
IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 8, AUGUST 2023 2151

Spin-Variable Reduction Method for Handling Linear
Equality Constraints in Ising Machines

Tatsuhiko Shirai , Member, IEEE, and Nozomu Togawa , Member, IEEE

Abstract—We propose a spin-variable reduction method for
Ising machines to handle linear equality constraints in a combina-
torial optimization problem. Ising machines including quantum-
annealing machines can effectively solve combinatorial optimiza-
tion problems. They are designed to find the lowest-energy solution
of a quadratic unconstrained binary optimization (QUBO), which
is mapped from the combinatorial optimization problem. The
proposed method reduces the number of binary variables to for-
mulate the QUBO compared to the conventional penalty method.
We demonstrate a sufficient condition to obtain the optimum
of the combinatorial optimization problem in the spin-variable
reduction method and its general applicability. We apply it to
typical combinatorial optimization problems, such as the graph
k-partitioning problem and the quadratic assignment problem.
Experiments using simulated-annealing and quantum-annealing
based Ising machines demonstrate that the spin-variable reduction
method outperforms the penalty method. The proposed method ex-
tends the application of Ising machines to larger-size combinatorial
optimization problems with linear equality constraints.

Index Terms—Combinatorial optimization problem, Ising
machine, Ising model, metaheuristics, quantum annealing,
simulated annealing, variable reduction.

I. INTRODUCTION

COMBINATORIAL optimization problems find the opti-
mal combination of decision variables to minimize or

maximize an objective function under a set of given con-
straints [1]. Solving a combinatorial optimization problem with
many decision variables is challenging because the number of
solution candidates increases exponentially as the number of
decision variables increases. Although typical examples found
in textbooks are the satisfiability problem, quadratic assignment
problem (QAP), and graph k-partitioning problem (GkPP),
combinatorial optimization problems are ubiquitous in daily
life. Examples include the logistics optimization, traffic route
optimization, and drug discovery.

Ising machines are specialized computers for combinatorial
optimization problems. Most Ising machine hardware operates
on the basis of simulated annealing (SA) [2], [3], [4], [5], [6],
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[7] and quantum annealing (QA) [8], [9] (see the review of
Ising machines in [10]). The quadratic unconstrained binary op-
timization (QUBO) is used to solve a combinatorial optimization
problem in Ising machines [11], [12], [13], [14], [15], [16]. The
QUBO is described by binary variables called spins, which take
values of 0 or 1.1 Then, the solution space of a combinatorial
optimization problem is transformed into the spin configuration
space {0, 1}⊗N , where N is the number of spins. The QUBO
problem finds the spin configuration to minimize the energy
function defined by the QUBO. Ising machines search for the
lowest-energy state of a QUBO, which is called the ground
state. Efficient methods have been proposed for improving the
performance of Ising machines [17], [18], [19], [20]. The optimal
solution of a combinatorial optimization problem is obtained
from the ground state. This paper develops a method for Ising
machines.

The energy function of a QUBO is generally given as the
sum of the terms for an objective function and the constraints.
Feasible solutions (FSs) satisfy the constraints. The conventional
method, which is called the penalty method, gives the constraint
term by increasing the energy of infeasible solutions [12]. The
spin configuration space is separated into many FS subspaces
with lower energies by the infeasible solution space with higher
energies. Fig. 1(a) applies the penalty method to a combinatorial
optimization problem with two binary variables and a single lin-
ear equality constraint. The QUBO is expressed by Hpenalty =
x1 − x2 + 5(x1 + x2 − 1)2, where the first term x1 − x2 is the
objective function and the second term (x1 + x2 − 1)2 is the
constraint term. The penalty 5 is given to the constraint term to
increase the energy of infeasible solutions. Then, the two FSs
(x1, x2) = (0, 1) and (1, 0) are separated by infeasible solutions
with large energies. The transition probability between the FSs
is low when the thermal or quantum fluctuation is small. In this
situation, searching for the optimum using an Ising machine
is difficult. SA-based or QA-based Ising machine studies have
reported that the penalty method falls into a local minimum
solution and fails to reach the optimum of the QUBO (e.g.,
Refs. [21], [22]). Therefore, developing an efficient constraint-
handling method is important.

In this study, we propose a new constraint-handling method
called the spin-variable reduction (SVR) method. The proposed
method, which is based on the idea of variable reduction,
expresses a spin variable using other spin variables in terms

1We herein adopt this definition. However spins are often denoted as binary
variables with values of −1 or 1. Both definitions are equivalent since a spin
σ ∈ {−1, 1} is expressed by a spin x ∈ {0, 1} as σ = 2x− 1.

© 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see
https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-7375-4119
https://orcid.org/0000-0003-3400-3587
mailto:tatsuhiko.shirai@aoni.waseda.jp
mailto:ntogawa@waseda.jp
https://doi.org/10.1109/TC.2023.3239539


2152 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 8, AUGUST 2023

Fig. 1. Examples of the penalty method and the spin-variable reduction
method in a simple combinatorial optimization problem with two binary vari-
ables and a single linear equality constraint. Both methods formulate the com-
binatorial optimization problem into QUBOs. (a) The penalty method gives a
QUBO Hpenalty as a function of (x1, x2). Two infeasible solutions have a
large energy. (b) The spin-variable reduction method gives a QUBO Hsvr as a
function of x1. Hsvr is independent of x2 and x2 is obtained by x1 using the
variable relationship in the linear equality constraint (i.e., x2 = 1− x1).

of the variable relationships in linear equality constraints. The
SVR method reduces the number of spin variables compared to
the penalty method and decreases the number of the infeasible
solutions. Fig. 1(b) applies the SVR method to the combinatorial
optimization problem given in (a). The QUBO is expressed by
Hsvr = x1 − (1− x1) = 2x1 − 1. The SVR method has one
less spin than the penalty method, and thus Hsvr depends on a
single spinx1. The reduced spin valuex2 is obtained byx1 using
the variable relationship in the linear equality constraint (i.e.,
x2 = 1− x1). The SVR method induces a transition between the
FSs (x1) = (0) and (1) without passing large-energy infeasible
solutions. In this way, reducing the number of the infeasible
solutions leads to an efficient search for the optimum.

The main contributions of this paper are as follows:
� We propose a new constraint-handling method called the

SVR method for QUBO problems. The SVR method re-
duces the number of spins compared to the penalty method.

� We give a sufficient condition to obtain the optimum of the
combinatorial optimization problem in the SVR method.
This condition covers a wide range of constraints, which
typically appear in QUBO problems.

� We apply the SVR method to two NP-hard combinatorial
optimization problems: GkPP and QAP. Then we experi-
mentally solve QUBO problems using an SA-based Ising
machine and a QA-based Ising machine. The SVR method
outperforms the penalty method.

