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Abstract—Graph convolutional networks (GCNs) are promising
to enable machine learning on graph data. GCNs show potential
vertex-level and intra-vertex parallelism for GPU acceleration,
but their irregular memory accesses arising in aggregation op-
erations and the inherent sparsity for vertex features of graphs
cause inefficiencies on the GPU. In this paper, we present gPIM,
which aims to accelerate GCNs inference through a processing-in-
memory (PIM) enabled architecture. gPIM is expected to perform
compute-intensive combination on the GPU while aggregation and
memory-bound combination are offloaded to the PIM-featured
hybrid memory cubes (HMCs). To maximize the efficiency of such
GPU-HMC architecture, gPIM is novel with two key designs: 1) A
GCN-induced graph partitioning that minimizes communication
overheads between cubes, 2) A programmer-transparent perfor-
mance estimation mechanism that predicts the performance bound
of operations accurately for workload offloading. Experimental
results show that gPIM significantly outperforms Intel Xeon E5-
2680v3 CPU (8,979.52×), NVIDIA Tesla V100 GPU (96.01×), and
a state-of-the-art GCN accelerator AWB-GCN (4.18×).

Index Terms—Accelerators, graph convolutional networks,
processing-in-memory.

I. INTRODUCTION

BASED on the great success of deep learning in recent years,
neural network over graph data is becoming increasingly

important in many real-world applications, such as recommen-
dation [1], node classification [2], and link prediction [3]. Graph
convolutional networks (GCNs) are exactly neural network
models for processing graph data effectively, which have been
widely used in the data centers of Google [4], Alibaba [5], and
Facebook [6].

GCNs often include two basic kernels for the model in-
ference [7]: aggregation and combination. For a given vertex
over a graph, the aggregation phase gathers the feature vectors
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from neighbor vertices. This phase heavily relies on the graph
structure that is inherently random and sparse. Vertices have
different numbers of neighbor vertices, following power-law dis-
tribution [8], [9]. Aggregation phase involves a large number of
random neighbor vertices accesses; over hundreds of dimensions
for vertex feature vector exacerbates the amount of memory
access. Based on the gathered features, the combination phase
then updates the feature vectors of vertices themselves using a
fully-connected neural network (NN). In this process, all vertices
often share the same reusable weight parameters, and the length
of their feature vector is variable (that is, input features and
output features may have different lengths).

In the above execution context, GCNs can enjoy the benefits
of GPU due to their potential high parallelism and compute-
intensive NN-operation [10], [11]. A number of studies [11],
[12] focus on improving the locality in graphs and the workload
imbalance for GPU threads. However, we identify the bottleneck
of GCNs inference on GPUs arising from aggregation operations
and occasional combination operations, both of which have a
low arithmetic intensity (the number of arithmetic operations per
byte [13]). Aggregation operations are always memory-bound
due to involving enormous neighbor vertex accesses, while
combination operations have uncertain performance bound that
depends closely upon the features sparsity and the NN dimen-
sion. Even though the modern GPUs (such as Nvidia Tesla P100
and V100) have been equipped with high bandwidth memory
(HBM), the efficiency of GCNs inference is limited severely be-
cause of superfluous data movement between GPU and memory.
This slows down the overall performance and increases energy
consumption significantly (as discussed in Section II-C). In this
paper, we focus on addressing the memory-wall challenges for
GCNs inference on GPUs.

We exploit the insight of resolving the aforementioned mem-
ory bottleneck by leveraging processing-in-memory (PIM) [14].
Micron’s Hybrid Memory Cube (HMC) [15], stacks several
DRAM banks on a logic layer as a cube. And the logic layer is
divided into 32 vaults. Each vault can be integrated with digital
logic, which can perform computations closely to the memory
cells, offering low latency and power consumption benefits. The
arithmetic operations are simple for handling aggregation or
combination involved in GCNs, such as addition and multi-
plication. The logic layer can integrate digital logic containing
such simple operations under the constraints of the area and
power consumption. As demonstrated in previous work [16],
HMC cubes are fully compatible with the GPU to constitute
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a GPU-HMC architecture, where the traditional GPU memory
can be equivalently replaced with the HMC cube(s).

In this paper, we present gPIM, which enables accelerat-
ing GCNs by leveraging a GPU-HMC architecture. gPIM is
a hybrid computing engine, which incorporates GPU and PIM
for both compute-intensive and memory-bound computations.
Specifically, gPIM utilizes GPU to process compute-intensive
combination while aggregation and memory-bound combina-
tion are accelerated by the PIM side. However, achieving such a
GPU-PIM architecture for GCNs inference remains challenging.

First, when the accessed data is in a different cube, it causes
cross-cube communication with higher latency than the local
cube. Neighbor vertices accesses in aggregation may cause seri-
ous cross-cube communications for traditional graph partition-
ing [17]. Although in previous studies [17], [18] they adopted
replica to reduce cross-cube communication, it is unpractical
for GCNs because long vertex feature vector incurs unafford-
able storage overhead. Therefore, a new graph partitioning
is needed for gPIM to minimize cross-cube communication.
Second, affected by features sparsity and NN dimension, the
performance bound of combination is not fixed. Assessing per-
formance bound for combination is critical to determine which
computing engine is optimal. Offline profiling can make the
best decision, but it introduces expensive costs. It is difficult
to choose the preferable computing engine accurately with low
overhead.

To effectively accelerate GCNs inference through a PIM-
enabled GPU architecture, we propose a software/hardware
co-design to exploit the benefit potential of gPIM. First, we
observe a new graph partitioning opportunity along feature
dimensions and introduce a GCN-induced graph partitioning
based on the traditional graph partitioning and this new op-
portunity, which minimizes cross-cube communication. Second,
we observe that a few sampled vertices have similar arithmetic
intensity with the whole combination phase. This motivates us
to determine computing engine of combination operations by
learning arithmetic intensity on a few sampled vertices with low
overhead.

