the plan of our future work. GNN is an important
application in next-generation computing [42]. The large-scale
dynamic graphs bring huge challenges to the parallelization
strategy, memory management, computation scheduling, and

partitioning algorithm of GNN systems. Therefore, we plan to
continue to carry out the research in the following directions: 1)
hybrid parallelization policy for GNN training on the dynamic
graphs, 2) GPU-supported snapshot and incremental GNN train-
ing system for dynamic graphs, 3) partitioning algorithms for
large-scale graphs in GNN training and 4) efficient GPU memory
management in the training and inference of large-scale dynamic
graph.
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