The rest of this paper is organized as follows. Section II
defines the constrained combinatorial optimization problem and
reviews the penalty method. Section III proposes the SVR
method. Section IV formulates the SVR method in GkPP and
QAP. Section V details the experimental results using SA-based
and QA-based Ising machines. Section VI discusses the experi-
mental results. Section VII summarizes this paper. Appendices,
which can be found on the Computer Society Digital Library
at available online, give supplements on the application of the

SVR method tod-dimensional systems, the domain-wall method
for 2-dimensional systems, the results for extended version of
GkPP, and the ideal QA simulation.

II. PRELIMINARIES AND RELATED WORKS

A. Definitions

This paper considers the following combinatorial optimiza-
tion problem:

Problem 1: For xi ∈ {0, 1} where i ∈ {1, 2, . . .} =: V , find
arg min{xi}Q({xi}i∈V ) under the linear equality constraints
such that for k ∈M

Ck ({xi}i∈V ) = ã0,k +
∑
i∈V

ãi,kxi = 0, (1)

where ãi,k ∈ R for i ∈ V ∪ {0}.
Here,Q({xi}i∈V ) andCk({xi}i∈V ) = 0 denote the objective

function and the k-th constraint, respectively. M is the set of the
linear equality constraints.

Here, the equivalence of combinatorial optimization problems
is defined as:

Definition 1: Given the set of the optimal solutions of prob-
lem a and problem b as V ∗a ⊆ V and V ∗b ⊆ V , respectively, the
two problems are equivalent if V ∗a = V ∗b .

B. QUBO and Penalty Method

QUBO [23] is a common input format for Ising machines
and is defined on an undirected graph Gqubo = (Vqubo, Equbo),
where Vqubo and Equbo are the vertex set and edge set, respec-
tively. They are given as

H
({xi}i∈Vqubo

)
=

∑
(i,j)∈Equbo

Qi,jxixj +
∑

i∈Vqubo

Qi,ixi +Q0,

(2)
where xi ∈ {0, 1} is a binary variable called the spin and
Qi,j , Qi,i, Q0 ∈ R. The QUBO problem finds the ground state
of H({xi}i∈Vqubo

).
The penalty method formulates Problem 1 as the QUBO

problem in (2) [12], [14].
Problem 2: For xi ∈ {0, 1} where i ∈ V , for a sufficiently

large λ ∈ R find arg min{xi}i∈V Hpenalty({xi}i∈V ) where

Hpenalty ({xi}i∈V ) = Q ({xi}i∈V ) + λ
∑
k∈M

[Ck ({xi}i∈V )]2 .
(3)

For a sufficiently large λ, Ck({xi}i∈V ) is zero for k ∈M .
Thus, the following theorem is obtained.

Theorem 1: Problem 1 is equivalent to Problem 2 [14].
Hpenalty({xi}i∈V ) takes a QUBO form if Q({xi}i∈V ) is

expressed in the QUBO and Ck({xi}i∈V ) is a linear equality
constraint in (1). It should be noted that even if Q({xi}i∈V )
contains higher order terms (e.g.,x1x2x3), introducing auxiliary
variables always reduces these to second order terms [24]. To
the best of our knowledge, only the penalty method is known to
generally formulate the constrained combinatorial optimization
problems in Problem 1 by the QUBO form.
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TABLE I
KEY NOTATIONS USED IN THE PAPER

III. SPIN-VARIABLE REDUCTION METHOD

Here, a new constraint-handling method called the SVR
method is formulated (Section III-A). The SVR method formu-
lates Problem 1 as a QUBO problem. The QUBOs are explic-
itly given for combinatorial optimization problems with typical
constraints (Section III-B). Table I lists the notations used in this
section.

A. Spin-Variable Reduction Method

Our proposed method is based on the idea of variable reduc-
tion. First, we introduce subsets V1, V2 ⊆ V and M1,M2 ⊆M ,
where V and M were defined in Problem 1 (i.e., V is a set of the
spin variables and M is a set of the linear equality constraints).

Independent Spins:
i ∈ V1 when a spin variable is used to represent other spin

variables in terms of the variable relationships in linear equality
constraints. The spin variables in V1 are called independent
spins.

Dependent spins
i ∈ V2 when a spin variable is expressed and calculated by in-

dependent spins. V2 is given as V2 = V \ V1. The spin variables
in V2 are called dependent spins.

Eliminated equality constraints
k ∈M2 when the linear equality constraintsCk({xi}i∈V ) are

eliminated along with the variable reduction. This is called the
eliminated equality constraint.

The complement set of M2 is defined as M1 := M \M2.
A one-to-one correspondence exists between V2 and M2 (i.e.,
V2 �M2) since the one equality constraint is used to eliminate
one spin.

Dependent spins can be expressed in terms of independent
spins. For k ∈M2, the equality constraint gives

∑
i∈V2

ãi,kxi = −ã0,k −
∑
i∈V1

ãi,kxi, (4)

where {ãi,k} for i ∈ V2 and k ∈M2 can be regarded as a matrix
with dimension |V2|. When the constraints in k ∈M2 are lin-
early independent, the matrix is given by a regular square matrix.
Here, the inverse matrix is introduced with a matrix element ã−1k,i

for k ∈M2 and i ∈ V2 satisfying
∑

k∈M2
ãi,kã

−1
k,j = δi,j for

i, j ∈ V2 and
∑

i∈V2
ãi,�ã

−1
k,i = δk,� for k, � ∈M2, where δi,j

is the Kronecker’s delta. Then, (4) gives for i ∈ V2

xi = −
∑
k∈M2

⎛
⎝ã0,k +

∑
j∈V1

ãj,kxj

⎞
⎠ ã−1k,i

= a0,i +
∑
j∈V1

aj,ixj =: Ri ({xj}j∈V1
) , (5)

where aj,i = −
∑

k∈M2
ãj,kã

−1
k,i for j ∈ V1 ∪ {0}.