In this paper, we make the following contributions:
� We identify the GPU-PIM heterogeneous requirement

for the aggregation-combination processing paradigm of
GCNs inference, and offload aggregation and memory-
bound combination to the PIM side for performance en-
hancement.

� We present gPIM, which can minimize the communication
overheads among HMC cubes with a GCN-induced graph
partitioning, and determine the preferable computing en-
gine with a programmer-transparent performance estima-
tion mechanism.

� We evaluate gPIM with a thorough comparison to Intel
Xeon E5-2680v3, Nivida Tesla V100, and a state-of-the-art
GCN accelerator AWB-GCN, achieving average speedups
of 8,979.52×, 96.01×, and 4.18×, respectively.

The rest of this paper is organized as follows. Section II
introduces the background and motivation. Section III gives
an overview of gPIM. Section IV describes our detail design

Fig. 1. The GCN inference procedure where the aggregation phase is colored
in orange and the combination phase is in pink.

of gPIM. Section V evaluates gPIM. Section VI discusses the
related work and Section VII concludes.

II. BACKGROUND AND MOTIVATION

We first introduce some preliminaries of GCNs inference.
We then discuss the GPU-PIM heterogeneous requirement and
challenges of GCNs inference on a GPU-PIM architecture.

A. GCNs: Programming and Examples

Computational Paradigm. There are many variants of GCNs
for different occasions, e.g., GraphSage [19], GIN [20]. Equa-
tion (1) and (2) show a layer of a representative model [2]
for GCNs. Equation 1 shows the aggregation phase, which
aggregates features from all its source neighbors for each vertex.
The aggregation phase is used to propagate the information
between vertices so that the aggregated information can capture
vertex features or the topological information. A and D are
adjacent matrix and degree matrix for graph. H represents
vertices feature vectors at the k-th layer. F is the aggregated
vertices feature vectors. Ã=A+IN , where IN is the identity
matrix. This adds a self-loop to each vertex in the graph to
ensure that the vertex itself features are included when aggre-
gating source neighbor vertices features. D̃− 1

2 ÃD̃− 1
2 is used to

normalize A.
Equation (2) shows the combination phase, which updates the

feature vector of each vertex to a new one by the weight matrix
W . This phase aims to enhance the information representation.
Different tasks will focus on capturing different features infor-
mation.

Aggregation : F = D̃− 1
2 ÃD̃− 1

2H(k−1) (1)

Combination : Hk = FW (2)

Fig. 1 depicts the general computational procedure of GCNs
inference. The codes in orange is the aggregation phase and
the pink area is the codes for the combination phase. GCNs
applications are easy to write by implementing only two user-
defined Aggregate and Combine functions.

Fig. 2 further depicts a diagram flow to illustrate the GCNs
inference. The aggregation gathers the feature vectors from
neighbor vertices. It depends on the graph structure to access the
vertex features of all source neighbors, and the number of source
neighbor vertices among different vertices varies significantly.
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Fig. 2. A diagram flow for the GCN model.

Fig. 3. GPU-HMC architecture.

The combination uses a fully-connected neural network to up-
date the vertex features. Note that the length of vertex feature
vector may be changed in this phase, which shows the length of
vertex feature vector is variable between layers.

B. GPU-PIM Architecture

Fig. 3 shows a typical GPU-HMC architecture that has been
also explored in previous studies [16], [21]. The 3D stacked
memory is used to replace the original DDR memory on GPU.
Per cube provides up to four serial links for the external interface.
The GPU is connected to the 3D stacked HMC cubes, which
are also interconnected with each other. The cube is split into
32 vertical slices, called vaults. Each vault contains a memory
controller in the logic layer communicating local DRAM banks
with Through-Silicon Vias (TSVs). The internal bandwidth of
each HMC cube can be over 512 GB per second. The external
bandwidth between GPU and HMC cubes can be 320 GB per
second.

The logic layer of the HMC cubes has digital logic with
computing capability. GPU offloads memory-bound operations
to the logic layer of HMC to enjoy low memory latency and
power consumption. Previous studies indicate that the logic layer
is pretty flexible to be integrated with one or more streaming mul-
tiprocessors [16] or other customized processing elements [21]
for accelerating different types of applications. Therefore, GPU-
HMC architecture can often be slightly different for different
applications. In this paper, we modify the logic layer of the
HMC cubes slightly with customized processing elements to
effectively accelerate the inference for GCNs.

Fig. 4. Roofline of aggregation and combination phases on Nvidia Tesla
V100. Agg and Com represent aggregation and combination respectively. E.g.,
Citeseer-Agg represents aggregation phase for citeseer dataset. The aggregation
phase for Reddit dataset runs failure due to out of memory so not shown in the
figure.

C. Performance Characterization of GCNs: A Motivating
Study

We investigate the performance characteristics of GCNs based
on the roofline model [13], which is often used to offer perfor-
mance estimation of an application on an architecture. Fig. 4
shows the roofline results of benchmarking the GCN model
on the COLLAB dataset [22], using the most advanced GCNs
framework PyG [23] on Nvidia Tesla V100.