Next, a new objective function and constraints are redefined
as functions of independent spins. They are obtained by replac-
ing the dependent spins by Ri({xj}j∈V1

) in Q({xi}i∈V ) and
Ck({xi}i∈V ). Namely,

Q′ ({xi}i∈V1
) := Q ({xi}i∈V1

, {Ri ({xj}j∈V1
)}i∈V2

) , (6)

and for k ∈M1

C ′k ({xi}i∈V1
) := Ck ({xi}i∈V1

, {Ri ({xj}j∈V1
)}i∈V2

) . (7)

It should be noted that C ′k({xi}i∈V1
) = 0 maintains a linear

equality constraint. Then, the combinatorial optimization prob-
lem can be reformulated as

Problem 3: For xi ∈ {0, 1} where i ∈ V , find
arg min{xi}i∈V1

Q′({xi}i∈V1
) under the linear equality

constraints such that for k ∈M1

C ′k ({xi}i∈V1
) = 0 (8)

and the constraints of dependent spins that for i ∈ V2

xi = Ri ({xj}j∈V1
) ∈ {0, 1}. (9)

Equation (9) gives the constraint for independent spins since
Ri({xj}j∈V1

) can take values other than 0 or 1.
Lemma 2: Problems 1 and 3 are equivalent.
Proof of Lemma 2 The equivalence of Problems 1 and 3 are

proven in terms of Definition 1. We consider sets of FSs for
Problems 1 and 3, which are denoted by V (1)f and V (3)f , re-
spectively. {xi}i∈V ∈ V (1)f if Ck({xi}i∈V ) = 0 for all k ∈M
and {xi}i∈V ∈ V (3)f if C ′k({xi}i∈V1

) = 0 for all k ∈M1 and
xi = Ri({xj}j∈V1

) for i ∈ V2. First, we show V (1)f ⊆ V (3)f .
Suppose that {xi}i∈V ∈ V (1)f . Then, Ck({xi}i∈V ) = 0 for
k ∈M2 gives xi = Ri({xj}j∈V1

) for i ∈ V2. Next we find for
k ∈M1

C ′k ({xi}i∈V1
) = Ck ({xi}i∈V1

, {Ri ({xj}j∈V1
)}i∈V2

)

= Ck ({xi}i∈V ) = 0. (10)

It indicates {xi}i∈V ∈ V (3)f , and consequently V (1)f ⊆ V (3)f .
We also show V (3)f ⊆ V (1)f . Suppose that {xi}i∈V ∈ V (3)f .
Then, xi = Ri({xj}j∈V1

) for i ∈ V2 gives for k ∈M1

0 = C ′k ({xi}i∈V1
)

= Ck ({xi}i∈V1
, {Ri ({xj}j∈V1

)}i∈V2
)

= Ck ({xi}i∈V ) , (11)

and

xi = Ri ({xj}j∈V1
)
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= a0,i +
∑
j∈V1

aj,ixj

= −
∑
�∈M2

⎛
⎝ã0,� +

∑
j∈V1

ãj,�xj

⎞
⎠ ã−1�,i . (12)

For k ∈M2

∑
i∈V2

ãi,kxi = −
∑
i∈V2

ãi,k
∑
�∈M2

⎛
⎝ã0,� +

∑
j∈V1

ãj,�xj

⎞
⎠ ã−1�,i

= −
∑
�∈M2

⎛
⎝ã0,� +

∑
j∈V1

ãj,�xj

⎞
⎠ δk,�

= −ã0,k −
∑
i∈V1

ãi,kxi,

⇔ ã0,k +
∑
i∈V

ãi,kxi = 0,

⇔ Ck ({xi}i∈V ) = 0. (13)

Hence, {xi}i∈V ∈ V (1)f . Thus, V (3)f ⊆ V (1)f . Therefore,
V (1)f = V (3)f =: V f .

We consider a FS {xi}i∈V ∈ V f . Then,

Q ({xi}i∈V ) = Q ({xi}i∈V1
, {Ri ({xj}j∈V1

)}i∈V2
)

= Q′ ({xi}i∈V1
) . (14)

Let the sets of optimal solutions of Problems 1 and 3 be V (1)∗

andV (3)∗, respectively. Then,V (1)f = V (3)f andQ({xi}i∈V ) =
Q′({xi}i∈V1

) for each FS indicate V (1)∗ = V (3)∗. Thus, Prob-
lems 1 and 3 are equivalent.

Problem 3 is reformulated. We use the fact that
constraints Ri({xj}j∈V1

) ∈ {0, 1} in Problem 3 are ex-
pressed as arg min{xj}j∈V1

Ri({xj}j∈V1
)[Ri({xj}j∈V1

)− 1]

when Ri({xj}j∈V1
) ∈ Z. It gives the following Problem 4 and

Lemma 3.
Problem 4: For xi ∈ {0, 1} where i ∈ V1, for sufficiently

large λ ∈ R and τ ∈ R, find arg min{xi}i∈V1
Hsvr({xi}i∈V1

)
where

Hsvr ({xi}i∈V1
) = Q′ ({xi}i∈V1

) + λ
∑
k∈M1

[C ′k ({xi}i∈V1
)]
2

+ τ
∑
i∈V2

Ri({xj}j∈V1
)[Ri({xj}j∈V1

)−1] .

(15)

Then, for i ∈ V2, xi = Ri({xj}j∈V1
).

Lemma 3: Problem 3 is equivalent to Problem 4 under the
conditions that

aj,i ∈ Z for i ∈ V2 and j ∈ V1 ∪ {0}. (16)

Proof of Lemma 3 For a sufficiently large λ, C ′k({xi}i∈V1
)

is zero for k ∈M1. Similarly, for a sufficiently large
τ , for i ∈ V2, Ri({xj}j∈V1

)[Ri({xj}j∈V1
)− 1] is zero

under the conditions in (16). This is because the con-
ditions restrict the range of Ri({xj}j∈V1

) to an integer
value. Then, Ri({xj}j∈V1

)[Ri({xj}j∈V1
)− 1] = 0 indicates

Algorithm 1: How to Formulate Problem 4 from Problem 1.

1: V1 ← V , V2 ← ∅, M1 ←M , and M2 ← ∅
2: C ′k({xm}m∈V1

)← Ck({xm}m∈V ) for k ∈M
3: while ∃k ∈M1 and ∃i ∈ V1 s.t. C ′k({xm}m∈V1

) = 0 is
written as xi = a0 +

∑
j∈V1

ajxj where aj ∈ Z for
j ∈ V1 ∪ {0} do

4: V1 ← V1 \ {i}, V2 ← V2 ∪ {i}, M1 ←M1 \ {k},
M2 ←M2 ∪ {k}

5: Ri({xm}m∈V1
)← a0 +

∑
j∈V1

ajxj

6: C ′�({xm}m∈V1
)← C ′�({xm}m∈V1

, Ri({xm}m∈V1
))

for � ∈M1

7: Rj({xm}m∈V1
)← Rj({xm}m∈V1

, Ri({xm}m∈V1
))

for j ∈ V2 \ {i}
8: end while
9: return C ′k({xm}m∈V1

) for k ∈M1 and Ri({xm}m∈V1
))

for i ∈ V2

Ri({xj}j∈V1
) ∈ {0, 1}. Thus, Problem 4 is reduced to find-

ing the sets of {xi}i∈V that minimize Q′({xi}i∈V1
) under

the constraints that C ′k({xi}i∈V1
) = 0 for k ∈M1 and xi =

Ri({xj}j∈V1
) for i ∈ V2, which is nothing but Problem 3.

Lemma 2 shows an equivalence of Problems 1 and 3 and
Lemma 3 shows an equivalence of Problems 3 and 4 under the
conditions in (16). Thus, we obtain the following theorem.

Theorem 4: Problems 1 and 4 are equivalent under the
conditions in (16).

The linearity of Ri({xj}j∈V1
) (see (5)) leads to the following

proposition.
Proposition 5: Hsvr({xi}i∈V1

) is a QUBO when
Q({xi}i∈V ) is given in the QUBO form.

Theorem 4 and Proposition 5 give the corollary:
Corollary 6: (Optimality) The optimal solutions of Problem 1

are obtained by solving the QUBO problem of Hsvr({xi}i∈V1
)

in Problem 4 when the conditions in (16) are satisfied and
Q({xi}i∈V ) is a QUBO.

Since V1 ⊆ V , the SVR method requires fewer spins to for-
mulate the QUBO than the penalty method.

Algorithm 1 practically formulates Problem 4 from
Problem 1. It returns {C ′k({xm}m∈V1

)}k∈M1
and

{Ri({xm}m∈V1
))}i∈V2

. First, set V1 = V , V2 = ∅, M1 = M ,
M2 = ∅, and C ′k({xm}m∈V1

) = Ck({xm}m∈V ) for k ∈M .
Then, iteratively update the subsets and the constraints. Each
update finds k ∈M1 and i ∈ V1 that satisfy the condition

C ′k ({xm}m∈V1
) = 0⇔ xi = a0 +

∑
j∈V1

ajxj (17)

where aj ∈ Z for j ∈ V1 ∪ {0} (Line 3). Then, move k
from M1 to M2 and i from V1 to V2 (Line 4). Accordingly,
Ri({xm}m∈V1

) is given, and then C ′�({xm}m∈V1
) for � ∈M1

and Rj({xm}m∈V1
) for j ∈ V2 \ {i} are updated by replacing

dependent spin xi by Ri({xm}m∈V1
) (Lines 5-7). The

algorithm ends when k ∈M1 and i ∈ V1 satisfying the
condition in (17) does not exist. Then, {C ′k({xm}m∈V1

)}k∈M1

and {Ri({xm}m∈V1
))}i∈V2

give Hsvr (see (15)). Note that
Ri({xm}m∈V1

) satisfies the condition in (16).



SHIRAI AND TOGAWA: SPIN-VARIABLE REDUCTION METHOD FOR HANDLING LINEAR EQUALITY CONSTRAINTS IN ISING MACHINES 2155

TABLE II
EXAMPLE 1

In Algorithm 1, the condition in (17) determines which spin
variable can take as a dependent spin. The condition is easily
checked by looking at the coefficients of a linear equality con-
straint. The choice of dependent spins is arbitrary as long as
the conditions are satisfied and may affect the performances of
Ising machines. However, as will be shown in experiments (see
Table IX in Section V), the performances are almost independent
of the choice of dependent spins.

Below, the SVR method is demonstrated in simple examples
of Problem 1.

Example 1: For x1, x2, x3 ∈ {0, 1}, minimize x1 subject to
a linear equality constraint x1 + x2 + 2x3 − 2 = 0.

The optimal solution is given by (x1, x2, x3) = (0, 0, 1).
To solve the constrained combinatorial optimization problem

in the SVR method, let x1 be a dependent spin. The dependent
spin is expressed by independent spins x2 and x3 as

R1 (x2, x3) = 2− x2 − 2x3. (18)

This equation meets the condition in (16) since a0,1 = 2, a2,1 =
−1, and a3,1 = −2 are integers. Then, the SVR method gives
the QUBO as

Hsvr = R1 (x2, x3) + τR1 (x2, x3) [R1 (x2, x3)− 1] . (19)

Hsvr is independent of dependent spin x1. Problem 4 finds
the ground state of Hsvr. Table II(a) lists the values of Hsvr

for each independent-spin configuration (x2, x3) when τ = 1.
(x2, x3) = (0, 1) gives the lowest value of Hsvr = 0. The opti-
mal solution (x1, x2, x3) = (0, 0, 1) is obtained from the lowest-
value solution by using x1 = R1(x2, x3).

Next, using this example, we show that the SVR method is
inapplicable when (16) is not satisfied. Let x3 be a dependent
spin instead of x1. Then,

R3 (x1, x2) = 1− 1

2
x1 − 1

2
x2 (20)

does not meet the condition in (16) since a1,3 = −1/2 and
a2,3 = −1/2 are not integers. The QUBO in the SVR method
reads

Hsvr = x1 + τR3 (x1, x2) [R3 (x1, x2)− 1] . (21)

Table II(b) lists the values of Hsvr for each independent-spin
configuration (x1, x2)when τ = 1.Hsvr takes a minimum value
of −1/4 when (x1, x2) = (0, 1) or (1, 0). However, the con-
straint x3 = R3(x1, x2) indicates that x3 takes an inappropriate
value of 1/2. Thus, (16) is generally necessary to obtain the
optimal solution in the SVR method. The condition in (16) is
hereafter referred to as the SVR condition.

Example 2: For x1, x2 ∈ {0, 1}, minimize x1 subject to a
linear equality constraint x1 + x2 = 1.

The optimal solution is given by (x1, x2) = (0, 1).

Let x1 be a dependent spin. Then, R1(x2) = 1− x2 meets
the SVR condition. The SVR method gives the QUBO without
the constraint term as Hsvr = R1(x2) since

R1(x2) [R1(x2)− 1] = −(1− x2)x2 = 0. (22)

Here, we use x2
2 = x2. The constraint term disappears because

the domain of R1(x2) matches the domain of a spin variable.
Problem 4 minimizes the value ofHsvr. The ground state ofHsvr

is x2 = 1, and then x1 = R1(x2) gives the optimum (x1, x2) =
(0, 1).

B. Applications

Here, the SVR method is applied to combinatorial opti-
mization problems with typical constraints in one-dimensional
and two-dimensional systems. Application to the higher-
dimensional systems is straightforward (see Appendix A, avail-
able in the online supplemental material). Note that Algorithm 1
explicitly gives a QUBO for the SVR method in other types of
constrained combinatorial optimization problems of Problem 1.

1) One-Dimensional System: First, consider Problem 1 with
Q({xi}i∈V ) in the QUBO form under a linear equality constraint
given by

C ({xi}i∈V ) =
∑
i∈V

xi − k = 0, (23)

where k ∈ N. The constraint is called the k-hot constraint. It
appears in the G2PP, the job sequencing problem, and graph-
coloring problem.