Fig. 4 depicts the data points for the aggregation and com-
bination phases of the roofline model, respectively. We find
that aggregation operations have low compute and high memory
demand. Aggregation has a relatively fixed arithmetic intensity
between datasets and in the memory-bound region, as it aggre-
gates the features of neighbor vertices with performing simple
element-wise aggregations. Due to the inherently irregularity of
graph structure, aggregation operations involve a large amount
of irregular neighbor vertices accesses. In contrast, we observe
there is a huge difference in arithmetic intensity for the combi-
nation operations. They are distributed in the compute-intensive
and memory-bound regions. It often performs vector-matrix
multiplication with regular memory accesses. Its arithmetic
intensity is dominated by feature vector sparsity and dimen-
sion of the NN. Combination operations with extremely sparse
features have less compute because there are many zero values
in the features. What’s more, the small-size NN exacerbates this
situation.

Example. Fig. 5 further illustrates an example to facilitate the
understanding from the arithmetic intensity perspective. We use

to reveal the difference between aggregation and combination.
Note that we simplify the estimation of arithmetic intensity by
using the number of operations per feature.
� Aggregation: To aggregate , its neighbors features (i.e.,

, , and ) will be accessed, but their memory accesses
are completely random due to the index-sequential storage
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Fig. 5. An example of features access and compute characteristics in GCN
model: using as an instance on aggregation and combination. has high
memory access in aggregation while intensive or low compute in combination.

format. The number of vertex features accesses depends
closely on the degree and feature length. Since the com-
puting operation of the aggregation phase is element-wise,
the computation times for aggregating a neighbor vertex
depend on the feature length. Assume the feature length
is 6. Aggregating therefore needs 18 operations out of
24 (4×6) feature accesses, yielding the small arithmetic
intensity for by 0.75.

� Combination: To combine a vertex, only its own features
are accessed. Hence, its vertex features accesses depend
only upon the feature length. There are two factors cooper-
atively affecting the arithmetic intensity: features sparsity
and NN dimension. Let us consider combining as an
example. Assume the feature length is 6 and the NN is 6×5
fully connected. The computation times for combining
are 30 (6×5) multiplications and 25 (5×5) additions, yield-
ing the high arithmetic intensity by 30+25

6 =9.16. However,
the features sparsity may lower the arithmetic intensity
significantly. Assume only one valid non-zero value in a
feature vector. The combination operations contain 5 (1×5)
multiplications and 0 (0×5) additions. This will induce the
arithmetic intensity as low as 0.8. Further the small-size
neural network worsens the situation.

As it is, the compute-intensive combination can be efficiently
processed by GPU while aggregation and sparsity-inducing
combination are inefficient with memory-bound. This motivates
us to accelerate GCNs by leveraging processing-in-memory. To
be clear, we divide the region of GPU’s roofline into regions A,
B, and C, respectively, as shown in Fig. 4. With the optimization
of the existing GCNs framework, there are no operations in
region B. All the operations are either in region A or C. The
operations in region C with high arithmetic intensity can be fast
processed by GPU, so these operations should be executed on
the GPU. While the operations in region A have low arithmetic
intensity with memory-bound, we accelerate these operations
by processing-in-memory.

Fig. 6. Overview of gPIM framework.

There is a critical arithmetic intensity (CAI) that can be used
to determine the operations belonging to region A in the Fig. 4.
The CAI is the intersection point of upper bounds of the PIM
engine and the GPU engine in the roofline model. The upper
bound in the roofline model is the peak performance, which is
determined by the inherent hardware. Note that regardless of
what PIM technology is used, the roofline model of GPU-PIM
architecture is similar to Fig. 4. This is because GPU’s compute
capability is always higher than the PIM side, and memory
bandwidth of the PIM side is larger than the GPU. Hence, we can
establish a representative formula based on the roofline model.
At the intersection point, PIM’s peak performance (PPIM ) is
equal to the GPU’s peak bandwidth (BGPU ) multiplied by the
arithmetic intensity (i.e., CAI). Thus we can obtain a representa-
tive formula as shown in Equation (3). For any PIM technology,
we can obtain the CAI value based on the peak performance
of the PIM side and the peak bandwidth of the GPU. Then
the operation with arithmetic intensity lower than CAI could
be offloaded to the PIM side, while other operations remain in
the GPU for execution.

CAI =
PPIM

BGPU
. (3)

Nevertheless, exploiting the GPU-PIM architecture for GCNs
remains challenging. First, severe cross-cube communications
exist for the aggregation phase due to the neighbor vertices in
the different cubes. The long vertex features further exacerbate
the cross-cube communication. Second, accurately estimating
the performance bound in the combination phase is challenging.
The arithmetic intensity in this phase depends not only on the
sparsity of features but also on the NN dimension. To solve these
challenges, we propose gPIM to accelerate inference of GCNs.

III. GPIM OVERVIEW

Fig. 6 shows an overview of the gPIM framework. gPIM
enables processing-in-memory for aggregation and memory-
bound combination, which requires changes in hardware and
software. These changes are transparent to the programmer
because the GCNs application layer is separate from others. Pro-
grammers can use the same interfaces provided by the existing
GCNs library to write GCNs applications as usual. We first give
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a hardware architecture overview of gPIM and then describe our
design in GCNs runtime management as follows.

A. Hardware Architecture

To enable processing-in-memory, we select the hybrid mem-
ory cube of the emerging 3D stacking technology, stacking
multiple DRAM banks on a logic layer as a cube. The whole
architecture is configured with a GPU connecting to multiple
HMC cubes. gPIM follows the HMC Gen2 specifications [24]
with 32 vaults for each cube. Crossbar switch is used cross
vault communications. Each vault in the logic layer consists
of memory controller, scheduler, buffer, and PE.

Memory Controller. The key role of memory controller is to
send memory requests from logic layer to DRAM banks. Each
vault can send requests to the local memory controller to fetch
data from its responsible DRAM die. It also can request data
to the remote memory controller through crossbar switch. The
crossbar switch is connected with I/O, which is the interface that
connects with the host and other HMC.