If the r-th spin is set as a dependent spin (i.e., r ∈ V2), then

xr = −
∑
i∈V1

xi + k =: Rr ({xi}i∈V1
) . (24)

Here, Rr({xi}i∈V1
) satisfies the SVR condition.

The SVR method and the penalty method respectively give
the QUBO H

(1)
svr and H

(1)
penalty (see Problem 4 and Problem 2) as

H(1)
svr = Q′ ({xi}i∈V1

)

+ τ (1)Rr ({xi}i∈V1
) [Rr ({xi}i∈V1

)− 1] ,

H
(1)
penalty = Q ({xi}i∈V ) + λ(1) [C ({xi}i∈V )]2 , (25)

where τ (1) and λ(1) are the constraint coefficients. The SVR
method has one less spin than the penalty method. It should
be noted that a different QUBO formulation called the domain-
wall method gives a QUBO with |V | − 1 spins for k = 1 [21].
Regardless, our method is applicable to arbitrary k.

2) Two-Dimensional System: Next, consider Problem 1 with
Q({xi,s}(i,s)∈L(r)⊗L(c)=V ) in the QUBO form under constraints
given by

C
(r)
i ({xj,t}) =

∑
s∈L(c)

xi,s − k(r) = 0 ∀i ∈ L(r),

C(c)
s ({xj,t}) =

∑
i∈L(r)

xi,s − k(c) = 0 ∀s ∈ L(c), (26)

where k(r) ∈ N and k(c) ∈ N. Here, the number of 1-valued
spins in the FSs are set to N1 = k(r)|L(r)| = k(c)|L(c)|. The
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constraints appear in the QAP, GkPP (k ≥ 3), and the traveling
salesman problem.

The QUBO obtained by the SVR method depends on the
selection of dependent spins. Using a simple example where the
spins in the p-th row or in the q-th column are set as dependent
spins (i.e., V2 = {(p, s)}s∈L(c) ∪ {(i, q)}i∈L(r) ), the dependent
spins are represented by the independent spins as

xi,q=k(r) −
∑

s∈L(c)\{q}
xi,s :=Ri,q ({xj,t}) for i ∈ L(r) \ {p},

xp,s=k(c) −
∑

i∈L(r)\{p}
xi,s :=Rp,s ({xj,t}) for s ∈ L(c) \ {q},

(27)

and

xp,q = k(c) −
∑

i∈L(r)\{p}
xi,q

= k(c) −
∑

i∈L(r)\{p}

⎛
⎝k(r) −

∑
j∈L(c)\{q}

xi,s

⎞
⎠

=
∑

(i,s)∈V1

xi,s + k(r) + k(c) −N1 =: Rp,q ({xj,t}) .

(28)

Equations (27) and (28) satisfy the SVR condition.
The SVR method and the penalty method give the QUBO

H
(2)
svr and H

(2)
penalty (see Problems 4 and 2), respectively, as

H(2)
svr = Q′

({xi,s}(i,s)∈V1

)
+ τ (2)

∑
(i,s)∈V2

Ri,s ({xj,t}) [Ri,s ({xj,t})− 1] ,

H
(2)
penalty = Q

({xi,s}(i,s)∈V
)

+ λ(2)
∑

�∈{r,c}

∑
i∈L(�)

[
C

(�)
i ({xj,t})

]2
, (29)

where τ (2) and λ(2) are the constraint coefficients. The SVR
method gives the QUBO with (|L(r)| − 1)(|L(c)| − 1) spins. By
contrast, the penalty method gives the QUBO with |L(r)||L(c)|
spins. The domain-wall method formulates the QUBO with
(|L(r)| − 1)|L(c)| spins when k(r) = 1 [25] (see also Ap-
pendix B, available in the online supplemental material). The
SVR method at |L(r)| = |L(c)| and k(r) = k(c) = 1 is equivalent
to the inserted method in [26]. Hence, our proposed method is
superior to other known methods in terms of the number of spins.

IV. QUBO FORMULATION BY SPIN-VARIABLE REDUCTION

METHOD

This section formulates the QUBO of combinatorial optimiza-
tion problems by the SVR method. We consider the G2PP as ex-
amples of the one-dimensional problems and the GkPP (k ≥ 3)
and the QAP as examples of the two-dimensional problems.

Fig. 2. Example of the four-vertex graph 2-partitioning problem. Dashed line
denotes the optimum solution.

A. G2PP

The G2PP is specified by sets of vertices and edges, Vg2p

and Eg2p with even |Vg2p|. It partitions the vertex set into two
subsets of equal size such that the number of edges connecting
the two subsets is minimized. It is an NP-hard problem [27].

Here, the G2PP is transformed into Problem 1. First, we place
a spin xi ∈ {0, 1} for each vertex i ∈ Vg2p and set xi = 0 when
vertex i is in the first subset and xi = 1 when vertex i is in the
second subset. The objective function (i.e., the number of edges
connecting the two subsets) is given as [12], [28]

Qg2p ({xi}) = −2
∑

(i,j)∈Eg2p

xixj +
∑

i∈Vg2p

kixi, (30)

where ki denotes the degree of vertex i. The constraint is
expressed as

Cg2p =
∑

i∈Vg2p

xi − |Vg2p|
2

= 0. (31)

The constraint is satisfied when half of the spins are 0 and the
other half are 1. Equations (31) and (23) with k = |Vg2p|/2
have the same form. Hence, (25) gives the QUBOs for the SVR
method and the penalty method.

Next, we demonstrate the SVR method for an undirected
graph with four spins (see Fig. 2). The optimal solutions are
given by (x1, x2, x3, x4) = (0, 0, 1, 1) or (1,1,0,0). We set x1 as
a dependent spin. Namely,

R1 ({xi}) = 2− (x2 + x3 + x4) . (32)

Then the objective function for the SVR method is obtained as

Q′g2p ({xi}) = Qg2p (R1 ({xi}) , x2, x3, x4)

= −2x3x4 + x3 + x4 + 2. (33)

The objective function is independent of dependent spin x1. The
constraint is described by

Hc,g2p = R1 ({xi}) [R1 ({xi})− 1]

= [2− (x2 + x3 + x4)] [1− (x2 + x3 + x4)] . (34)

Overall, the SVR method gives a QUBO as

Hg2p = − 2x3x4 + x3 + x4 + 2

+ τ (1) [2− (x2 + x3 + x4)] [1− (x2 + x3 + x4)] .
(35)

Table III lists the values of Q′g2p, Hc,g2p and Hg2p for each
independent-spin configuration (x2, x3, x4) when τ (1) = 2.
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TABLE III
FOUR-SPIN G2PP

(x2, x3, x4) = (0, 1, 1) or (1, 0, 0) gives the lowest value of
Hg2p = 2. Since the dependent-spin value is calculated by x1 =
R1({xi}), the optimal solutions (x1, x2, x3, x4) = (0, 0, 1, 1)
and (1,1,0,0) are obtained from the lowest-value solutions.

B. GkPP

The GkPP (k ≥ 3) is an extension of the G2PP. It partitions
the vertex set of graph Ggkp = (Vgkp, Egkp) into k subsets of
equal size such that the number of edges connecting the different
subsets is minimized. Here, we assume |Vgkp|/k to an integer.

The GkPP is transformed into Problem 1. First, we place spin
xi,s ∈ {0, 1} for i ∈ Vgkp and s ∈ {1, . . . , k} =: K. The spins
denote the subset of each vertex. Whenxi,s = 1, vertex i belongs
to the s-th subset. Then the objective function is given as

Qgkp = |Egkp| −
∑

(i,j)∈Egkp

∑
s∈K

xi,sxj,s. (36)

The constraints are expressed as

C
(1)
gkp,i =

∑
s∈K

xi,s − 1 = 0 ∀i ∈ Vgkp,

C
(2)
gkp,s =

∑
i∈Vgkp

xi,s − |Vgkp|
k

= 0 ∀s ∈ K. (37)

The constraints are satisfied if each vertex belongs to a subset
and each subset size is equal to |Vgkp|/k. Equation (37) satisfies
the form in (26) with k(r) = 1 and k(c) = |Vgkp|/k. Thus, (29)
gives the QUBOs for the SVR method and the penalty method.
See Appendix C, available in the online supplemental material,
for an extended version of GkPP with inequality constraints.

C. QAP

The QAP assigns facilities to different locations to minimize
the total transport cost [29]. The total transport cost is defined
as

S(π) =
∑

i∈Lqap

∑
j∈Lqap

fi,jdπ(i),π(j) (38)

where |Lqap| =: nfac, π denotes a permutation, and Lqap ⊗
Lqap =: Vqap represents the set of facilities and locations. Here,
fi,j indicates the flow amount between facilities i and j, while
ds,t denotes the distance between locations s and t. The QAP is
an NP-hard problem [30].

Here, the QAP is transformed into Problem 1. First, we place
spin xi,s ∈ {0, 1} for each (i, s) ∈ Vqap. The spins denote the
location of each facility. When xi,s = 1, facility i is placed

Fig. 3. Example of a QAP with three facilities and locations. Values on
each arrow denote (a) fi,j for i, j ∈ {1, 2, 3} and (b) ds,t for s, t ∈ {a, b, c}.
(c) Optimal assignment for the location of the facilities.

at location s. Then the objective function (i.e., S(π)) is given
as [12], [14]

Qqap =
∑

(i,s)∈Vqap

∑
(j,t)∈Vqap

fi,jds,txi,sxj,t. (39)

The constraints are expressed as

C
(c)
qap,i =

∑
s∈Lqap

xi,s − 1 = 0 ∀i ∈ Lqap,

C(r)
qap,s =

∑
i∈Lqap

xi,s − 1 = 0 ∀s ∈ Lqap. (40)

If all the constraints are satisfied, the permutation is described
as xi,s = 1 when s = π(i). Otherwise xi,s = 0. Equation (40)
adopts the form in (26) with k(r) = k(c) = 1. Consequently, (29)
gives the QUBOs for the SVR method and the penalty method.

As an example, we demonstrate the SVR method in a QAP
with three facilities and locations. We set (f1,2, f2,3, f1,3) =
(1, 0, 0) and (da,b, db,c, da,c) = (0, 1, 1) (see Fig. 3). We as-
sumed that fi,j and ds,t are symmetric (i.e., fi,j = fj,i and
ds,t = dt,s) and the diagonals are zero (i.e., fi,i = 0 and ds,s =
0). There are two optimal solutions. One allocates facility 1 to
location a, facility 2 to location b, and facility 3 to location c
and the other allocates facility 1 to location b, facility 2 to
location a, and facility 3 to location c. The total transport cost
in the optimal solutions is 0. Here, we set the dependent spins
as V2 = {(1, a), (1, b), (1, c), (2, a), (3, a)}. Namely,

R1,a ({xi,s}) = x2,b + x2,c + x3,b + x3,c − 1,

R1,b ({xi,s}) = −x2,b − x3,b + 1,

R1,c ({xi,s}) = −x2,c − x3,c + 1,

R2,a ({xi,s}) = −x2,b − x2,c + 1,

R3,a ({xi,s}) = −x3,b − x3,c + 1. (41)

The objective function is obtained as

Q′qap = Qqap

({xi,s}(i,s)∈V1
, {Ri,s ({xj,t})}(i,s)∈V2

)
= 2 (2x2,cx3,c − x3,c + 1). (42)

The constraint term is described by

Hc,qap =
∑

(i,s)∈V2

Ri,s ({xj,t}) [Ri,s ({xj,t})− 1] . (43)
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TABLE IV
QAP WITH THREE FACILITIES AND LOCATIONS

Overall, the QUBO is given as

Hqap = 2(2x2,cx3,c − x3,c + 1)

+ τ (2)
∑

(i,s)∈V2

Ri,s({xj,t})[Ri,s({xj,t})− 1]. (44)

Table IV lists the values of Q′qap, Hc,qap, and Hqap for each
independent-spin configuration (x2,b, x3,b, x2,c, x3,c) when
τ (2) = 2. (x2,b, x3,b, x2,c, x3,c) = (0, 0, 0, 1) or (1, 0, 0, 1)
gives the lowest value of Hqap = 0. The lowest-value solutions
give the optimal solutions by calculating the dependent-spin
values using xi,s = Ri,s({xj,t}) for (i, s) ∈ V2.

V. EXPERIMENTAL EVALUATION USING ISING MACHINES

This section compares the performances of the SVR method
and the penalty method for GkPPs and QAPs when an SA-based
Ising machine or a QA-based Ising machine is used. Addi-
tionally, we show the performance of the domain-wall method
for GkPPs (k ≥ 3) and QAPs (see the QUBO formulation in
Appendix B, available in the online supplemental material).

A. Set Up of Ising Machines

SA [31], [32], [33] and QA [34], [35] are meta-heuristic
algorithms that address combinatorial optimization problems.
Ising machines based on SA or QA are designed to solve QUBO
problems. Hereafter, the SA-based Ising machine [7] and the
QA-based Ising machine [36] are referred to as classical IM
and quantum IM, respectively. The classical and quantum IM
hardware embed a maximum of 130,000 spins 2 and 180 spins on
a complete graph, respectively [7], [37]. The IM experiments run
on a MacBook Pro with a 2.8GHz quad core Intel Core i7 (16GB
RAM) using Python 3.7.6 as the implementation language.