Scheduler. To hide the latency of memory accesses and exploit
the high memory bandwidth, a prefetcher is contained in the
scheduler. After edge lists are loaded, we can accurately know
the vertices that need to perform subsequently. The prefetcher
can prefetch the feature vector of vertices to be accessed into
the buffer in advance. In this way, the memory access latency
can be overlapped by the prefetching scheme. The scheduler
also includes a monitor to support programmer-transparent per-
formance estimation mechanism (discussed in Section IV-B). It
monitors the non-zero value in features of sampled vertices and
the number of memory transactions.

Buffer. The buffer stores prefetched vertices features and
shared weight parameters of NN. For aggregation, the buffer
stores neighbor vertices features to be aggregated next time. For
combination, the buffer stores the weight parameters of NN,
which are shared by all vertices and have high reusability. The
weight parameters may exceed the storage space of the buffer.
To adapt the buffer size, we slice the weight parameters into
multiple sub-weight parameters to complete combination.

PE. We integrate multiple processing elements (PEs) inside
the logic layer for each vault. Each PE consists of an adder
and a multiplier with 32-bit floating-point. The execution mode
of PEs can be parallelized not only from the vertex level but
also from the feature dimensions. The vertex level granularity is
coarse-grained, where each PE is responsible for the workload
of a vertex. This mode needs a large buffer to load feature
vectors, incurring unaffordable space overheads. We present to
parallelize PEs from the feature dimensions. Specifically, we
feed fixed-size features to each PE, e.g., 8 features per PE. If
all features of a vertex cannot fill all the PEs, the next vertex
features will be assigned to the idle PEs. In this way, all the PEs
can keep busy without extra space overheads.

B. GCNs Runtime Management

To efficiently accelerate GCNs inference in a GPU-PIM ar-
chitecture, we offer the following key designs.

GCN-Induced Graph Partitioning. Unlike traditional vertex-
centric and edge-centric partitioning in graph processing [25],
each vertex in GCNs has a long-dimension feature vector. In this
case, aggregating neighbor vertices across different cubes may
introduce serious cross-cube communication. We observe a new
graph partitioning opportunity to reduce cross-cube communi-
cation that divides the features with the same dimension for all
vertices into the same cube. To prevent the excessive partitioning
from the feature dimensions destroying the feature’s locality,
we introduce a GCN-induced graph partitioning based on the
traditional graph partitioning and this new graph partitioning
opportunity for GCNs (discussed in Section IV-A).

Workload Offloading. The combination workloads can be
either compute-intensive or memory-bound. Running them on
the GPU or the PIM is dependent on performance bottleneck.
We propose a programmer-transparent performance estimation
mechanism that can automatically evaluate the performance
bottleneck of the combination phase. The basic idea behind this
mechanism lies in an observation that combination performing
behavior for each vertex is similar. gPIM leverages this insight to
predict the performance bottleneck before the normal execution
with negligible overhead (discussed in Section IV-B).

IV. DESIGN

We now discuss what graph partition to use and how to
accurately offload the preferable operations to maximize the
efficiency of a GPU-PIM architecture.

A. GCN-Induced Graph Partitioning

Source-based and destination-based partitioning methods are
usually used in traditional graph processing [17], [18], [26].
Source-based partitioning causes both intra-cube synchroniza-
tion and cross-cube communication to co-exist on the same
destination vertex. While destination-based partitioning allows
us to decouple the intra-cube synchronization on the destination
vertices and cross-cube communication to the source vertices.
This enables solving cross-cube communication problems in-
dependently [26], simplifying the design. In this paper, we
focus on destination-based partitioning, where all vertices are
distributed to each cube and all the incoming edges with the
same destination vertex are also allocated to the same cube,
as shown in Fig. 7(a). Source and destination vertices of the
grids on the diagonal are located in the same cube. Other grids
on the non-diagonal involve cross-cube communication because
source and destination vertices are distributed on the different
cubes. Suppose that the edges are evenly distributed in the graph;
destination-based partitioning has a lot of cross-cube remote
accesses. Previous work [17] uses vertex replica to reduce
cross-cube communication for traditional graph processing, i.e.,
a cube can generate a replica of source vertex if this cube
only has its destination vertex and the edge. However, directly
using replica is impossible for GCNs. The extremely long vertex
feature vector brings unaffordable replica storage overhead.

Considering the independent feature dimensions and the ag-
gregation are element-wise, we can aggregate the feature vector
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Fig. 7. (a) Traditional graph partitioning for destination-based with replica, (b) Feature-dimensions partitioning, (c) Destination-based partitioning with replica
between groups, and (d) Feature-dimensions partitioning within group.

separately in the aggregation phase. This provides a new parti-
tioning opportunity to reduce cross-cube communication, which
we call feature-dimensions partitioning. It divides the features
with the same dimension for all vertices into the same cube as
shown in Fig. 7(b). For instance, assuming vertex features have
400 dimensions, and we divide all the vertex features of 1-100
dimensions into the same cube. In this partitioning, the feature
aggregation is completed at the local cube without cross-cube
communication. However, there are disadvantages of applying
this partitioning directly. When the vertex features are relatively
short, partitioning along the feature dimensions can destroy the
spatial locality. In addition, each cube completes only part of
the features aggregation, which means that each cube needs to
access the edge data multiple times.

In order to reduce cross-cube communication and protect
the spatial locality of features, we have the following insights.
If it is sufficient to divide the feature dimension to all cube
while the feature’s spatial locality can be preserved, feature-
dimensions partitioning will be used. If the feature dimensions
are divided into only a limited number of cubes (instead of all
cubes), feature-dimensions partitioning and destination-based
with vertex replica are used together. In a special case, if
the feature vector length is too small to partition, gPIM uses
destination-based partitioning with vertex replica to reduce
the cross-cube communication. In this paper, we introduce
a GCN-induced graph partitioning algorithm to model this
insight.