Table V lists the parameter sets for classical IM and quantum
IM. The annealing time was set to 1 second for the classical IM
and 20μ second for the quantum IM. The number of runs was
set to 10 for the classical IM and 1,000 for the quantum IM. The
remaining values were set to the default for each IM.

2The number of maximum spins depends on the users. Here, the number of
spins available is restricted to 8,000 on a complete graph.

TABLE V
PARAMETERS FOR ISING MACHINES

B. Methods

We adopted GkPPs and QAPs to compare the performances
of the SVR method, the penalty method, and the domain-wall
method. Note that the domain-wall method is inapplicable to
the G2PP. The G2PP instances are specified by the undirected
graph Gg2p = (Vg2p, Eg2p). For each problem size |Vg2p|, 20
undirected graphs with edge density of 0.5 were generated.
Connecting the vertices i and j in Vg2p with half probability
created the undirected graphs. The QUBO for a G2PP has the
constraint coefficient τ (1) in the SVR method and λ(1) in the
penalty method ((25)). The argument in [12] gives a sufficient
condition to satisfy the constraint in the ground state of the
QUBO as

λ(1) = min

(
max
i∈Vg2p

ki,
|Vg2p|
2

)
. (45)

The same argument holds for the SVR method. Thus, τ (1) and
λ(1) are set as the value of the right-hand side of (45) in both the
classical and quantum IM experiments.

GkPP (k ≥ 3) generated 5 undirected graphs with edge den-
sity of 0.5 for each graph size and QAP used instances in
Refs. [38], [39]. The QAP instances are respectively called
nug-nfac and lipa-nfac-a. The constraint coefficient in the QUBO
for a GkPP and a QAP is τ (2) in the SVR method, λ(2) in
the penalty method (29), and κ in the domain-wall method
(Appendix B, available in the online supplemental material).
The constraint coefficients were determined using the proce-
dure in [40] in classical IM experiments. We calculated the FS
rate and the cost function. The FS rate represents the ratio of
the number of obtained FSs to the number of runs. The cost
function was calculated for the FSs. A smaller value of the cost
function indicates a better performance. The FS rate and cost
function typically increase with the constraint coefficients [15].
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TABLE VI
RESULTS OF THE SVR METHOD AND THE PENALTY METHOD IN G2PPS USING A CLASSICAL IM

The dependences indicate that the constraint coefficient has an
optimal value. To systematically determine the optimal value of
the constraint coefficient, we set the threshold value of the FS rate
as rth = 0.8 and repeatedly solved each problem instance while
varying the constraint coefficient. The precision threshold was
set to 10. The quantum IM experiments used the optimal value of
the constraint coefficient obtained in classical IM experiments.

The classical IM hardware has physical spins on a complete
graph architecture [7]. Hence, the number of physical spins on
the architecture is identical to the number of logical spins in
a QUBO (i.e., |Vqubo|). On the other hand, the quantum IM
hardware has physical spins on a sparse graph architecture [37].
Therefore, minor embedding is generally required to mapGqubo

onto the architecture [41], [42]. The minor-embedding process
constructs chains of physical spins to represent logical spin
states. The physical spins in a chain interact via ferromagnetic
coupling. The quantum IM experiments calculated the chain
break fraction, which is the ratio of chains whose spins have
different values. When the chain-break fraction averaged over
the 1,000 runs is greater than 0.1, the ferromagnetic coupling
strength in a chain was increased. Here, the number of logical
spins and physical spins are denoted byNL andNP, respectively.

Below, the average cost function, the minimum cost function,
the FS rate, and NP are used. The average cost function is the
value averaged over the FSs, while the minimum cost function
is the lowest value among the FSs. In GkPPs, each value was
averaged over problem instances. The average cost function
and the minimal cost function are denoted by Cave and Cmin,
respectively.

C. Performance Comparison in a Classical IM

Table VI gives the results of G2PP in a classical IM for
different |Vg2p| using the SVR method and the penalty method.
The SVR method selects x1 as a dependent spin. Both methods
find Cave = Cmin for small sized problems, indicating that the
classical IM obtains the optimum for all 20 problem instances.
By contrast, the SVR method outperforms the penalty method
for large-sized problems. The parenthesis denotes the relative
value of Cave in the SVR method when Cave in the penalty
method is set to 1. The decrease in the relative value with
|Vg2p| indicates the superior performance of the SVR method for
larger-sized problems. The FS rate is always 1 in both methods.

Table VII shows the results of GkPP (k ≥ 3) for various k.
The SVR method selects the first-raw spins {x1,s}s∈K and the
first-column spins {xi,1}i∈Vgkp as dependent spins. The small-
sized problem (i.e., |Vgkp| = 12) finds Cave = Cmin for all the
methods. On the other hand, for a large-sized problem (i.e.,
|Vgkp| = 360), the penalty method has worst performance among
them. The SVR method is best for large k, and the domain-wall
method is best for small k. The constraint coefficients in the
penalty method are larger than the others.

Table VIII shows the results of QAP in a classical IM with
different nfac. The SVR method selects the first-raw spins
{x1,s}s∈Lqap

and the first-column spins {xi,1}i∈Lqap
as depen-

dent spins. The SVR method finds the optimum whennfac ≤ 25,
whereas the penalty method finds the optimum when nfac ≤ 20
and the domain-wall method finds the optimum whennfac ≤ 15.
For larger nfac, the SVR method outperforms the other methods.
The domain-wall method fails to yield a FS rate above the thresh-
old value in lipa80a even at κ = 104. The constraint coefficients
in the SVR method τ (2) are smaller than those in the penalty
method λ(2), especially for lipa-nfac-a problem instances.

Table IX shows the G2PP results of |Vg2p| = 1024, the G8PP
results of |Vg8p| = 360, and the QAP results of lipa50a for 10
different choices of dependent spins. The G2PP randomly selects
dependent spin r from the vertex set Vg2p and the G8PP and the
QAP randomly sets p-th row spins and q-th column spins to
dependent spins. In all cases, the SVR method produces smaller
average cost functions and minimum cost functions than those of
the penalty method and the domain-wall method, indicating that
the results shown in Tables VI, VII, and VIII are independent of
the choice of dependent spins. In G8PP and QAP, the optimal
values of τ (2) are almost independent of the choice of dependent
spins.