GCN-Induced Graph Partitioning Algorithm. We partition a
graph as follows.

1) We define groups, where a group can contain multiple
cubes. All cubes will be divided into groups. We stipulate
that feature-dimensions partitioning is only used between
cubes within the group, while destination-based partition-
ing with vertex replica is employed between groups.

2) The number of cubes in a group depends on the length of
features. Note that we keep the partitioned features at least
memory access granularity to protect the spatial locality.
We can obtain the number of cubes in a group according
to the length of the vertices feature as follows.

Assume the number of total cubes Noc is the power of 2.
Memory access granularity is denoted as Bm bytes. With the
feature vector length Lf and per feature stored by Bf bytes for
a graph, we can easily get the number of cubes for each group

(NoGc) and the number of groups (Nog) by:

Nog =
Noc
NoGc

, NoGc =

{
2�log2

LfBf
Bm

� if LfBf

Bm
< Noc

Nc otherwise
(4)

LfBf

Bm
is the maximum number of cubes that the vertex feature

vector can be divided into from feature dimensions. 2�log2

LfBf
Bm

�

guarantees that NoGc is the power of 2 so that each group has
the same number of cubes. In this partitioning algorithm, if the
number of cubes in a group is the total number of cubes, only
feature-dimension partitioning is used. If the number of cubes in
a group is 1, only the destination-based partitioning with replica
is used. If otherwise, both are used together.

Fig. 7(c) and (d) further depict an example with two groups
and two cubes per group to illustrate graph partitioning algo-
rithm. Fig. 7(c) shows that destination-based partitioning be-
tween groups. We partition all vertices evenly distributed to each
group. All the incoming edges with the same destination vertex
are allocated to the same group. We use replica to eliminate
cross-group remote accesses. A group can generate a replica of
source vertex if this group only has its destination vertex and the
edge.

Fig. 7(d) shows the feature-dimensions partitioning within
the group. We discuss feature data and edge data placement,
respectively. For feature data, we partition from the feature
dimensions evenly to all cubes within a group. Thus the accesses
to neighbor vertex features for each cube are local. For edge data,
we cut NoGc (the number of cubes within a group) portions
along the direction of destination and all incoming edges for
each portion are assigned to a cube. Although graph partitioning
may be diverse with variable vertex feature length between
layers for GCNs, edge data can keep staying in the original
cube because it is essentially divided equally among cubes.
Each cube in the group needs to access the same edge data.
We further introduce broadcasting edge data to reduce DRAM
access.

Replica synchronization is necessary when the vertex fea-
tures update (this happens in the combination phase). To hide
the replica synchronization overhead, when a master vertex
has completed its features transformation, it will immediately
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Fig. 8. The arithmetic intensity for the combination phase of a two-layers
GCN model with different numbers of sampled vertices, 128, 256, 512, and all
respectively. FL and SL are the first layer and the second layer respectively for
the GCN model.

perform its replica synchronization. In this way, the replica syn-
chronization overhead can be overlapped with the combination
phase.

B. Workload Offloading

To determine which compute engine (GPU or HMC) is prefer-
able to process combination kernel, one intuitive approach is to
use pre-processing, but it introduces too much pre-processing
overhead. To address this problem, we first analyze the combi-
nation phase behavior to observe opportunities. Based on our ob-
servations, we propose a programmer-transparent performance
estimation mechanism to predict the optimal engine before the
combination phase execution.

Fig. 8 depicts the arithmetic intensity for the combination
phase of a two-layers GCN model with different numbers of
sampled vertices, 128, 256, 512, and all, respectively. This
implies that the arithmetic intensity of a few sampled vertices is
close to all vertices of the whole combination phase. It is intuitive
because each vertex feature vector transforming has similar
computation and memory access behavior. This observation
motivates us to propose a programmer-transparent performance
estimation mechanism, which learns arithmetic intensity by
considering only a few sample vertices and then applies this
arithmetic intensity to determine the best compute engine.

The arithmetic intensity is correlated with the number of arith-
metic operations and memory transactions in bytes. For arith-
metic operations, instead of detecting the number of processing
element calculations, we simplify the collection way. Assuming
sampled vertices complete combination phase using a N ×M
fully-connected neural network, we multiply the number of
non-zero valueNonz

in sampled vertices features by M to get the
number of multiplications, and then multiply by 2 (the approxi-
mate number of additions) to get the final number of arithmetic
operations. For memory transactions, we track the read transac-
tions Tr and write transactions Tw to memory, and then multiply
the transaction size Ts. With a critical arithmetic intensity CAI
(discussed in Section II-C), we can easily determine where this
combination phase is expected to be executed by:

WhichEngine =

{
PIM if 2NonzM

(Tr+Tw)Ts
< CAI

GPU otherwise
(5)

However, at present, GPU does not support collecting arith-
metic intensity at runtime. To analyze the arithmetic intensity of

Fig. 9. An example of learning arithmetic intensity on a monitor.

sampled vertices, we support it on the PIM side. We integrate
a monitor to each vault in the logic layer. Fig. 9 shows an
example of learning arithmetic intensity on a monitor, which
is area-efficiently implemented with a few OR gates and two
counters. It monitors the non-zero value for sampled vertices
features and the number of memory transactions. After learning
arithmetic intensity, we compare it with CAI. If the learned
arithmetic intensity exceeds the CAI, the performance bottle-
neck is compute-intensive and this combination should execute
on GPU. Otherwise, this combination is memory-bound and is
accelerated by PIM side. In the case where the combination
phase is offloaded to the PIM side, since the vertex features
may be partitioned in multiple cubes due to our proposed graph
partitioning, the cube completes the computation of the com-
bination for its assigned features and generates intermediate
results. These intermediate results in different cubes are finally
merged.

Note that the preferable compute engine is selected by ag-
gregating the results of all vaults in all cubes, instead of any
single vault. A single vault only performs several vertices instead
of all sampled vertices; if these vertices are outlier vertices in
the sampled vertices, this will result in a different trend in the
arithmetic intensity observed in this vault from others, and thus
cause an incorrect selection for the compute engine. Therefore,
we use the aggregated results from all vault (in all cubes) to
compare with CAI.

GPU and PIM-enabled cubes also exist idle resources when
one side performs assigned task. We make full use of computing
resources by allocating part of the task to the other one. Mean-
while, each cube performs the assigned vertices that involves
different workloads to be processed, which results in potential
workload imbalance. For vertices, they may have different num-
ber of neighbor vertices to aggregate in the aggregation phase
and non-zero value to combine in the combination phase. To
reduce workload imbalance, we introduce a stealing mechanism
that free cube fetches workloads from busy cube.

V. EVALUATION

A. Experimental Setup

gPIM contains host processor and PIM engine. For the host
processor, we use Nvidia Tesla V100. And we employ pyG [23],
a state-of-the-art GCNs framework that consists of various GCN
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TABLE I
PLATFORM SPECIFICATIONS

models for deep learning on graphs, to execute the GCNs on the
host processor. The execution time and energy consumption of
the host are obtained by NVProfiler [27] and Nvidia-smi [28],
respectively. For the PIM engine, we have implemented a cycle-
accurate simulator based on HMC-sim3.0 [15]. We use Cadence
Innovus [29] to obtain the execution latency, energy consump-
tion, and area of intra-vault design. Finally, we combine the
results from both the host processor and our modification PIM
simulator.

gPIM Configurations. Table I shows the specific configuration
for gPIM. The host is Nvidia Tesla V100, which contains an
L1 cache with 128 KB for each SM, a shared L2 cache with
6 MB, and 32 GB HBM2 with 828.8 GB/s of bandwidth. The
PIM side is configured with 4 cubes following the HMC Gen2
specifications [24], and its frequency is set at 312.5 MHz. The
memory capacity of each cube is 8 GB and has a total of 32 GB
for gPIM. The cube provides 512 GB/s of the internal memory
bandwidth to the logic layer and 320 GB/s of external memory
bandwidth to the external links [24], [26]. The logic layer for
each cube contains 32 vaults. All vaults are connected through a
crossbar switch with routing latency of 6 cycles [30]. Each vault
contains 32 processing elements and 4 KB SRAM buffer.

Methodology. We compare gPIM with three state-of-the-art
designs on typical platforms (1) Baseline: Intel Xeon E5-2680v3
CPU; (2) The Nvidia Tesla V100 GPU; (3) A prior art GCN
accelerator - AWB-GCN [8]. For fair comparison, we use
the state-of-the-art GCNs framework PyG [23] on CPU and
GPU. PyTorch Profiler [34] is used to obtain the execution
time and the energy consumption is estimated by Intel Product
Specifications [35] for the CPU. While the execution time and
energy consumption of GPU are collected by NVProfiler [27]
and Nvidia-smi [28], respectively. AWB-GCN is an autotuning
workload balancing accelerator to accelerate GCN inference on
the FPGA platform. We configure the total number of PEs of
AWB-GCN with 4096.

GCN Workloads. Table II shows the five datasets used in
our evaluation from COLLAB dataset [22]. These datasets are
widely used in previous GCN research [7], [8]. We evaluate
five datasets with the GCN model [2] containing two layers. In

TABLE II
EVALUATED GCNS DATASETS

Fig. 10. Speedup of gPIM compared with CPU, the state-of-the-art GPU and
AWB-GCN.

order to compare other platforms fairly, we customize 128 to the
feature vector length for the hidden layer, which is the same as
the previous works [7], [8].

B. Overall Performance

Fig. 10 shows the performance results of gPIM against CPU,
GPU, and AWB-GCN [8].

1) gPIM versus CPU and GPU: gPIM outperforms CPU
average 8,979.52×. Compared with the state-of-art Nvidia
Tesla V100, gPIM is faster by 96.01× on average. This
is because we exploit the advantage of processing-in-
memory to overcome the memory-bound inefficiencies in
GCNs inference. From Fig. 10, we can see that reddit
dataset failed to run on GPU due to being out of mem-
ory. PyG framework leverages scatter and matrix multi-
plication optimization functions to perform GCN [23].
Although this way is good for improving performance,
a lot of storage space is needed for data copy. In contrast,
gPIM directly aggregates the neighbor vertices in memory.

2) gPIM versus AWB-GCN: AWB-GCN is a state-of-the-
art GCN accelerator with runtime workload rebalancing.
Although the substantial efforts are used in AWB-GCN,
gPIM provides a better speedup of 4.18× on average
compared with AWB-GCN. The reason behind this is
that gPIM leverages a hybrid engine for both compute-
intensive and memory-bound computations. gPIM not
only enjoys lower memory latency and high memory band-
width (up to 512 GB/s) from 3D stack memory but also
utilizes the excellent parallel computing capabilities of
GPU. Although AWB-GCN also exploits data reuse with
software optimization to reduce off-chip memory access,
they still have to access the off-chip memory, which has
limited memory bandwidth.
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Fig. 11. Energy consumptions of gPIM compared with CPU, the state-of-the-
art GPU and AWB-GCN. OoM represents running failure due to out of memory.

Fig. 12. Performance results of aggregation phase with destination-based,
feature-dimensions, and GCN-induced graph partitioning respectively.