D. Performance Comparison in a Quantum IM

Table X gives the results of G2PP in a quantum IM for different
|Vg2p| using the SVR method and the penalty method. Both
methods provide the same value of Cmin as that in a classical
IM for |Vg2p| = 8. For larger |Vg2p|, the quantum IM gives larger
values of Cave and Cmin than the classical IM. Cave and Cmin

are almost the same in both methods. By contrast, the FS rate in
the SVR method is higher than that in the penalty method. The
SVR method has smaller NP than the penalty method.
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TABLE VII
RESULTS OF THE SVR METHOD, THE PENALTY METHOD, AND THE DOMAIN-WALL METHOD IN GkPPS (k ≥ 3) USING A CLASSICAL IM

TABLE VIII
RESULTS OF THE SVR METHOD, THE PENALTY METHOD, AND THE DOMAIN-WALL METHOD IN QAPS USING A CLASSICAL IM. OPT. DENOTES THE OPTIMUM

FOUND IN REFS. [43], [44]
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TABLE IX
PERFORMANCE DEPENDENCES ON THE CHOICE OF DEPENDENT SPINS IN GkPP AND QAP

TABLE X
RESULTS OF THE SVR METHOD AND THE PENALTY METHOD IN G2PPS USING A QUANTUM IM

TABLE XI
RESULTS OF THE SVR METHOD, THE PENALTY METHOD, AND THE DOMAIN-WALL METHOD IN GkPPS USING A QUANTUM IM. |VGKP| IS SET TO 12

Table XI shows the results of GkPP (k ≥ 3) for k ∈ {3, 4, 6}
and |Vgkp| = 12. When k = 6, any method does not find a FS
of all problem instances. When k is 3 or 4, all methods produce
approximately the same values of Cave and Cmin, but the SVR
method gives the highest FS rate. The SVR method has the
lowest NP of the three methods for all k.

Table XII shows the results of QAP in a quantum IM for
different nfac. When nfac is 10 or 12, any method fails to find
an FS with the quantum IM. For a smaller number of facilities,
all methods generate almost the same values of Cave and Cmin,
but the SVR method gives the highest FS rate. The SVR method
has the smallest NP among the three methods.

E. Preprocessing-Time Comparison

Table XIII shows the preprocessing times for generating
QUBOs of GkPP and QAP using the SVR method and the
penalty method. We used a software package from [7]. For all
problems, the SVR method takes longer to preprocess than the
penalty method. For G2PPs, the increase rate is approximately
5% regardless of problem size |Vg2p|, and preprocessing time

scales as |Vg2p|2. The increase rate of GkPPs (k ≥ 4) increases
with k. The processing time scales as k2 for the SVR method and
k for the penalty method. These are explained by QUBO edge
number scalings (i.e., |Equbo| ∼ k2 for Hsvr and |Equbo| ∼ k
forHpenalty). For QAPs, the increase rate is approximately 30%
regardless of problem size nfac, and preprocessing time scales
as n4

fac.

VI. DISCUSSION

In a classical IM, the SVR method generates smaller cost
functions in both GkPP and QAP than the penalty method. We
explain the results in terms of the energy landscape structure.
We define the set of FS subspaces {Sα} such that Sα is a set of
FSs and two FSs are in the same Sα if the single-spin flips
can make a transition between the two FSs without passing
an infeasible solution. A single-spin flip denotes the change
of a spin value from 0 to 1 or vice versa. For a G2PP, the
penalty method needs at least two-spin flips to induce a transition
between the FSs. Each FS belongs to the different Sα, and thus
|Sα| exponentially increases with the number of spins |Vg2p|
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TABLE XII
RESULTS OF THE SVR METHOD, THE PENALTY METHOD, AND THE DOMAIN-WALL METHOD IN QAPS USING A QUANTUM IM. OPT. DENOTES THE OPTIMUM

TABLE XIII
PREPROCESSING TIME FOR QUBO GENERATION IN THE SVR METHOD AND

THE PENALTY METHOD

as |Sα| =
( |Vg2p|
|Vg2p|/2

) ∼ |Vg2p|−1/22|Vg2p|. By contrast, the SVR

method gives |Sα| = 1. For example, in the four-spin G2PP
(Table III), the transition from FS (x2, x3, x4) = (0, 0, 1) to FS
(0, 1, 1) is induced by a single-spin flip of x3. For a GkPP (k ≥
3) and QAP, the penalty method needs at least four-spin flips to
induce a transition between the FSs. The SVR method reduces
|Sα| compared to the penalty method. For example, in a QAP
with nfac = 3 (Table IV), (x2,b, x3,b, x2,c, x3,c) = (0, 0, 0, 1),
(1, 0, 0, 0), and (1, 0, 0, 1) are within the same FS subspace. The
reduction of |Sα| efficiently searches lower-energy solutions. In
a quantum IM, the SVR method gives a higher FS rate in both
GkPP and QAP than the other methods. This is attributed to the
smaller number of infeasible solutions.

Due to the minor embedding, the SVR method and the penalty
method in the quantum IM have the same number of FS sub-
spaces because a multi-spin flip of physical spins is necessary to
flip a single logical spin. Therefore, the results for an ideal QA
simulation without minor embedding (see the simulation details
in Appendix D, available in the online supplemental material)
should be compared with the quantum IM results. Fig. 4 shows
the annealing-time dependences of the average cost function
and the FS rate in the G2PPs with |Vg2p| = 16. For the ideal
QA, the average cost function approaches the optimum and
the FS rate approaches 1 with the annealing time. For a long
annealing time, the average cost function is smaller in the SVR

Fig. 4. Annealing-time dependences of the average cost function and the FS
rate for (a) ideal QA and (b) quantum IM. Solid and dashed lines denote the
results of the SVR method and the penalty method, respectively.

method than the penalty method, implying that reducing the
number of FS subspaces improves the performance of the ideal
QA. Moreover, the SVR method has a higher FS rate than the
penalty method at a short annealing time, but at a long annealing
time they have the same FS rate. By contrast, the quantum IM
results weakly depend on the annealing time. The average cost
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function is smaller and the FS rate is higher as the annealing
time increases. Note that ideal QA finds better solutions in
less time than the quantum IM. We expect this to be due to
the minor embedding because the minor embedding reduces
quantum fluctuation effects [17]. An interesting future work is to
theoretically and experimentally investigate the effect of minor
embedding on the performance.

VII. CONCLUSION

We propose the SVR method to handle the linear equality con-
straints for combinatorial optimization problems in the QUBO
form. The SVR method reduces the number of spin variables
in the QUBO problem compared to the penalty method and the
other known methods. Here, we determine the sufficient con-
dition to obtain the optimum of the combinatorial optimization
problem in the SVR method and provide QUBO formulations
for combinatorial optimization problems with typical constraints
in one-dimensional and two-dimensional systems. Therefore,
the SVR method extends the application of Ising machines
to larger-size combinatorial optimization problems with linear
equality constraints. Additionally, we compare the performances
of the SVR method, the penalty method, and the domain-wall
method in GkPP and QAP using an SA-based Ising machine
and a QA-based Ising machine. The SVR method outperforms
the other methods in terms of the cost function in an SA-based
Ising machine and the FS rate in a QA-based Ising machine.
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