C. Energy Consumption

Fig. 11 describes the energy consumption. gPIM outperforms
CPU average of 10,583.79×. Compared with GPU, gPIM’s
improvements are 119.85× on average. Also, gPIM is superior
to AWB-GCN with 5.97× less energy consumption on average.
There are two main reasons. First, gPIM benefits from the
inherent advantages of PIM. Computation is performed near
the data stored, which can greatly reduce the movement of
data on the bus. Second, our GCN-induced graph partitioning
further reduces energy consumption. It ensures that all neighbor
vertices features are accessed locally, and avoids the high energy
consumption caused by cross-cube communication. Although
edge data needs to be accessed by all cubes in the group, gPIM
saves energy by broadcasting the edge data to reduce DRAM
access.

D. Performance Breakdown of gPIM

To better understand the effectiveness of our design, we
have evaluated the following three aspects: GCN-induced graph
partitioning, programmer-transparent performance estimation
mechanism, and the latency breakdown of involved operations.

1) GCN-Induced Graph Partitioning: Fig. 12 describes the
performance results of the aggregation phase with destination-
based (gPIM-DB), feature-dimensions (gPIM-FD), and our
GCN-induced graph partitioning (gPIM), respectively. Com-
pared with the baseline of gPIM-DB, the performance improve-
ments of gPIM are 2.51× on average. This is because our graph
partitioning enables all features of neighbor vertices to be local,
thus reducing most of the cross-cube memory accesses. gPIM
outperforms gPIM-FD 1.26× on average. Excessive partitioning
over feature dimensions damages the spatial locality of features,
which reduces the data fetching efficiency (that is, more times
of memory accesses are required for the same features). Our
GCN-induced graph partitioning not only eliminates cross-cube
memory accesses of features but also protects the spatial locality

Fig. 13. Performance results of gPIM and gPIM without programmer-
transparent performance estimation.

Fig. 14. The breakdown of (a) execution time for the aggregation and combi-
nation and (b) latency considering the adder and multiplier. DRS indicates data
request stall.

of features. gPIM-FD and gPIM have the same performance on
the nell dataset. This is because nell’s feature vector length is al-
ways long between layers, and GCN-induced graph partitioning
evolves into feature dimensions partitioning.

2) Programmer-Transparent Performance Estimation: We
have evaluated the performance results of gPIM and gPIM with-
out programmer-transparent performance estimation (gPIM-
w/o-PTPE) as shown in Fig. 13. Although there exists run-
time overhead for learning arithmetic intensity, it only accounts
for 1.4% of the total running time on average (evaluated in
Section V-G). Compared to gPIM-w/o-PTPE, gPIM is faster
10.80× on average. This benefits from the accurate estimation
of the performance bottleneck for combination operations and
determining the preferable compute engine to accelerate it. Nell
can obtain relatively large benefits because this dataset has
extremely sparse and long features, and the combination phase
takes up more time. This demonstrates that the effectiveness of
our programmer-transparent performance estimation is also sen-
sitive to the time taken by the combination operations. For reddit
dataset, its aggregation operations almost take up the main time
and its features are also density. Our programmer-transparent
performance estimation has no performance improvements on
reddit dataset.

3) Latency Breakdown for Involved Operations: Fig. 14(a)
provides a breakdown of the aggregation and combination exe-
cution time ratio in the GCN model. This well demonstrates the
execution time proportion of the two phases in gPIM. Fig. 14(b)
further shows the latency breakdown considering the adder and
multiplier. To facilitate experimental data collection, we only
collect some datasets containing a layer whose aggregation and
combination are subject to memory-bound and offloaded to the
PIM side. Since the multiplier and adder are pipelined, the
adder latency can be covered by the more complex multiplier
latency. For aggregation, since normalized optimization is used
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Fig. 15. The overall performance of gPIM as the number of HMC cube
increases.

Fig. 16. The overall performance of gPIM as the number of PE in each vault
increases.

for the adjacency matrix, neighbor vertices features are multi-
plied by their influence weights, and then feature aggregation
is performed, so the latency of this phase is dominated by
the multiplier. For combination, because the vertex features
may be partitioned into multiple cubes due to our proposed
graph partitioning, each cube completes the computation of
the combination for its assigned features and generates partial
results, which is dominated by the multiplier latency. These
partial results are finally merged, which is dominated by the
adder latency.

E. Scalability

We also evaluate the performance of gPIM with the varying
number of cubes and intra-vault PEs.

#Cube: Fig. 15 shows the performance of gPIM with increas-
ing the number of cubes. As the number of cubes increases from
1 to 4, the performance has improved by 3.69× on average.
Increasing the number of cubes from 4 to 8 improves the per-
formance by 7.64×. The reason behind this is the existence of
high-degree vertex features parallelism of GCNs and our data
placement strategy; increasing the number of cubes not only
makes good use of parallelism but also does not generate much
cross-cubes communication. This shows that gPIM has good
scalability.

#PE: Fig. 16 shows the performance results of our gPIM with
the number of PEs increases. As the number of PEs increases
from 8 to 16, the performance has improved by 1.79× on aver-
age. Increasing PEs from 16 to 32 improves the performance by
1.69×. The workload can be distributed along vertices and vertex
features, which can generate sufficient parallelism to make all
PEs busy. However, as the number of PEs continues increasing,
we can see the memory bandwidth utilization of the intra-cube
has reached its peak from Fig. 17. Therefore, the number of PEs
as 32 appears to be the best for gPIM.

# GCN-induced Graph Partitioning: Our graph partitioning
also benefits multiple GPUs scenarios. Fig. 18 describes the

Fig. 17. Bandwidth utilization of 8PEs, 16PEs, and 32PEs.

Fig. 18. Speedup of our GCN-induced graph partitioning compared with
destination-based partitioning on 4 GPUs.

Fig. 19. Throughput of GCN, GraphSage, and GIN.

speedups of our graph partitioning compared with destination-
based partitioning on 4 GPUs. We select three large datasets
that are usually used to perform GCN models between multi-
ple GPUs [10]. Compared with destination-based partitioning,
the speedup of GCN-induced graph partitioning is 3.13× on
average. This is because the GCN-induced graph partitioning
is designed to reduce the data movement overhead caused by a
large number of random neighbor vertex accesses. It also works
with multiple GPUs.

F. Generality

Fig. 19 shows the throughput of gPIM with GCN and its
variants. GraphSage [19] is a GCN variant that uses an inductive
learning framework that can generate embedding for unknown
vertices and samples neighbors of each vertex. GIN [20] is a
model to distinguish if a graph is isomorphic. It proves that
Weisfeiler-Lehman is the upper limit of the power of graph
neural networks. From Fig. 19, we observe that gPIM can
provide similar throughput for GCN variants. This shows that
gPIM also has good generality in GCN variants. On the contrary,
AWB-GCN [8] can only be used for GCN acceleration.
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TABLE III
THE PERCENTAGE OF RUNTIME OVERHEAD FOR GPIM

G. Overhead Analysis

We also discuss the overhead of gPIM in terms of its three
aspects: runtime, area, and thermal overhead.

Runtime Analysis: Table III shows the percentages of run-
time overhead for learning the arithmetic intensity of our
programmer-transparent performance estimation mechanism. In
our evaluation, we use 128 sampled vertices to learn. The learn-
ing arithmetic intensity only causes 1.43% runtime overhead on
average. This demonstrates our mechanism brings substantial
performance improvements with negligible runtime overhead.

Area Analysis: gPIM introduces 32 PEs, a 4 KB buffer, and a
scheduler to each vault of the logic layer. Based on Cadence [29]
simulations, the area overhead of the gPIM logic layer for
32 vaults is 10.05 mm2, which is under the 24 nm process
technology. It only accounts for 1.03% of the total logic layer
area.

Thermal Analysis: 3D stacking memory has strict thermal
constraints, and the design of the logic layer could impact on
thermal issues of HMC. Previous study shows that the power of
the logic layer can not exceed 10W [32]. The power overhead of
gPIM logic layer is 5.69 W, which is lower than the maximum
power constraints.

VI. RELATED WORK

Systems and Accelerators for GCNs Inference: There are
many software and hardware studies on GCNs. DGL [36] and
PyG [23] are popular GCNs frameworks. They accelerate GCN
workloads with hardware optimization functions, such as sparse
matrix multiplication and scatter. NeuGraph [10] proposes a
SAGA-NN programming model and supports multiple GPUs
for large graphs on GCNs. PCGCN [12] partitions the graph into
multiple dense graphs and sparse graphs according to the power-
law distribution of natural world graphs, and processes them in
batches to take advantage of the locality in graphs. GNNAdvi-
sor [11] proposes an effective workload management runtime
system to accelerate GCNs on the GPU. Prior studies reveal that
special hardware architecture (such as ASIC and FPGA) design
solutions can effectively improve performance [7], [8]. However,
these earlier GCNs frameworks and special hardware designs
still suffer from memory-bound inefficiencies. gPIM leverages
a PIM-based architecture to resolve the memory challenge faced
in the GCNs inference.

PIM-based Graph Processing: PIM is expected to address the
memory bottleneck. Many PIM-based graph processing accel-
erators have been proposed. GraphR [37] is the first ReRAM-
based accelerator for graph processing. Tesseract [26] proposes
a programmable PIM parallel graph processing architecture.
GraphP [17] further proposes to reduce the communication
overhead between cubes by changing the data layout. GraphQ

proposes a novel structured communication mechanism to elim-
inate irregular data movement between cubes. GraphPIM [38]
offloads atomic operations on graph attribute data to HMC.
Unlike graph processing, GCNs have hybrid characteristics that
include not only irregular memory access but also intensive
computations. Moreover, the vertex feature vector length is
often long and available between layers. Therefore, previous
PIM-based graph processing solutions are difficult to capture
these unique characteristics raised in GCNs.

PIM-based Neural Network Acceleration: There are also
many studies on PIM-based neural network accelerators. Liu
et al. [39] propose a heterogeneous PIM architecture to ac-
celerate neural networks. TETRIS [40] proposes a neural net-
work accelerator using the 3D stack memory. ISAAC [41]
proposes a ReRAM-based convolutional neural network ac-
celerator. Unlike traditional neural networks, GCNs have an
uncertain performance bottleneck combination phase and an
irregular memory-bound aggregation phase. These PIM accel-
erators are hardly applied to accelerate the GCNs. In this paper,
we use a GPU-PIM architecture to accelerate GCNs inference.
The compute-intensive combination is deployed on GPU while
memory-bound aggregation and combination are accelerated by
PIM side.

VII. CONCLUSION

In this paper, we propose gPIM, which aims to acceler-
ate GCNs inference on a GPU-PIM architecture. gPIM pre-
serves GPU to perform compute-intensive combination while
memory-bound aggregation and combination are offloaded to
PIM side. To minimize the communication overheads between
HMC cubes, a GCN-induced graph partitioning is developed.
In addition, a programmer-transparent performance estimation
mechanism is proposed to determine the performance bottleneck
of combination and use the optimal engine to accelerate. Our
results show that gPIM can outperform CPU, the state-of-the-art
Nivida Tesla V100, and GCN accelerator AWB-GCN signifi-
cantly in terms of both performance and energy savings.
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